File size: 7,515 Bytes
5f55148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# utils.py
from enum import Enum, auto
import torch
from huggingface_hub import hf_hub_download
from PIL import Image, ImageEnhance, ImageFilter
import cv2
import numpy as np
from refiners.fluxion.utils import load_from_safetensors, tensor_to_image
from refiners.foundationals.clip import CLIPTextEncoderL
from refiners.foundationals.latent_diffusion import SD1UNet
from refiners.foundationals.latent_diffusion.stable_diffusion_1 import SD1Autoencoder
from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight
def load_ic_light(device: torch.device, dtype: torch.dtype) -> ICLight:
return ICLight(
patch_weights=load_from_safetensors(
path=hf_hub_download(
repo_id="refiners/sd15.ic_light.fc",
filename="model.safetensors",
revision="ea10b4403e97c786a98afdcbdf0e0fec794ea542",
),
),
unet=SD1UNet(in_channels=4, device=device, dtype=dtype).load_from_safetensors(
tensors_path=hf_hub_download(
repo_id="refiners/sd15.realistic_vision.v5_1.unet",
filename="model.safetensors",
revision="94f74be7adfd27bee330ea1071481c0254c29989",
)
),
clip_text_encoder=CLIPTextEncoderL(device=device, dtype=dtype).load_from_safetensors(
tensors_path=hf_hub_download(
repo_id="refiners/sd15.realistic_vision.v5_1.text_encoder",
filename="model.safetensors",
revision="7f6fa1e870c8f197d34488e14b89e63fb8d7fd6e",
)
),
lda=SD1Autoencoder(device=device, dtype=dtype).load_from_safetensors(
tensors_path=hf_hub_download(
repo_id="refiners/sd15.realistic_vision.v5_1.autoencoder",
filename="model.safetensors",
revision="99f089787a6e1a852a0992da1e286a19fcbbaa50",
)
),
device=device,
dtype=dtype,
)
def resize_modulo_8(
image: Image.Image,
size: int = 768,
resample: Image.Resampling | None = None,
on_short: bool = True,
) -> Image.Image:
"""이미지 크기를 8의 배수로 조정"""
assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size."
side_size = min(image.size) if on_short else max(image.size)
scale = size / (side_size * 8)
new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8)
return image.resize(new_size, resample=resample or Image.Resampling.LANCZOS)
def adjust_image(
image: Image.Image,
brightness=0.0,
contrast=0.0,
temperature=0.0,
saturation=0.0,
tint=0.0,
blur_intensity=0,
exposure=0.0,
vibrance=0.0,
color_mixer_blues=0.0,
) -> Image.Image:
"""이미지 조정 함수"""
image = image.convert('RGB')
# 노출 조정 (Exposure)
if exposure != 0.0:
# Exposure ranges from -5 to 5, where 0 is neutral
exposure_factor = 1 + (exposure / 5.0)
exposure_factor = max(exposure_factor, 0.01) # Prevent zero or negative
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(exposure_factor)
# 밝기 조정
if brightness != 0.0:
# Brightness ranges from -5 to 5, mapped to brightness factor
brightness_factor = 1 + (brightness / 5.0)
brightness_factor = max(brightness_factor, 0.01) # Prevent zero or negative
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(brightness_factor)
# 대비 조정
if contrast != 0.0:
# Contrast ranges from -100 to 100, mapped to contrast factor
contrast_factor = 1 + (contrast / 100.0)
contrast_factor = max(contrast_factor, 0.01) # Prevent zero or negative
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(contrast_factor)
# 채도 조정 (Vibrance)
if vibrance != 0.0:
# Vibrance simulates adjusting the saturation; positive increases saturation, negative decreases
vibrance_factor = 1 + (vibrance / 100.0)
vibrance_factor = max(vibrance_factor, 0.0) # Prevent negative saturation
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(vibrance_factor)
# 채도 조정 (Saturation)
if saturation != 0.0:
# Saturation ranges from -100 to 100, mapped to saturation factor
saturation_factor = 1 + (saturation / 100.0)
saturation_factor = max(saturation_factor, 0.0) # Prevent negative saturation
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(saturation_factor)
# 색온도 조정
if temperature != 0.0:
# To prevent division by zero, adjust temperature calculation
temp_factor = 1 + (temperature / 100.0)
temp_factor = max(temp_factor, 0.01) # Prevent zero or negative
r, g, b = image.split()
r = r.point(lambda i: i * temp_factor)
b = b.point(lambda i: i / temp_factor)
image = Image.merge('RGB', (r, g, b))
# 색조 조정 (Tint)
if tint != 0.0:
image_np = np.array(image)
image_hsv = cv2.cvtColor(image_np, cv2.COLOR_RGB2HSV).astype(np.float32)
image_hsv[:, :, 0] = (image_hsv[:, :, 0] + tint) % 180
image_hsv[:, :, 0] = np.clip(image_hsv[:, :, 0], 0, 179)
image_rgb = cv2.cvtColor(image_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
image = Image.fromarray(image_rgb)
# 블러 적용
if blur_intensity > 0:
image = image.filter(ImageFilter.GaussianBlur(radius=blur_intensity))
# Color Mixer (Blues)
if color_mixer_blues != 0.0:
image_np = np.array(image).astype(np.float32)
# Adjust the blue channel
image_np[:, :, 2] = np.clip(image_np[:, :, 2] + (color_mixer_blues / 100.0) * 255, 0, 255)
image = Image.fromarray(image_np.astype(np.uint8))
return image
class LightingPreference(str, Enum):
LEFT = auto()
RIGHT = auto()
TOP = auto()
BOTTOM = auto()
NONE = auto()
def get_init_image(self, width: int, height: int, interval: tuple[float, float] = (0.0, 1.0)) -> Image.Image | None:
"""조명 선호도에 따른 그라데이션 이미지 생성"""
start, end = interval
match self:
case LightingPreference.LEFT:
tensor = torch.linspace(end, start, width).repeat(1, 1, height, 1)
case LightingPreference.RIGHT:
tensor = torch.linspace(start, end, width).repeat(1, 1, height, 1)
case LightingPreference.TOP:
tensor = torch.linspace(end, start, height).repeat(1, 1, width, 1).transpose(2, 3)
case LightingPreference.BOTTOM:
tensor = torch.linspace(start, end, height).repeat(1, 1, width, 1).transpose(2, 3)
case LightingPreference.NONE:
return None
return tensor_to_image(tensor).convert("RGB")
@classmethod
def from_str(cls, value: str):
match value.lower():
case "left":
return LightingPreference.LEFT
case "right":
return LightingPreference.RIGHT
case "top":
return LightingPreference.TOP
case "bottom":
return LightingPreference.BOTTOM
case "none":
return LightingPreference.NONE
case _:
raise ValueError(f"Invalid lighting preference: {value}") |