|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import joblib |
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
all_models = {} |
|
model_names = [ |
|
'Linear Regression', 'Ridge Regression', 'Lasso Regression', |
|
'Random Forest', 'Gradient Boosting' |
|
] |
|
BEST_MODEL_NAME = 'Random Forest' |
|
|
|
try: |
|
|
|
for name in model_names: |
|
|
|
filename = f"models/{name.lower().replace(' ', '_')}.joblib" |
|
if os.path.exists(filename): |
|
all_models[name] = joblib.load(filename) |
|
else: |
|
raise FileNotFoundError(f"Model file not found: {filename}") |
|
|
|
|
|
scaler_path = 'models/scaler.joblib' |
|
if os.path.exists(scaler_path): |
|
scaler = joblib.load(scaler_path) |
|
else: |
|
raise FileNotFoundError(f"Scaler file not found: {scaler_path}") |
|
|
|
models_loaded = True |
|
print("β
All models and scaler loaded successfully!") |
|
|
|
|
|
expected_columns = scaler.feature_names_in_ |
|
print(f"Models expect {len(expected_columns)} features.") |
|
|
|
except Exception as e: |
|
print(f"β ERROR: Could not load models. {e}") |
|
print("Please ensure all '.joblib' files are in the 'models/' directory.") |
|
models_loaded = False |
|
all_models = {} |
|
scaler = None |
|
expected_columns = [] |
|
|
|
|
|
|
|
|
|
|
|
def predict_shares_all_models(likes, generation_time, gpu_usage, file_size_kb, |
|
width, height, style_accuracy_score, |
|
is_hand_edited, ethical_concerns_flag, |
|
day_of_week, month, hour, platform): |
|
""" |
|
Performs feature engineering, predicts shares using all loaded models, |
|
and returns formatted outputs for the Gradio interface. |
|
""" |
|
if not models_loaded: |
|
error_message = "Models are not loaded. Please check the console for errors." |
|
return 0, error_message, error_message |
|
|
|
|
|
sample_data = { |
|
'likes': likes, |
|
'style_accuracy_score': style_accuracy_score, |
|
'generation_time': generation_time, |
|
'gpu_usage': gpu_usage, |
|
'file_size_kb': file_size_kb, |
|
'is_hand_edited': int(is_hand_edited), |
|
'ethical_concerns_flag': int(ethical_concerns_flag), |
|
'width': width, |
|
'height': height, |
|
'day_of_week': day_of_week, |
|
'month': month, |
|
'hour': hour |
|
} |
|
|
|
sample_data['aspect_ratio'] = width / height if height > 0 else 0 |
|
sample_data['total_pixels'] = width * height |
|
sample_data['is_square'] = int(width == height) |
|
sample_data['is_weekend'] = int(day_of_week >= 5) |
|
|
|
for p in ['Twitter', 'TikTok', 'Reddit', 'Instagram']: |
|
sample_data[f'platform_{p}'] = 1 if platform == p else 0 |
|
|
|
sample_data['engagement_rate'] = likes / (sample_data['total_pixels'] / 1000000 + 1) |
|
sample_data['quality_engagement'] = style_accuracy_score * likes / 100 |
|
sample_data['file_density'] = file_size_kb / (sample_data['total_pixels'] / 1000 + 1) |
|
sample_data['gpu_efficiency'] = generation_time / (gpu_usage + 1) |
|
|
|
for p in ['Twitter', 'TikTok', 'Reddit', 'Instagram']: |
|
sample_data[f'{p.lower()}_likes'] = likes * sample_data[f'platform_{p}'] |
|
|
|
sample_data['month_sin'] = np.sin(2 * np.pi * month / 12) |
|
sample_data['month_cos'] = np.cos(2 * np.pi * month / 12) |
|
sample_data['day_sin'] = np.sin(2 * np.pi * day_of_week / 7) |
|
sample_data['day_cos'] = np.cos(2 * np.pi * day_of_week / 7) |
|
|
|
|
|
sample_df = pd.DataFrame([sample_data]) |
|
sample_df = sample_df.reindex(columns=expected_columns, fill_value=0) |
|
sample_scaled = scaler.transform(sample_df) |
|
|
|
|
|
predictions = {} |
|
for name, model in all_models.items(): |
|
