Spaces:
Running
Running
swaroop-uddandarao
commited on
Commit
·
bea31e7
1
Parent(s):
a7d8778
added rerank model options
Browse files- app.py +10 -1
- finetuneresults.py +83 -16
app.py
CHANGED
@@ -19,7 +19,10 @@ from huggingface_hub import dataset_info
|
|
19 |
|
20 |
# Load embedding model
|
21 |
QUERY_EMBEDDING_MODEL = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
-
|
|
|
|
|
|
|
23 |
PROMPT_MODEL = "llama-3.3-70b-specdec"
|
24 |
EVAL_MODEL = "llama-3.3-70b-specdec"
|
25 |
WINDOW_SIZE = 5
|
@@ -107,6 +110,12 @@ with gr.Blocks() as iface:
|
|
107 |
label="Select a Model"
|
108 |
)
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
submit_button = gr.Button("Evaluate Model")
|
111 |
|
112 |
with gr.Row():
|
|
|
19 |
|
20 |
# Load embedding model
|
21 |
QUERY_EMBEDDING_MODEL = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
+
RERANKING_MODELS = {
|
23 |
+
"MS MARCO MiniLM": "cross-encoder/ms-marco-MiniLM-L-6-v2",
|
24 |
+
"MonoT5 Base": "castorini/monot5-base-msmarco",
|
25 |
+
}
|
26 |
PROMPT_MODEL = "llama-3.3-70b-specdec"
|
27 |
EVAL_MODEL = "llama-3.3-70b-specdec"
|
28 |
WINDOW_SIZE = 5
|
|
|
110 |
label="Select a Model"
|
111 |
)
|
112 |
|
113 |
+
reranker_dropdown = gr.Dropdown(
|
114 |
+
list(RERANKING_MODELS.keys()),
|
115 |
+
value="MS MARCO MiniLM",
|
116 |
+
label="Select Reranking Model"
|
117 |
+
)
|
118 |
+
|
119 |
submit_button = gr.Button("Evaluate Model")
|
120 |
|
121 |
with gr.Row():
|
finetuneresults.py
CHANGED
@@ -1,5 +1,62 @@
|
|
1 |
from sentence_transformers import CrossEncoder
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"""
|
4 |
Retrieves unique full documents based on the top-ranked document IDs.
|
5 |
|
@@ -37,25 +94,35 @@ Returns:
|
|
37 |
"""
|
38 |
|
39 |
def rerank_documents(query, retrieved_docs_df, model_name="cross-encoder/ms-marco-MiniLM-L-6-v2"):
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Prepare query-document pairs
|
45 |
-
query_doc_pairs = [(query, " ".join(doc)) for doc in retrieved_docs_df["document"]]
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def FineTuneAndRerankSearchResults(top_10_chunk_results, rag_extarcted_data, question, reranking_model):
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
1 |
from sentence_transformers import CrossEncoder
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from typing import List, Tuple
|
6 |
+
|
7 |
+
class MonoT5Reranker:
|
8 |
+
def __init__(self, model_name: str):
|
9 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
print(f"Using device: {self.device}")
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
+
self.model.to(self.device)
|
14 |
+
self.model.eval()
|
15 |
+
|
16 |
+
def predict(self, query_doc_pairs: List[Tuple[str, str]]) -> np.ndarray:
|
17 |
+
scores = []
|
18 |
+
batch_size = 8 # Adjust based on your GPU/CPU memory
|
19 |
+
|
20 |
+
for i in range(0, len(query_doc_pairs), batch_size):
|
21 |
+
batch_pairs = query_doc_pairs[i:i + batch_size]
|
22 |
+
|
23 |
+
# Format input as per MonoT5 requirements
|
24 |
+
inputs = [f"Query: {query} Document: {doc}" for query, doc in batch_pairs]
|
25 |
+
|
26 |
+
# Tokenize
|
27 |
+
encoded = self.tokenizer(
|
28 |
+
inputs,
|
29 |
+
padding=True,
|
30 |
+
truncation=True,
|
31 |
+
max_length=512,
|
32 |
+
return_tensors="pt"
|
33 |
+
).to(self.device)
|
34 |
+
|
35 |
+
# Get predictions
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = self.model(**encoded)
|
38 |
+
batch_scores = outputs.logits.squeeze(-1).cpu().numpy()
|
39 |
+
scores.extend(batch_scores.tolist())
|
40 |
+
|
41 |
+
return np.array(scores)
|
42 |
+
|
43 |
+
class MSMARCOReranker:
|
44 |
+
def __init__(self, model_name: str):
|
45 |
+
self.model = CrossEncoder(model_name)
|
46 |
+
|
47 |
+
def predict(self, query_doc_pairs: List[Tuple[str, str]]) -> np.ndarray:
|
48 |
+
return self.model.predict(query_doc_pairs)
|
49 |
+
|
50 |
+
|
51 |
+
def get_reranker(model_name: str):
|
52 |
+
"""Factory function to get appropriate reranker based on model name."""
|
53 |
+
if "monot5" in model_name.lower():
|
54 |
+
print(f"Using MonoT5 reranker: {model_name}")
|
55 |
+
return MonoT5Reranker(model_name)
|
56 |
+
else:
|
57 |
+
print(f"Using MS MARCO reranker: {model_name}")
|
58 |
+
return MSMARCOReranker(model_name)
|
59 |
+
|
60 |
"""
|
61 |
Retrieves unique full documents based on the top-ranked document IDs.
|
62 |
|
|
|
94 |
"""
|
95 |
|
96 |
def rerank_documents(query, retrieved_docs_df, model_name="cross-encoder/ms-marco-MiniLM-L-6-v2"):
|
97 |
+
"""Reranks documents using the specified reranking model."""
|
98 |
+
try:
|
99 |
+
# Load Cross-Encoder model
|
100 |
+
model = get_reranker(model_name)
|
101 |
|
102 |
+
# Prepare query-document pairs
|
103 |
+
query_doc_pairs = [(query, " ".join(doc)) for doc in retrieved_docs_df["document"]]
|
|
|
|
|
|
|
104 |
|
105 |
+
# Compute relevance scores
|
106 |
+
scores = model.predict(query_doc_pairs)
|
107 |
|
108 |
+
# Add scores to the DataFrame
|
109 |
+
retrieved_docs_df["relevance_score"] = scores
|
110 |
|
111 |
+
# Sort by score in descending order (higher score = more relevant)
|
112 |
+
reranked_docs_df = retrieved_docs_df.sort_values(by="relevance_score", ascending=False).reset_index(drop=True)
|
113 |
|
114 |
+
return reranked_docs_df
|
115 |
+
except Exception as e:
|
116 |
+
print(f"Error in reranking: {e}")
|
117 |
+
# Return original order if reranking fails
|
118 |
+
retrieved_docs_df["relevance_score"] = 1.0
|
119 |
+
return retrieved_docs_df
|
120 |
|
121 |
def FineTuneAndRerankSearchResults(top_10_chunk_results, rag_extarcted_data, question, reranking_model):
|
122 |
+
try:
|
123 |
+
unique_docs= retrieve_full_documents(top_10_chunk_results, rag_extarcted_data)
|
124 |
+
reranked_results = rerank_documents(question, unique_docs, reranking_model)
|
125 |
+
return reranked_results
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error in FineTuneAndRerankSearchResults: {e}")
|
128 |
+
return None
|