File size: 7,515 Bytes
5f55148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# utils.py
from enum import Enum, auto

import torch
from huggingface_hub import hf_hub_download
from PIL import Image, ImageEnhance, ImageFilter
import cv2
import numpy as np
from refiners.fluxion.utils import load_from_safetensors, tensor_to_image
from refiners.foundationals.clip import CLIPTextEncoderL
from refiners.foundationals.latent_diffusion import SD1UNet
from refiners.foundationals.latent_diffusion.stable_diffusion_1 import SD1Autoencoder
from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight


def load_ic_light(device: torch.device, dtype: torch.dtype) -> ICLight:
    return ICLight(
        patch_weights=load_from_safetensors(
            path=hf_hub_download(
                repo_id="refiners/sd15.ic_light.fc",
                filename="model.safetensors",
                revision="ea10b4403e97c786a98afdcbdf0e0fec794ea542",
            ),
        ),
        unet=SD1UNet(in_channels=4, device=device, dtype=dtype).load_from_safetensors(
            tensors_path=hf_hub_download(
                repo_id="refiners/sd15.realistic_vision.v5_1.unet",
                filename="model.safetensors",
                revision="94f74be7adfd27bee330ea1071481c0254c29989",
            )
        ),
        clip_text_encoder=CLIPTextEncoderL(device=device, dtype=dtype).load_from_safetensors(
            tensors_path=hf_hub_download(
                repo_id="refiners/sd15.realistic_vision.v5_1.text_encoder",
                filename="model.safetensors",
                revision="7f6fa1e870c8f197d34488e14b89e63fb8d7fd6e",
            )
        ),
        lda=SD1Autoencoder(device=device, dtype=dtype).load_from_safetensors(
            tensors_path=hf_hub_download(
                repo_id="refiners/sd15.realistic_vision.v5_1.autoencoder",
                filename="model.safetensors",
                revision="99f089787a6e1a852a0992da1e286a19fcbbaa50",
            )
        ),
        device=device,
        dtype=dtype,
    )


def resize_modulo_8(
    image: Image.Image,
    size: int = 768,
    resample: Image.Resampling | None = None,
    on_short: bool = True,
) -> Image.Image:
    """이미지 크기를 8의 배수로 조정"""
    assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size."
    side_size = min(image.size) if on_short else max(image.size)
    scale = size / (side_size * 8)
    new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8)
    return image.resize(new_size, resample=resample or Image.Resampling.LANCZOS)


def adjust_image(
    image: Image.Image,
    brightness=0.0,
    contrast=0.0,
    temperature=0.0,
    saturation=0.0,
    tint=0.0,
    blur_intensity=0,
    exposure=0.0,
    vibrance=0.0,
    color_mixer_blues=0.0,
) -> Image.Image:
    """이미지 조정 함수"""
    image = image.convert('RGB')

    # 노출 조정 (Exposure)
    if exposure != 0.0:
        # Exposure ranges from -5 to 5, where 0 is neutral
        exposure_factor = 1 + (exposure / 5.0)
        exposure_factor = max(exposure_factor, 0.01)  # Prevent zero or negative
        enhancer = ImageEnhance.Brightness(image)
        image = enhancer.enhance(exposure_factor)

    # 밝기 조정
    if brightness != 0.0:
        # Brightness ranges from -5 to 5, mapped to brightness factor
        brightness_factor = 1 + (brightness / 5.0)
        brightness_factor = max(brightness_factor, 0.01)  # Prevent zero or negative
        enhancer = ImageEnhance.Brightness(image)
        image = enhancer.enhance(brightness_factor)

    # 대비 조정
    if contrast != 0.0:
        # Contrast ranges from -100 to 100, mapped to contrast factor
        contrast_factor = 1 + (contrast / 100.0)
        contrast_factor = max(contrast_factor, 0.01)  # Prevent zero or negative
        enhancer = ImageEnhance.Contrast(image)
        image = enhancer.enhance(contrast_factor)

    # 채도 조정 (Vibrance)
    if vibrance != 0.0:
        # Vibrance simulates adjusting the saturation; positive increases saturation, negative decreases
        vibrance_factor = 1 + (vibrance / 100.0)
        vibrance_factor = max(vibrance_factor, 0.0)  # Prevent negative saturation
        enhancer = ImageEnhance.Color(image)
        image = enhancer.enhance(vibrance_factor)

    # 채도 조정 (Saturation)
    if saturation != 0.0:
        # Saturation ranges from -100 to 100, mapped to saturation factor
        saturation_factor = 1 + (saturation / 100.0)
        saturation_factor = max(saturation_factor, 0.0)  # Prevent negative saturation
        enhancer = ImageEnhance.Color(image)
        image = enhancer.enhance(saturation_factor)

    # 색온도 조정
    if temperature != 0.0:
        # To prevent division by zero, adjust temperature calculation
        temp_factor = 1 + (temperature / 100.0)
        temp_factor = max(temp_factor, 0.01)  # Prevent zero or negative

        r, g, b = image.split()
        r = r.point(lambda i: i * temp_factor)
        b = b.point(lambda i: i / temp_factor)
        image = Image.merge('RGB', (r, g, b))

    # 색조 조정 (Tint)
    if tint != 0.0:
        image_np = np.array(image)
        image_hsv = cv2.cvtColor(image_np, cv2.COLOR_RGB2HSV).astype(np.float32)
        image_hsv[:, :, 0] = (image_hsv[:, :, 0] + tint) % 180
        image_hsv[:, :, 0] = np.clip(image_hsv[:, :, 0], 0, 179)
        image_rgb = cv2.cvtColor(image_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
        image = Image.fromarray(image_rgb)

    # 블러 적용
    if blur_intensity > 0:
        image = image.filter(ImageFilter.GaussianBlur(radius=blur_intensity))

    # Color Mixer (Blues)
    if color_mixer_blues != 0.0:
        image_np = np.array(image).astype(np.float32)
        # Adjust the blue channel
        image_np[:, :, 2] = np.clip(image_np[:, :, 2] + (color_mixer_blues / 100.0) * 255, 0, 255)
        image = Image.fromarray(image_np.astype(np.uint8))

    return image


class LightingPreference(str, Enum):
    LEFT = auto()
    RIGHT = auto()
    TOP = auto()
    BOTTOM = auto()
    NONE = auto()

    def get_init_image(self, width: int, height: int, interval: tuple[float, float] = (0.0, 1.0)) -> Image.Image | None:
        """조명 선호도에 따른 그라데이션 이미지 생성"""
        start, end = interval
        match self:
            case LightingPreference.LEFT:
                tensor = torch.linspace(end, start, width).repeat(1, 1, height, 1)
            case LightingPreference.RIGHT:
                tensor = torch.linspace(start, end, width).repeat(1, 1, height, 1)
            case LightingPreference.TOP:
                tensor = torch.linspace(end, start, height).repeat(1, 1, width, 1).transpose(2, 3)
            case LightingPreference.BOTTOM:
                tensor = torch.linspace(start, end, height).repeat(1, 1, width, 1).transpose(2, 3)
            case LightingPreference.NONE:
                return None

        return tensor_to_image(tensor).convert("RGB")

    @classmethod
    def from_str(cls, value: str):
        match value.lower():
            case "left":
                return LightingPreference.LEFT
            case "right":
                return LightingPreference.RIGHT
            case "top":
                return LightingPreference.TOP
            case "bottom":
                return LightingPreference.BOTTOM
            case "none":
                return LightingPreference.NONE
            case _:
                raise ValueError(f"Invalid lighting preference: {value}")