{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "ZBiNdra-AOT2" }, "source": [ "# Import Library" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "taECrFNE9yxz" }, "outputs": [], "source": [ "# Import necessary libraries\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.linear_model import LinearRegression, Ridge, Lasso\n", "from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n", "from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "metadata": { "id": "9MK_JVsjBjM-" }, "source": [ "# Import Dataset" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 679 }, "id": "XJVoE7SgBlDG", "outputId": "0974b5a2-c0fe-469c-99a1-9b691153c687" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dataset shape: (500, 16)\n", "\n", "First 5 rows:\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
image_iduser_idpromptlikessharescommentsplatformgeneration_timegpu_usagefile_size_kbresolutionstyle_accuracy_scoreis_hand_editedethical_concerns_flagcreation_datetop_comment
077ce5c72-eb45-4651-bcb1-c0677c0fceaf6a7adf3dStudio Ghibli-inspired ocean with giant fish916410555Reddit4.804916841024x102489YesYes2025-03-11So nostalgic, feels like childhood memories. 🎥...
17d66c67f-0d11-4ef9-895c-d865ef11fe40523b8706Ghibli-style village at sunset29651361417Reddit11.118128081024x102492YesNo2025-03-11Absolutely stunning! Love the details. 🎨 #5729
2d7978afd-3932-4cce-9a21-5f9bf2bc1f640e02592aA lone traveler exploring an enchanted ruin4727655785Instagram5.564118002048x204861NoNo2025-03-06Is this AI or hand-painted? Incredible! #8001
3cb34636a-a15c-4b15-999c-759dbb8896fe9ed78a42Spirited Away-style bustling market street16291954212TikTok12.45884792048x204876NoNo2025-03-23Is this AI or hand-painted? Incredible! #5620
47511fbb8-db05-4584-a3a4-e8bb525ed58b69ec8f02Magical Ghibli forest with floating lanterns25731281913TikTok4.80641789512x51258NoYes2025-03-06This looks straight out of a Ghibli movie! 🌟 #...
\n", "
" ], "text/plain": [ " image_id user_id \\\n", "0 77ce5c72-eb45-4651-bcb1-c0677c0fceaf 6a7adf3d \n", "1 7d66c67f-0d11-4ef9-895c-d865ef11fe40 523b8706 \n", "2 d7978afd-3932-4cce-9a21-5f9bf2bc1f64 0e02592a \n", "3 cb34636a-a15c-4b15-999c-759dbb8896fe 9ed78a42 \n", "4 7511fbb8-db05-4584-a3a4-e8bb525ed58b 69ec8f02 \n", "\n", " prompt likes shares comments \\\n", "0 Studio Ghibli-inspired ocean with giant fish 916 410 555 \n", "1 Ghibli-style village at sunset 2965 1361 417 \n", "2 A lone traveler exploring an enchanted ruin 4727 655 785 \n", "3 Spirited Away-style bustling market street 1629 1954 212 \n", "4 Magical Ghibli forest with floating lanterns 2573 1281 913 \n", "\n", " platform generation_time gpu_usage file_size_kb resolution \\\n", "0 Reddit 4.80 49 1684 1024x1024 \n", "1 Reddit 11.11 81 2808 1024x1024 \n", "2 Instagram 5.56 41 1800 2048x2048 \n", "3 TikTok 12.45 88 479 2048x2048 \n", "4 TikTok 4.80 64 1789 512x512 \n", "\n", " style_accuracy_score is_hand_edited ethical_concerns_flag creation_date \\\n", "0 89 Yes Yes 2025-03-11 \n", "1 92 Yes No 2025-03-11 \n", "2 61 No No 2025-03-06 \n", "3 76 No No 2025-03-23 \n", "4 58 No Yes 2025-03-06 \n", "\n", " top_comment \n", "0 So nostalgic, feels like childhood memories. 