pred_value = model.predict(sample_scaled)[0] |
|
predictions[name] = max(0, int(pred_value)) |
|
|
|
|
|
|
|
|
|
best_model_prediction = predictions.get(BEST_MODEL_NAME, 0) |
|
|
|
|
|
all_results_df = pd.DataFrame(list(predictions.items()), columns=['Model', 'Predicted Shares']) |
|
all_results_df = all_results_df.sort_values('Predicted Shares', ascending=False) |
|
all_models_table = all_results_df.to_markdown(index=False) |
|
|
|
|
|
features_df = sample_df.T.reset_index() |
|
features_df.columns = ['Feature', 'Value'] |
|
features_df['Value'] = features_df['Value'].apply(lambda x: f"{x:.4f}" if isinstance(x, float) else x) |
|
features_table = features_df.to_markdown(index=False) |
|
|
|
return best_model_prediction, all_models_table, features_table |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), title="AI Image Virality Predictor") as demo: |
|
gr.Markdown("# π¨ AI Ghibli Image Virality Predictor") |
|
gr.Markdown("Enter image features to get a virality prediction from multiple regression models.") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("### 1. Input Features") |
|
with gr.Accordion("Core Engagement & Image Metrics", open=True): |
|
likes = gr.Slider(minimum=0, maximum=10000, value=500, step=10, label="Likes") |
|
style_accuracy_score = gr.Slider(minimum=0, maximum=100, value=85, step=1, label="Style Accuracy Score (%)") |
|
width = gr.Slider(minimum=256, maximum=2048, value=1024, step=64, label="Width (px)") |
|
height = gr.Slider(minimum=256, maximum=2048, value=1024, step=64, label="Height (px)") |
|
file_size_kb = gr.Slider(minimum=100, maximum=5000, value=1500, step=100, label="File Size (KB)") |
|
|
|
with gr.Accordion("Technical & Posting Details", open=True): |
|
generation_time = gr.Slider(minimum=1, maximum=30, value=8, step=0.5, label="Generation Time (s)") |
|
gpu_usage = gr.Slider(minimum=10, maximum=100, value=70, step=5, label="GPU Usage (%)") |
|
platform = gr.Radio(["Instagram", "Twitter", "TikTok", "Reddit"], label="Platform", value="Instagram") |
|
day_of_week = gr.Slider(minimum=0, maximum=6, value=4, step=1, label="Day of Week (0=Mon, 6=Sun)") |
|
month = gr.Slider(minimum=1, maximum=12, value=7, step=1, label="Month (1-12)") |
|
hour = gr.Slider(minimum=0, maximum=23, value=18, step=1, label="Hour of Day (0-23)") |
|
is_hand_edited = gr.Checkbox(label="Was it Hand Edited?", value=False) |
|
ethical_concerns_flag = gr.Checkbox(label="Any Ethical Concerns?", value=False) |
|
|
|
predict_btn = gr.Button("Predict Virality", variant="primary") |
|
|
|
|
|
with gr.Column(scale=3): |
|
gr.Markdown("### 2. Prediction Results") |
|
|
|
|
|
best_model_output = gr.Number( |
|
label=f"π Best Model Prediction ({BEST_MODEL_NAME})", |
|
interactive=False |
|
) |
|
|
|
|
|
with gr.Accordion("Comparison of All Models", open=True): |
|
all_models_output = gr.Markdown(label="All Model Predictions") |
|
|
|
|
|
with gr.Accordion("View Engineered Features", open=False): |
|
features_output = gr.Markdown(label="Feature Engineering Details") |
|
|
|
|
|
predict_btn.click( |
|
fn=predict_shares_all_models, |
|
inputs=[ |
|
likes, generation_time, gpu_usage, file_size_kb, |
|
width, height, style_accuracy_score, |
|
is_hand_edited, ethical_concerns_flag, |
|
day_of_week, month, hour, platform |
|
], |
|
outputs=[ |
|
best_model_output, |
|
all_models_output, |
|
features_output |
|
] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
if not models_loaded: |
|
print("\nCannot launch Gradio app because models failed to load.") |
|
else: |
|
demo.launch() |