ssocean commited on
Commit
78e4c26
·
verified ·
1 Parent(s): d5c51ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -6,6 +6,7 @@ import torch.nn.functional as F
6
  import torch.nn as nn
7
  import re
8
  model_path = r'ssocean/NAIP'
 
9
  model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1, load_in_8bit=True)
10
 
11
  tokenizer = AutoTokenizer.from_pretrained(model_path)
@@ -13,10 +14,12 @@ tokenizer = AutoTokenizer.from_pretrained(model_path)
13
 
14
  @spaces.GPU
15
  def predict(title, abstract):
 
 
16
  model.eval()
17
  text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
18
  inputs = tokenizer(text, return_tensors="pt")
19
- inputs = inputs.to("cuda")
20
  with torch.no_grad():
21
  outputs = model(**inputs)
22
  probability = torch.sigmoid(outputs.logits).item()
 
6
  import torch.nn as nn
7
  import re
8
  model_path = r'ssocean/NAIP'
9
+
10
  model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1, load_in_8bit=True)
11
 
12
  tokenizer = AutoTokenizer.from_pretrained(model_path)
 
14
 
15
  @spaces.GPU
16
  def predict(title, abstract):
17
+ torch.cuda.set_device(torch.device('cuda'))
18
+
19
  model.eval()
20
  text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
21
  inputs = tokenizer(text, return_tensors="pt")
22
+ inputs = inputs.to(torch.device('cuda'))
23
  with torch.no_grad():
24
  outputs = model(**inputs)
25
  probability = torch.sigmoid(outputs.logits).item()