ssboost commited on
Commit
41ec14e
·
verified ·
1 Parent(s): 3544d9a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from gradio_imageslider import ImageSlider
4
+ from loadimg import load_img
5
+ import spaces
6
+ from transformers import AutoModelForImageSegmentation
7
+ import torch
8
+ from torchvision import transforms
9
+
10
+ torch.set_float32_matmul_precision(["high", "highest"][0])
11
+
12
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
13
+ "briaai/RMBG-2.0", trust_remote_code=True
14
+ )
15
+ birefnet.to("cuda")
16
+ transform_image = transforms.Compose(
17
+ [
18
+ transforms.Resize((1024, 1024)),
19
+ transforms.ToTensor(),
20
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
21
+ ]
22
+ )
23
+
24
+ output_folder = 'output_images'
25
+ if not os.path.exists(output_folder):
26
+ os.makedirs(output_folder)
27
+
28
+ def fn(image):
29
+ im = load_img(image, output_type="pil")
30
+ im = im.convert("RGB")
31
+ origin = im.copy()
32
+ image = process(im)
33
+ image_path = os.path.join(output_folder, "no_bg_image.png")
34
+ image.save(image_path)
35
+ return (image, origin), image_path
36
+
37
+ @spaces.GPU
38
+ def process(image):
39
+ image_size = image.size
40
+ input_images = transform_image(image).unsqueeze(0).to("cuda")
41
+ # Prediction
42
+ with torch.no_grad():
43
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
44
+ pred = preds[0].squeeze()
45
+ pred_pil = transforms.ToPILImage()(pred)
46
+ mask = pred_pil.resize(image_size)
47
+ image.putalpha(mask)
48
+ return image
49
+
50
+ def process_file(f):
51
+ name_path = f.rsplit(".",1)[0]+".png"
52
+ im = load_img(f, output_type="pil")
53
+ im = im.convert("RGB")
54
+ transparent = process(im)
55
+ transparent.save(name_path)
56
+ return name_path
57
+
58
+ slider1 = ImageSlider(label="RMBG-2.0", type="pil")
59
+ slider2 = ImageSlider(label="RMBG-2.0", type="pil")
60
+ image = gr.Image(label="Upload an image")
61
+ image2 = gr.Image(label="Upload an image",type="filepath")
62
+ text = gr.Textbox(label="Paste an image URL")
63
+ png_file = gr.File(label="output png file")
64
+
65
+
66
+ chameleon = load_img("giraffe.jpg", output_type="pil")
67
+
68
+ url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"
69
+
70
+ tab1 = gr.Interface(
71
+ fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[chameleon], api_name="image"
72
+ )
73
+
74
+ tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=[url], api_name="text")
75
+ tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png")
76
+
77
+
78
+ demo = gr.TabbedInterface(
79
+ [tab1, tab2], ["input image", "input url"], title="RMBG-2.0 for background removal"
80
+ )
81
+
82
+ if __name__ == "__main__":
83
+ demo.launch(show_error=True)