ssocean commited on
Commit
57a9ebf
·
verified ·
1 Parent(s): f3d9de8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -34
app.py CHANGED
@@ -1,34 +1,34 @@
1
- import gradio as gr
2
- import torch
3
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
- import torch.nn.functional as F
5
-
6
- model_path = "ssocean/NAIP" # 更换为你的模型路径
7
- model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1, load_in_8bit=True)
8
- tokenizer = AutoTokenizer.from_pretrained(model_path)
9
-
10
- device = "cuda" if torch.cuda.is_available() else "cpu"
11
- model = model.to(device)
12
- model.eval()
13
-
14
- def predict(title, abstract):
15
- # 将标题和摘要处理为一个单一的字符串
16
- text = f"Given a certain paper, Title: {title}\nAbstract: {abstract}.\nPredict its normalized academic impact (between 0 and 1):"
17
- inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
18
- with torch.no_grad():
19
- outputs = model(**inputs.to(device))
20
- # 应用 Sigmoid 函数来获取概率输出
21
- probability = torch.sigmoid(outputs.logits).item()
22
- return {"Impact Probability": probability}
23
-
24
- # 创建 Gradio 界面
25
- iface = gr.Interface(
26
- fn=predict,
27
- inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter Paper Title Here..."),
28
- gr.inputs.Textbox(lines=5, placeholder="Enter Paper Abstract Here...")],
29
- outputs=[gr.outputs.Label(num_top_classes=1)],
30
- title="Newborn Article Impact Prediction based on LLM",
31
- description="Predict the normalized academic impact of a paper based on its title and abstract."
32
- )
33
-
34
- iface.launch()
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import torch.nn.functional as F
5
+
6
+ model_path = "ssocean/NAIP" # 更换为你的模型路径
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1, load_in_8bit=True)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
9
+
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ # model = model.to(device)
12
+ model.eval()
13
+
14
+ def predict(title, abstract):
15
+ # 将标题和摘要处理为一个单一的字符串
16
+ text = f"Given a certain paper, Title: {title}\nAbstract: {abstract}.\nPredict its normalized academic impact (between 0 and 1):"
17
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
18
+ with torch.no_grad():
19
+ outputs = model(**inputs.to(device))
20
+ # 应用 Sigmoid 函数来获取概率输出
21
+ probability = torch.sigmoid(outputs.logits).item()
22
+ return {"Impact Probability": probability}
23
+
24
+ # 创建 Gradio 界面
25
+ iface = gr.Interface(
26
+ fn=predict,
27
+ inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter Paper Title Here..."),
28
+ gr.inputs.Textbox(lines=5, placeholder="Enter Paper Abstract Here...")],
29
+ outputs=[gr.outputs.Label(num_top_classes=1)],
30
+ title="Newborn Article Impact Prediction based on LLM",
31
+ description="Predict the normalized academic impact of a paper based on its title and abstract."
32
+ )
33
+
34
+ iface.launch()