🎥... \n", "1 Absolutely stunning! Love the details. 🎨 #5729 \n", "2 Is this AI or hand-painted? Incredible! #8001 \n", "3 Is this AI or hand-painted? Incredible! #5620 \n", "4 This looks straight out of a Ghibli movie! 🌟 #... " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load the dataset\n", "df = pd.read_csv('dataset/ai_ghibli_trend_dataset_v2.csv')\n", "print(f\"Dataset shape: {df.shape}\")\n", "print(\"\\nFirst 5 rows:\")\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "qRbZogQMOBHN" }, "source": [ "# Data Preprocessing and Feature Engineering" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fRPjDRY2OC_T", "outputId": "5ef3e930-cc5c-49ab-ad7e-6b5a24be3811" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "============================================================\n", "FEATURE ENGINEERING\n", "============================================================\n", "Features created successfully!\n", "Total features: 33\n" ] } ], "source": [ "# Data Preprocessing and Feature Engineering\n", "\n", "# Feature Engineering\n", "print(\"=\"*60)\n", "print(\"FEATURE ENGINEERING\")\n", "print(\"=\"*60)\n", "\n", "# Split resolution into width and height\n", "df[['width', 'height']] = df['resolution'].str.split('x', expand=True).astype(int)\n", "\n", "# Convert categorical binary features to numeric\n", "df['is_hand_edited'] = (df['is_hand_edited'] == 'Yes').astype(int)\n", "df['ethical_concerns_flag'] = (df['ethical_concerns_flag'] == 'Yes').astype(int)\n", "\n", "# Extract temporal features\n", "df['creation_date'] = pd.to_datetime(df['creation_date'])\n", "df['day_of_week'] = df['creation_date'].dt.dayofweek\n", "df['month'] = df['creation_date'].dt.month\n", "df['hour'] = df['creation_date'].dt.hour\n", "\n", "# Create derived features (WITHOUT using likes)\n", "df['aspect_ratio'] = df['width'] / df['height']\n", "df['total_pixels'] = df['width'] * df['height']\n", "df['is_square'] = (df['width'] == df['height']).astype(int)\n", "df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)\n", "\n", "# Technical efficiency features (not dependent on engagement)\n", "df['file_density'] = df['file_size_kb'] / (df['total_pixels'] / 1000 + 1)\n", "df['gpu_efficiency'] = df['generation_time'] / (df['gpu_usage'] + 1)\n", "\n", "# Temporal cyclical features\n", "df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12)\n", "df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12)\n", "df['day_sin'] = np.sin(2 * np.pi * df['day_of_week'] / 7)\n", "df['day_cos'] = np.cos(2 * np.pi * df['day_of_week'] / 7)\n", "df['hour_sin'] = np.sin(2 * np.pi * df['hour'] / 24)\n", "df['hour_cos'] = np.cos(2 * np.pi * df['hour'] / 24)\n", "\n", "print(f\"Features created successfully!