from sentence_transformers import CrossEncoder from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import numpy as np from typing import List, Tuple class MonoT5Reranker: def __init__(self, model_name: str): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForSequenceClassification.from_pretrained(model_name) self.model.to(self.device) self.model.eval() def predict(self, query_doc_pairs: List[Tuple[str, str]]) -> np.ndarray: scores = [] batch_size = 8 # Adjust based on your GPU/CPU memory for i in range(0, len(query_doc_pairs), batch_size): batch_pairs = query_doc_pairs[i:i + batch_size] # Format input as per MonoT5 requirements inputs = [f"Query: {query} Document: {doc}" for query, doc in batch_pairs] # Tokenize encoded = self.tokenizer( inputs, padding=True, truncation=True, max_length=512, return_tensors="pt" ).to(self.device) # Get predictions with torch.no_grad(): outputs = self.model(**encoded) batch_scores = outputs.logits.squeeze(-1).cpu().numpy() scores.extend(batch_scores.tolist()) return np.array(scores) class MSMARCOReranker: def __init__(self, model_name: str): self.model = CrossEncoder(model_name) def predict(self, query_doc_pairs: List[Tuple[str, str]]) -> np.ndarray: return self.model.predict(query_doc_pairs) def get_reranker(model_name: str): """Factory function to get appropriate reranker based on model name.""" if "monot5" in model_name.lower(): print(f"Using MonoT5 reranker: {model_name}") return MonoT5Reranker(model_name) else: print(f"Using MS MARCO reranker: {model_name}") return MSMARCOReranker(model_name) """ Retrieves unique full documents based on the top-ranked document IDs. Args: top_documents (list): List of dictionaries containing 'doc_id'. df (pd.DataFrame): The dataset containing document IDs and text. Returns: pd.DataFrame: A DataFrame with 'doc_id' and 'document'. """ def retrieve_full_documents(top_documents, df): # Extract unique doc_ids unique_doc_ids = list(set(doc["doc_id"] for doc in top_documents)) # Print for debugging print(f"Extracted Doc IDs: {unique_doc_ids}") # Filter DataFrame where 'id' matches any of the unique_doc_ids filtered_df = df[df["id"].isin(unique_doc_ids)][["id", "documents"]].drop_duplicates(subset="id") # Rename columns for clarity filtered_df = filtered_df.rename(columns={"id": "doc_id", "documents": "document"}) return filtered_df """ Reranks the retrieved documents based on their relevance to the query using a Cross-Encoder model. Args: query (str): The search query. retrieved_docs (pd.DataFrame): DataFrame with 'doc_id' and 'document'. model_name (str): Name of the Cross-Encoder model. Returns: pd.DataFrame: A sorted DataFrame with doc_id, document, and reranking score. """ def rerank_documents(query, retrieved_docs_df, model_name="cross-encoder/ms-marco-MiniLM-L-6-v2"): """Reranks documents using the specified reranking model.""" try: # Load Cross-Encoder model model = get_reranker(model_name) # Prepare query-document pairs query_doc_pairs = [(query, " ".join(doc)) for doc in retrieved_docs_df["document"]] # Compute relevance scores scores = model.predict(query_doc_pairs) # Add scores to the DataFrame retrieved_docs_df["relevance_score"] = scores # Sort by score in descending order (higher score = more relevant) reranked_docs_df = retrieved_docs_df.sort_values(by="relevance_score", ascending=False).reset_index(drop=True) return reranked_docs_df except Exception as e: print(f"Error in reranking: {e}") # Return original order if reranking fails retrieved_docs_df["relevance_score"] = 1.0 return retrieved_docs_df def FineTuneAndRerankSearchResults(top_10_chunk_results, rag_extarcted_data, question, reranking_model): try: unique_docs= retrieve_full_documents(top_10_chunk_results, rag_extarcted_data) reranked_results = rerank_documents(question, unique_docs, reranking_model) return reranked_results except Exception as e: print(f"Error in FineTuneAndRerankSearchResults: {e}") return None