\")\n", "print(f\"Total features: {df.shape[1]}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "mWdj1slFZYSG" }, "source": [ "# Target Variable Analysis" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "B-k5NDAAhL1J", "outputId": "dd3928da-c0e5-48e4-c6ff-6f851768461b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "============================================================\n", "TARGET VARIABLES ANALYSIS\n", "============================================================\n", "\n", "Likes Statistics:\n", "Mean: 2601.26\n", "Median: 2566.50\n", "Std Dev: 1429.43\n", "Skewness: -0.02\n", "\n", "Shares Statistics:\n", "Mean: 1040.18\n", "Median: 1092.00\n", "Std Dev: 562.67\n", "Skewness: -0.14\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/uZJREFUeJzs3Xd8FHX+x/H3JpBN3YSSQiSEKL0LKkRBQJAYEeVEVFSaoCeCCljxPJoFGyIqgmchluNQ/Cl2ilQRsAABREBASFBIAUw2CUlIsvP7g8seSwqbsNlNeT0fj33AzHzmO5/5zs5k8skUk2EYhgAAAAAAAAA38vJ0AgAAAAAAAKh7KEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgHQ9OnTZTKZ3LKsPn36qE+fPvbhtWvXymQy6eOPP3bL8keNGqXmzZu7ZVmVlZ2drbFjxyoiIkImk0kTJ048r/bOXudDhw7JZDLpxRdfPL9EAQBAjWcymTR9+nRPp+Hgp59+0uWXX66AgACZTCYlJiaeV3tnr2Pxue+xY8fOL1EA542iFFDLJCQkyGQy2T++vr6KjIxUXFycXnnlFWVlZblkOUeOHNH06dPP+yShKlTn3JzxzDPPKCEhQePGjdP777+v4cOHlxnbvHlzXXfddW7MDgAAOOPsczKTyaSwsDD17dtX33zzjafTO2+//vqrpk+frkOHDrm03YKCAg0dOlQnTpzQnDlz9P777ys6OrrUWHf/cROA69XzdAIAqsbMmTMVExOjgoICpaSkaO3atZo4caJeeuklff755+rUqZM99oknntBjjz1WofaPHDmiGTNmqHnz5urSpYvT861YsaJCy6mM8nJ78803ZbPZqjyH87F69Wr16NFD06ZNc0l7NWGdAQCorYrPyQzDUGpqqhISEnTttdfqiy++qNF/WPr11181Y8YM9enTx6VXoR84cEBJSUl68803NXbsWJe0mZubq3r1+NUXqI7YM4FaKj4+Xpdccol9eMqUKVq9erWuu+46XX/99dq9e7f8/PwkSfXq1avyH9QnT56Uv7+/fHx8qnQ551K/fn2PLt8ZaWlpateuncvaqwnrDABAbXX2OdmYMWMUHh6u//znPzW6KFVV0tLSJEkhISEua9PX19dlbQFwLW7fA+qQq666Sv/85z+VlJSkDz74wD6+tGdKrVy5Uj179lRISIgCAwPVunVrPf7445JOXyp96aWXSpJGjx5tvyQ9ISFB0unnRnXo0EFbtmzRlVdeKX9/f/u8Zz9TqlhRUZEef/xxRUREKCAgQNdff70OHz7sENO8eXONGjWqxLxntnmu3Ep7plROTo4efPBBRUVFyWw2q3Xr1nrxxRdlGIZDnMlk0oQJE7R06VJ16NBBZrNZ7du317Jly0rv8LOkpaXZT0R9fX3VuXNnvfvuu/bpxZegHzx4UF999ZU99/O9LN6Z52gZhqG7775bPj4++uSTT+zjP/jgA3Xr1k1+fn5q2LChbr311hLbZd++fRoyZIgiIiLk6+urpk2b6tZbb1VmZuZ55Q0AQG0UEhIiPz+/En8QPNf5SG5urtq0aaM2bdooNzfXPt+JEyfUpEkTXX755SoqKpJ0+md/YGCgfv/9d8XFxSkgIECRkZGaOXNmifOb0mzbtk3x8fGyWCwKDAxUv379tHnzZvv0hIQEDR06VJLUt29f+znL2rVry2139erV6tWrlwICAhQSEqIbbrhBu3fvtk8fNWqUevfuLUkaOnSoTCZTqeeNFeXMc7OSkpLUokULdejQQampqZKkjIwMTZw40b5NWrRooeeee67EFeiLFy9Wt27dFBQUJIvFoo4dO2ru3LnnnTdQF3ClFFDHDB8+XI8//rhWrFihu+66q9SYXbt26brrrlOnTp00c+ZMmc1m7d+/X99//70kqW3btpo5c6amTp2qu+++W7169ZIkXX755fY2jh8/rvj4eN1666264447FB4eXm5eTz/9tEwmkx599FGlpaXp5ZdfVv/+/ZWYmGi/ossZzuR2JsMwdP3112vNmjUaM2aMunTpouXLl+vhhx/Wn3/+qTlz5jjEb9iwQZ988onuvfdeBQUF6ZVXXtGQIUOUnJysRo0alZlXbm6u+vTpo/3792vChAmKiYnRkiVLNGrUKGVkZOiBBx5Q27Zt9f7772vSpElq2rSpHnzwQUlSaGio0+tfGUVFRbrzzjv14Ycf6tNPP9XAgQMlnd4m//znP3XzzTdr7NixSk9P16uvvqorr7xS27ZtU0hIiE6dOqW4uDjl5+frvvvuU0REhP788099+eWXysjIUHBwcJXmDgBAdZeZmaljx47JMAylpaXp1VdfVXZ2tu644w57jDPnI35+fnr33Xd1xRVX6B//+IdeeuklSdL48eOVmZmphIQEeXt729ssKirSNddcox49euj555/XsmXLNG3aNBUWFmrmzJll5rtr1y716tVLFotFjzzyiOrXr6833nhDffr00bp169S9e3ddeeWVuv/++/XKK6/o8ccfV9u2bSXJ/m9pvv32W8XHx+vCCy/U9OnTlZubq1dffVVXXHGFtm7dqubNm+vvf/+7LrjgAj3zzDO6//77demll57zHNIVDhw4oKuuukoNGzbUypUr1bhxY508eVK9e/fWn3/+qb///e9q1qyZNm7cqClTpujo0aN6+eWXJZ3+Q+6wYcPUr18/Pffcc5Kk3bt36/vvv9cDDzxQ5bkDNZ4BoFZZuHChIcn46aefyowJDg42Lr74YvvwtGnTjDMPB3PmzDEkGenp6WW28dNPPxmSjIULF5aY1rt3b0OSsWDBglKn9e7d2z68Zs0aQ5JxwQUXGFar1T7+o48+MiQZc+fOtY+Ljo42Ro4cec42y8tt5MiRRnR0tH146dKlhiTjqaeecoi76aabDJPJZOzfv98+TpLh4+PjMG779u2GJOPVV18tsawzvfzyy4Yk44MPPrCPO3XqlBEbG2sEBgY6rHt0dLQxcODActurSOzZ63zw4EFDkvHCCy8YBQUFxi233GL4+fkZy5cvt8ccOnTI8Pb2Np5++mmHtnbu3GnUq1fPPn7btm2GJGPJkiVO5QsAQF1RfE529sdsNhsJCQkOsRU5H5kyZYrh5eVlrF+/3liyZIkhyXj55Zcd5hs5cqQhybjvvvvs42w2mzFw4EDDx8fH4RxPkjFt2jT78ODBgw0fHx/jwIED9nFHjhwxgoKCjCuvvNI+rnjZa9ascao/unTpYoSFhRnHjx+3j9u+fbvh5eVljBgxwj6u+NzQmXMLZ2PPXsfic9/09HRj9+7dRmRkpHHppZcaJ06csMc8+eSTRkBAgPHbb785tPXYY48Z3t7eRnJysmEYhvHAAw8YFovFKCwsPGe+AEri9j2gDgoMDCz3LXzF9/B/9tlnlX5Attls1ujRo52OHzFihIKCguzDN910k5o0aaKvv/66Ust31tdffy1vb2/df//9DuMffPBBGYZR4u04/fv310UXXWQf7tSpkywWi37//fdzLiciIkLDhg2zj6tfv77uv/9+ZWdna926dS5Ym4o5deqUhg4dqi+//FJff/21BgwYYJ/2ySefyGaz6eabb9axY8fsn4iICLVs2VJr1qyRJPuVUMuXL9fJkyfdvg4AAFR38+bN08qVK7Vy5Up98MEH6tu3r8aOHetwu3xFzkemT5+u9u3ba+TIkbr33nvVu3fvEvMVmzBhgv3/xY8hOHXqlL799ttS44uKirRixQoNHjxYF154oX18kyZNdNttt2nDhg2yWq0V7oOjR48qMTFRo0aNUsOGDe3jO3XqpKuvvrrKz/fK8ssvv6h3795q3ry5vv32WzVo0MA+bcmSJerVq5caNGjgcC7Uv39/FRUVaf369ZJOnzfn5ORo5cqVHlkHoKajKAXUQdnZ2Q4FoLPdcsstuuKKKzR27FiFh4fr1ltv1UcffVShAtUFF1xQoYeat2zZ0mHYZDKpRYsWLn/N8NmSkpIUGRlZoj+KLz9PSkpyGN+sWbMSbTRo0EB//fXXOZfTsmVLeXk5HnbLWo47zJo1S0uXLtXHH39c4nkN+/btk2EYatmypUJDQx0+u3fvtj+ENCYmRpMnT9Zbb72lxo0bKy4uTvPmzeN5UgAA/Ndll12m/v37q3///rr99tv11VdfqV27dvYCkVSx8xEfHx+98847OnjwoLKysrRw4cISzwaVJC8vL4fCkiS1atVKkso8v0pPT9fJkyfVunXrEtPatm0rm81W4tmSzijOv6x2jx07ppycnAq3e74GDRqkoKAgLV++XBaLxWHavn37tGzZshLnQf3795f0vwey33vvvWrVqpXi4+PVtGlT3XnnnU4/bxQARSmgzvnjjz+UmZmpFi1alBnj5+en9evX69tvv9Xw4cO1Y8cO3XLLLbr66qvtD9A8l4o8B8pZpZ1wSXI6J1c481kNZzKceGhodVP84NPnn39eeXl5DtNsNptMJpOWLVtm/+vumZ833njDHjt79mzt2LFDjz/+uHJzc3X//ferffv2+uOPP9y9SgAAVHteXl7q27evjh49qn379lWqjeXLl0uS8vLyKt0GpCFDhujAgQP697//XWKazWbT1VdfXep50MqVKzVkyBBJUlhYmBITE/X555/bnwsWHx+vkSNHunt1gBqJB50Ddcz7778v6XRBojxeXl7q16+f+vXrp5deeknPPPOM/vGPf2jNmjXq379/mQWiyjr7hMowDO3fv1+dOnWyj2vQoIEyMjJKzJuUlOTwl8CK5BYdHa1vv/1WWVlZDn+d3LNnj326K0RHR2vHjh2y2WwOV0u5ejkV0aNHD91zzz267rrrNHToUH366af2NwFddNFFMgxDMTEx9r+qlqdjx47q2LGjnnjiCW3cuFFXXHGFFixYoKeeeqqqVwMAgBqnsLBQ0umr16WKnY/s2LFDM2fO1OjRo5WYmKixY8dq586dJV4uYrPZ9Pvvvzv8HP/tt98kqcy38oaGhsrf31979+4tMW3Pnj3y8vJSVFSUpIqfb0kqs93GjRsrICDA6fZc5YUXXlC9evXsL7C57bbb7NMuuugiZWdn26+MKo+Pj48GDRqkQYMGyWaz6d5779Ubb7yhf/7zn+X+IRgAV0oBdcrq1av15JNPKiYmRrfffnuZcSdOnCgxrkuXLpKk/Px8SbKfOJRWJKqM9957z+E5Vx9//LGOHj2q+Ph4+7iLLrpImzdvtl/qLklffvllicvIK5Lbtddeq6KiIr322msO4+fMmSOTyeSw/PNx7bXXKiUlRR9++KF9XGFhoV599VUFBgbaX3/sbv3799fixYu1bNkyDR8+3H6L5o033ihvb2/NmDGjxFVghmHo+PHjkiSr1Wo/sS7WsWNHeXl52b8rAADgfwoKCrRixQr5+PjYb89z9nykoKBAo0aNUmRkpObOnauEhASlpqZq0qRJpS7rzPYMw9Brr72m+vXrq1+/fqXGe3t7a8CAAfrss88cbvFLTU3VokWL1LNnT/ttbhU532rSpIm6dOmid9991yH+l19+0YoVK3Tttdees42qYDKZ9K9//Us33XSTRo4cqc8//9w+7eabb9amTZvsV6WdKSMjw37+U3xOVMzLy8v+R1XOhYBz40opoJb65ptvtGfPHhUWFio1NVWrV6/WypUrFR0drc8//1y+vr5lzjtz5kytX79eAwcOVHR0tNLS0vT666+radOm6tmzp6TTBaKQkBAtWLBAQUFBCggIUPfu3RUTE1OpfBs2bKiePXtq9OjRSk1N1csvv6wWLVrorrvusseMHTtWH3/8sa655hrdfPPNOnDggD744AOHB49XNLdBgwapb9+++sc//qFDhw6pc+fOWrFihT777DNNnDixRNuVdffdd+uNN97QqFGjtGXLFjVv3lwff/yxvv/+e7388svlPuPrXPbv31/qFUkXX3yxBg4ceM75Bw8erIULF2rEiBGyWCx64403dNFFF+mpp57SlClTdOjQIQ0ePFhBQUE6ePCgPv30U91999166KGHtHr1ak2YMEFDhw5Vq1atVFhYqPfff1/e3t72y9oBAKjLis/JpNPPIVq0aJH27dunxx57zF7gcfZ85KmnnlJiYqJWrVqloKAgderUSVOnTtUTTzyhm266yaG44+vrq2XLlmnkyJHq3r27vvnmG3311Vd6/PHHFRoaWma+Tz31lFauXKmePXvq3nvvVb169fTGG28oPz9fzz//vD2uS5cu8vb21nPPPafMzEyZzWZdddVVCgsLK7XdF154QfHx8YqNjdWYMWOUm5urV199VcHBwZo+ffp59fH//d//2fv4TCNHjrRf2VUWLy8vffDBBxo8eLBuvvlmff3117rqqqv08MMP6/PPP9d1112nUaNGqVu3bsrJydHOnTv18ccf69ChQ2rcuLHGjh2rEydO6KqrrlLTpk2VlJSkV199VV26dLEXHQGUw2Pv/QNQJc5+/bCPj48RERFhXH311cbcuXMNq9VaYp7i1+IWW7VqlXHDDTcYkZGRho+PjxEZGWkMGzasxCtxP/vsM6Ndu3ZGvXr1DEnGwoULDcMwjN69exvt27cvNb/evXsbvXv3tg8Xv8r3P//5jzFlyhQjLCzM8PPzMwYOHGgkJSWVmH/27NnGBRdcYJjNZuOKK64wfv755xJtlpfbyJEjjejoaIfYrKwsY9KkSUZkZKRRv359o2XLlsYLL7xg2Gw2hzhJxvjx40vkFB0dbYwcObLU9T1TamqqMXr0aKNx48aGj4+P0bFjR3teZ7c3cODAc7ZXHKtSXjctyRgzZkyp63zw4EFDkvHCCy84tPX6668bkoyHHnrIPu7//u//jJ49exoBAQFGQECA0aZNG2P8+PHG3r17DcMwjN9//9248847jYsuusjw9fU1GjZsaPTt29f49ttvncofAIDa6uxzMkmGr6+v0aVLF2P+/PklzjPOdT6yZcsWo169esZ9993nMF9hYaFx6aWXGpGRkcZff/1lGMbpn/0BAQHGgQMHjAEDBhj+/v5GeHi4MW3aNKOoqMhhfknGtGnTHMZt3brViIuLMwIDAw1/f3+jb9++xsaNG0us45tvvmlceOGFhre3tyHJWLNmTbl98u233xpXXHGF4efnZ1gsFmPQoEHGr7/+6hBTfG64ZMmScts6M7asz3fffVfqOhaf+6anp9vHnTx50ujdu7cRGBhobN682TCM09tkypQpRosWLQwfHx+jcePGxuWXX268+OKLxqlTpwzDMIyPP/7YGDBggBEWFmb4+PgYzZo1M/7+978bR48ePWf+AAzDZBg18Om8AAAAAIBSjRo1Sh9//LH9mVUAUF3xTCkAAAAAAAC4HUUpAAAAAAAAuB1FKQAAAAAAALgdz5QCAAAAAACA23GlFAAAAAAAANyOohQAAAAAAADcrp6nE6iObDabjhw5oqCgIJlMJk+nAwAA3MgwDGVlZSkyMlJeXvz9rrI4nwIAoO5y9nyKolQpjhw5oqioKE+nAQAAPOjw4cNq2rSpp9OosTifAgAA5zqfoihViqCgIEmnO89isTg1j81mU3p6ukJDQ/mrqoewDTyL/vc8toFn0f+e56ptYLVaFRUVZT8fQOVU5nwKQO3Bz0WgbnP2fIqiVCmKLzG3WCwVKkrl5eXJYrFw0PUQtoFn0f+exzbwLPrf81y9Dbjl7PxU5nwKQO3Bz0UA0rnPpzg6AAAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAANQQ06dPl8lkcvi0adPGPj0vL0/jx49Xo0aNFBgYqCFDhig1NdWhjeTkZA0cOFD+/v4KCwvTww8/rMLCQoeYtWvXqmvXrjKbzWrRooUSEhLcsXoAAKCOoSgFAABQg7Rv315Hjx61fzZs2GCfNmnSJH3xxRdasmSJ1q1bpyNHjujGG2+0Ty8qKtLAgQN16tQpbdy4Ue+++64SEhI0depUe8zBgwc1cOBA9e3bV4mJiZo4caLGjh2r5cuXu3U9AQBA7VfP0wkAAADAefXq1VNERESJ8ZmZmXr77be1aNEiXXXVVZKkhQsXqm3bttq8ebN69OihFStW6Ndff9W3336r8PBwdenSRU8++aQeffRRTZ8+XT4+PlqwYIFiYmI0e/ZsSVLbtm21YcMGzZkzR3FxcW5dVwAAULtRlAIAAKhB9u3bp8jISPn6+io2NlazZs1Ss2bNtGXLFhUUFKh///722DZt2qhZs2batGmTevTooU2bNqljx44KDw+3x8TFxWncuHHatWuXLr74Ym3atMmhjeKYiRMnlptXfn6+8vPz7cNWq1WSZLPZZLPZXLDmAGoSm80mwzDY/4E6ytl9n6IUAABADdG9e3clJCSodevWOnr0qGbMmKFevXrpl19+UUpKinx8fBQSEuIwT3h4uFJSUiRJKSkpDgWp4unF08qLsVqtys3NlZ+fX6m5zZo1SzNmzCgxPj09XXl5eZVaXwA1l81mU2ZmpgzDkJcXT40B6pqsrCyn4ihKAQAA1BDx8fH2/3fq1Endu3dXdHS0PvroozKLRe4yZcoUTZ482T5stVoVFRWl0NBQWSwWD2YGwBNsNptMJpNCQ0MpSgF1kK+vr1NxFKUAAABqqJCQELVq1Ur79+/X1VdfrVOnTikjI8PhaqnU1FT7M6giIiL0448/OrRR/Ha+M2POfmNfamqqLBZLuYUvs9kss9lcYryXlxe/kAJ1lMlk4hgA1FHO7vcUpQAAgEukp6fbnyNUFovFotDQUDdlVPtlZ2frwIEDGj58uLp166b69etr1apVGjJkiCRp7969Sk5OVmxsrCQpNjZWTz/9tNLS0hQWFiZJWrlypSwWi9q1a2eP+frrrx2Ws3LlSnsbAGqvkydPas+ePS5ra/v27ercubP8/f1d0mabNm1c1haA6oGiFAAAOG/p6em67bZxOn48v9y4Ro3MWrRoPoWpSnrooYc0aNAgRUdH68iRI5o2bZq8vb01bNgwBQcHa8yYMZo8ebIaNmwoi8Wi++67T7GxserRo4ckacCAAWrXrp2GDx+u559/XikpKXriiSc0fvx4+1VO99xzj1577TU98sgjuvPOO7V69Wp99NFH+uqrrzy56gDcYM+ePerWrZun0yjTli1b1LVrV0+nAcCFKEoBAIDzZrVadfx4vszmB+XnF1VqTG7uYR0/PltWq5WiVCX98ccfGjZsmI4fP67Q0FD17NlTmzdvtvfnnDlz5OXlpSFDhig/P19xcXF6/fXX7fN7e3vryy+/1Lhx4xQbG6uAgACNHDlSM2fOtMfExMToq6++0qRJkzR37lw1bdpUb731luLi4ty+vgDcq02bNtqyZYtL2vr11181fPhwvf/++/YrMc9XmzZtXNIOgOqDohQAAHAZP78oBQRcVOb0/PIvpMI5LF68uNzpvr6+mjdvnubNm1dmTHR0dInb887Wp08fbdu2rVI5Aqi5/P39XXYlUvHr4Nu0acPVTQDKxBPnAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYeLUqtX79egwYNUmRkpEwmk5YuXeow3WQylfp54YUXymxz+vTpJeLbtGlTxWsCAAAAAACAivBoUSonJ0edO3fWvHnzSp1+9OhRh88777wjk8mkIUOGlNtu+/btHebbsGFDVaQPAAAAAACASqrnyYXHx8crPj6+zOkREREOw5999pn69u2rCy+8sNx269WrV2JeAAAAAAAAVB815plSqamp+uqrrzRmzJhzxu7bt0+RkZG68MILdfvttys5OdkNGQIAAAAAAMBZHr1SqiLeffddBQUF6cYbbyw3rnv37kpISFDr1q119OhRzZgxQ7169dIvv/yioKCgUufJz89Xfn6+fdhqtUqSbDabbDabU/nZbDYZhuF0PFyPbeBZ9L/nsQ08q673v2EY/32WoyGTqfQ+OD3NVGX95KptUFe3IQAAgLvVmKLUO++8o9tvv12+vr7lxp15O2CnTp3UvXt3RUdH66OPPirzKqtZs2ZpxowZJcanp6crLy/PqfxsNpsyMzNlGIa8vGrMBWi1CtvAs+h/z2MbeFZd7/+srCy1bBmlgIAs+fqmlRqTl5elnJwoZWVlKS2t9Jjz4aptkJWV5cKsAAAAUJYaUZT67rvvtHfvXn344YcVnjckJEStWrXS/v37y4yZMmWKJk+ebB+2Wq2KiopSaGioLBaLU8ux2WwymUwKDQ2tk7+MVAdsA8+i/z2PbeBZdb3/s7OztW/fYYWEBCkgIKzUmJycbGVkHFZQUJDCwkqPOR+u2gbn+gMYAAAAXKNGFKXefvttdevWTZ07d67wvNnZ2Tpw4ICGDx9eZozZbJbZbC4x3svLq0IntSaTqcLzwLXYBp5F/3se28Cz6nL/F9+WZxgmGUbp6396mmHvp6rK43y3QV3cfgAAAJ7g0bOu7OxsJSYmKjExUZJ08OBBJSYmOjyY3Gq1asmSJRo7dmypbfTr10+vvfaaffihhx7SunXrdOjQIW3cuFF/+9vf5O3trWHDhlXpugAAAAAAAMB5Hr1S6ueff1bfvn3tw8W30I0cOVIJCQmSpMWLF8swjDKLSgcOHNCxY8fsw3/88YeGDRum48ePKzQ0VD179tTmzZsVGhpadSsCAAAAAACACvFoUapPnz4yDKPcmLvvvlt33313mdMPHTrkMLx48WJXpAYAAAAAAIAqxEMTAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4Hb1PJ0AADgjPT1dVqu13BiLxaLQ0FA3ZQQAAAAAOB8UpQBUe+np6brttnE6fjy/3LhGjcxatGg+hSkAAAAAqAEoSgGo9qxWq44fz5fZ/KD8/KJKjcnNPazjx2fLarVSlAIAAACAGoCiFIAaw88vSgEBF5U5Pb/8C6kAAAAAANUIDzoHAACooZ599lmZTCZNnDjRPi4vL0/jx49Xo0aNFBgYqCFDhig1NdVhvuTkZA0cOFD+/v4KCwvTww8/rMLCQoeYtWvXqmvXrjKbzWrRooUSEhLcsEYAAKAuoSgFAABQA/30009644031KlTJ4fxkyZN0hdffKElS5Zo3bp1OnLkiG688Ub79KKiIg0cOFCnTp3Sxo0b9e677yohIUFTp061xxw8eFADBw5U3759lZiYqIkTJ2rs2LFavny529YPAADUfhSlAAAAapjs7GzdfvvtevPNN9WgQQP7+MzMTL399tt66aWXdNVVV6lbt25auHChNm7cqM2bN0uSVqxYoV9//VUffPCBunTpovj4eD355JOaN2+eTp06JUlasGCBYmJiNHv2bLVt21YTJkzQTTfdpDlz5nhkfQEAQO1EUQoAAKCGGT9+vAYOHKj+/fs7jN+yZYsKCgocxrdp00bNmjXTpk2bJEmbNm1Sx44dFR4ebo+Ji4uT1WrVrl277DFntx0XF2dvAwAAwBV40DkAAEANsnjxYm3dulU//fRTiWkpKSny8fFRSEiIw/jw8HClpKTYY84sSBVPL55WXozValVubq78/PxKLDs/P1/5Z7xxwmq1SpJsNptsNlsF1xJATVe833MMAOomZ/d7ilIAAAA1xOHDh/XAAw9o5cqV8vX19XQ6DmbNmqUZM2aUGJ+enq68vDwPZATAk/766y/7v2lpaR7OBoC7ZWVlORVHUQoAAKCG2LJli9LS0tS1a1f7uKKiIq1fv16vvfaali9frlOnTikjI8PhaqnU1FRFRERIkiIiIvTjjz86tFv8dr4zY85+Y19qaqosFkupV0lJ0pQpUzR58mT7sNVqVVRUlEJDQ2WxWCq/0gBqpOLn3TVo0EBhYWEezgaAuzn7xzOKUgAAADVEv379tHPnTodxo0ePVps2bfToo48qKipK9evX16pVqzRkyBBJ0t69e5WcnKzY2FhJUmxsrJ5++mmlpaXZf1FcuXKlLBaL2rVrZ4/5+uuvHZazcuVKexulMZvNMpvNJcZ7eXnJy4vHmAJ1TfF+zzEAqJuc3e89enRYv369Bg0apMjISJlMJi1dutRh+qhRo2QymRw+11xzzTnbnTdvnpo3by5fX1917969xF8DAQAAaqKgoCB16NDB4RMQEKBGjRqpQ4cOCg4O1pgxYzR58mStWbNGW7Zs0ejRoxUbG6sePXpIkgYMGKB27dpp+PDh2r59u5YvX64nnnhC48ePtxeV7rnnHv3+++965JFHtGfPHr3++uv66KOPNGnSJE+uPgAAqGU8eqVUTk6OOnfurDvvvFM33nhjqTHXXHONFi5caB8u7S9wZ/rwww81efJkLViwQN27d9fLL7+suLg47d27l8tGAQBArTdnzhx5eXlpyJAhys/PV1xcnF5//XX7dG9vb3355ZcaN26cYmNjFRAQoJEjR2rmzJn2mJiYGH311VeaNGmS5s6dq6ZNm+qtt95SXFycJ1YJQDn27dvn9LNb3GnPnj32f6vjlVJBQUFq2bKlp9MA6jyPFqXi4+MVHx9fbozZbLY/38AZL730ku666y6NHj1akrRgwQJ99dVXeuedd/TYY4+dV74AAADVzdq1ax2GfX19NW/ePM2bN6/MeaKjo0vcnne2Pn36aNu2ba5IEUAV2bdvn1q1auXpNMo1fPhwT6dQpt9++43CFOBh1f6ZUmvXrlVYWJgaNGigq666Sk899ZQaNWpUauypU6e0ZcsWTZkyxT7Oy8tL/fv316ZNm9yVMgAAAABUueIrpD744AO1bdvWw9k4OnnypLZv367OnTvL39/f0+k42L17t+64445qeYUZUNdU66LUNddcoxtvvFExMTE6cOCAHn/8ccXHx2vTpk3y9vYuEX/s2DEVFRUpPDzcYXx4eLj98tHS5OfnKz8/3z5stVolSTabTTabzalcbTabDMNwOh6uxzbwrKrsf8Mw/vtcOUMmU+ntm0yGiopO6dChQzIMo9z2LBaLGjdu7PI8PY194H+OHTtmP5aXxdXfA1f1vydydwVn91OTyVRl31NXbQP2IQA1Tdu2bR3eylkd2Gw2tWjRQmFhYdXy9j0A1UO1Lkrdeuut9v937NhRnTp10kUXXaS1a9eqX79+LlvOrFmzNGPGjBLj09PTlZeX51QbNptNmZmZMgyDg66HsA08qyr7PysrSy1bRikgIEu+vmmlxmRnH1FhoVmvv/6h6tevX257QUH19dBD4xQcHOzSPD2NfeC0zMxMvfjifGVlFZQb5+rvgSv631O5u4Iz+2leXpZycqKUlZWltLTSY86Hq/YB/nIOAADgHtW6KHW2Cy+8UI0bN9b+/ftLLUo1btxY3t7eSk1NdRifmppa7nOppkyZosmTJ9uHrVaroqKiFBoaKovF4lRuNptNJpNJoaGhdfqXQU9iG3hWVfZ/dna29u07rJCQIAUElP7CgmPHdmnHjt/VuvU9Cgkp+9kKubmHlZ8/R97e3rXu5QfsA6dlZ2dr69bfZTZPkp9fVKkxVfE9cEX/eyp3V3BmP83JyVZGxmEFBQVVSe6u2gd8fX1dmBUAAADKUqOKUn/88YeOHz+uJk2alDrdx8dH3bp106pVqzR48GBJp09QV61apQkTJpTZrtlsLvWtfl5eXhU6qTWZTBWeB67FNvCsqur/4tt9DMMkwyi9bcMwyWazyccnSv7+LcpsyzBMyssz7LnWNuwD//u++Po2k7//RaXGVNX34Hz735O5ny9n99Pi2/yqKndX7APVqV8BAABqM4+edWVnZysxMVGJiYmSpIMHDyoxMVHJycnKzs7Www8/rM2bN+vQoUNatWqVbrjhBrVo0cLhdcT9+vXTa6+9Zh+ePHmy3nzzTb377rvavXu3xo0bp5ycHPvb+AAAAAAAAOB5Hr1S6ueff1bfvn3tw8W30I0cOVLz58/Xjh079O677yojI0ORkZEaMGCAnnzySYermg4cOKBjx47Zh2+55Ralp6dr6tSpSklJUZcuXbRs2bISDz8HAAAAAACA53i0KNWnT59y35K1fPnyc7Zx6NChEuMmTJhQ7u16AAAAAAAA8CwemgAAAAAAAAC3oygFAAAAAAAAt6MoBQAAAAAAALejKAUAAAAAAAC3oygFAAAAAAAAt6MoBQAAAAAAALejKAUAAAAAAAC3oygFAAAAAAAAt6vn6QSA85Weni6r1SrDMJSVlaXs7GyZTKYScRaLRaGhoR7IEEBNVnyMKY/FYlGjRo3clBEAAABQO1CUQo2Wnp6u224bp+PH82UymdSyZZT27TsswzBKxDZqZNaiRfMpTAFw2pnHmPI0amTWv//9upuyAgAAAGoHilKo0axWq44fz5fZ/KD8/ZsqICBLISFBMgzHK6Vycw/r+PHZslqtFKUAOO3MY4yfX1SpMWceXwIDA92cIQAAAFBzUZRCreDnF6WAgBj5+qYpICBMhlHycWn55V/oAABlOn2MuajM6RxfAAAAgIrjQecAAAAAAABwO4pSAAAAAAAAcDuKUgAAAAAAAHA7ilIAAAAAAABwO4pSAAAAAAAAcDuKUgAAAAAAAHA7ilIAAAAAAABwO4pSAAAAAAAAcDuKUgAAAAAAAHA7ilIAAAAAAABwO4pSAAAAAAAAcDuKUgAAAAAAAHC7ep5OANVHenq6rFZruTEWi0WhoaE1cnkAUNdwnAUAAEB1RlEKkk7/4nLbbeN0/Hh+uXGNGpm1aNH88/4Fxt3LA4C6huMsAAAAqjuKUpAkWa1WHT+eL7P5Qfn5RZUak5t7WMePz5bVaj3vX17cvTwAqGs4zgIAAKC6oygFB35+UQoIuKjM6fnl/8G92i8PAOoajrMAAACorjz6oPP169dr0KBBioyMlMlk0tKlS+3TCgoK9Oijj6pjx44KCAhQZGSkRowYoSNHjpTb5vTp02UymRw+bdq0qeI1AQAAAAAAQEV4tCiVk5Ojzp07a968eSWmnTx5Ulu3btU///lPbd26VZ988on27t2r66+//pzttm/fXkePHrV/NmzYUBXpAwAAAAAAoJI8evtefHy84uPjS50WHByslStXOox77bXXdNlllyk5OVnNmjUrs9169eopIiLCpbkCAAAAAADAdTx6pVRFZWZmymQyKSQkpNy4ffv2KTIyUhdeeKFuv/12JScnuydBAAAAAAAAOKXGPOg8Ly9Pjz76qIYNGyaLxVJmXPfu3ZWQkKDWrVvr6NGjmjFjhnr16qVffvlFQUFBpc6Tn5+v/DOe9Gq1WiVJNptNNpvNqfxsNpsMw3A6vroxDOO/z+AyZDKVvg6np5lcsp6uWt7Z7ZTVnitzR+mqch9w9vvi5eVVbkxxXG39LtT045CruPJ4VtG2zrf/PZl7dTmunw9X7QN1fR8CAABwlxpRlCooKNDNN98swzA0f/78cmPPvB2wU6dO6t69u6Kjo/XRRx9pzJgxpc4za9YszZgxo8T49PR05eXlOZWjzWZTZmamDOP0L8Y1TVZWllq2jFJAQJZ8fdNKjcnLy1JOTpSysrKUllZ6jLuXd3Y7jRuf3gZnXwToytxRuqrcB5z5vgQHF8nLq5ViYk7KYil7G9fm70JNPw65iiuPZxVpKzs7W4WFhefV/57KvTod18+Hq/aBrKwsF2YFAACAslT7olRxQSopKUmrV68u9yqp0oSEhKhVq1bav39/mTFTpkzR5MmT7cNWq1VRUVEKDQ11enk2m00mk0mhoaE18pfB7Oxs7dt3WCEhQQoICCs1JicnWxkZhxUUFKSwsNJj3L28M9sJDAyTyWTSH3+EyjC8KtwWzk9V7gPOfF+OHfPWjh2/yWbzV+PGZW/j2vxdqOnHIVdx5fGsIm0FBgYqMDDwvPrfU7lXp+P6+XDVPuDr6+vCrAAAAFCWal2UKi5I7du3T2vWrFGjRo0q3EZ2drYOHDig4cOHlxljNptlNptLjPfy8qrQSa3JZKrwPNXF/249MZUo6BQ7Pc2wr2d1WN7Z7fzvX68Kt4XzV1X7gLPfl9O37pQdUxxXm78LNfk45CquPJ5VtK3z7X9P5l5djuvnyxX7QF3efwAAANzJo2dd2dnZSkxMVGJioiTp4MGDSkxMVHJysgoKCnTTTTfp559/1r///W8VFRUpJSVFKSkpOnXqlL2Nfv366bXXXrMPP/TQQ1q3bp0OHTqkjRs36m9/+5u8vb01bNgwd68eAAAAAAAAyuDRK6V+/vln9e3b1z5cfAvdyJEjNX36dH3++eeSpC5dujjMt2bNGvXp00eSdODAAR07dsw+7Y8//tCwYcN0/PhxhYaGqmfPntq8ebNCQ0OrdmUAAAAAAADgNI8Wpfr06fPfh1KXrrxpxQ4dOuQwvHjx4vNNCwAAAAAAAFWsUrfv/f77767OAwAAAAAAAHVIpa6UatGihXr37q0xY8bopptu4i01HpSeni6r1VpujMVi4fZFF6Pf4Qnn+t4ZhqGsrCx5eXnVujcLom5x5hgr1c3j7Pz58zV//nz7leLt27fX1KlTFR8fL0nKy8vTgw8+qMWLFys/P19xcXF6/fXXFR4ebm8jOTlZ48aN05o1axQYGKiRI0dq1qxZqlfvf6eFa9eu1eTJk7Vr1y5FRUXpiSee0KhRo9y5qgAAoA6oVFFq69atWrhwoSZPnqwJEybolltu0ZgxY3TZZZe5Oj+UIz09XbfdNk7Hj+eXG9eokVmLFs2vcyfuVYV+hyc4870zmUxq2TJKJ06k6d//fp3vHmokZ4+xUt08zjZt2lTPPvusWrZsKcMw9O677+qGG27Qtm3b1L59e02aNElfffWVlixZouDgYE2YMEE33nijvv/+e0lSUVGRBg4cqIiICG3cuFFHjx7ViBEjVL9+fT3zzDOSTr94ZuDAgbrnnnv073//W6tWrdLYsWPVpEkTxcXFeXL1AQBALVOpolSXLl00d+5czZ49W59//rkSEhLUs2dPtWrVSnfeeaeGDx9ep04QPcVqter48XyZzQ/Kzy+q1Jjc3MM6fny2rFYr28RF6Hd4gjPfO5PJUP36B3X8+Kt891BjOfNdl+rucXbQoEEOw08//bTmz5+vzZs3q2nTpnr77be1aNEiXXXVVZKkhQsXqm3bttq8ebN69OihFStW6Ndff9W3336r8PBwdenSRU8++aQeffRRTZ8+XT4+PlqwYIFiYmI0e/ZsSVLbtm21YcMGzZkzh6IUAABwqfN60Hm9evV04403auDAgXr99dc1ZcoUPfTQQ3r88cd1880367nnnlOTJk1clSvK4OcXpYCAi8qcnn/uPzajEuh3eEJ53zuTySYfnyw3ZwRUjXMdYyWOs0VFRVqyZIlycnIUGxurLVu2qKCgQP3797fHtGnTRs2aNdOmTZvUo0cPbdq0SR07dnS4nS8uLk7jxo3Trl27dPHFF2vTpk0ObRTHTJw4sdx88vPzlX/GRim+BdNms8lms7lgjQGcrXjfqo77mc1mk2EY1S4vqXr3G1BbOLtvnVdR6ueff9Y777yjxYsXKyAgQA899JDGjBmjP/74QzNmzNANN9ygH3/88XwWAQAAgDPs3LlTsbGxysvLU2BgoD799FO1a9dOiYmJ8vHxUUhIiEN8eHi4UlJSJEkpKSkOBani6cXTyouxWq3Kzc2Vn59fqXnNmjVLM2bMKDE+PT1deXl5lVpXAOU7ceKE/d+0tDQPZ+PIZrMpMzNThmHIy6tS79eqMtW534DaIivLuT+WV6oo9dJLL2nhwoXau3evrr32Wr333nu69tpr7QebmJgYJSQkqHnz5pVpHgAAAGVo3bq1EhMTlZmZqY8//lgjR47UunXrPJ2WpkyZosmTJ9uHrVaroqKiFBoaKovF4sHMgNqrYcOG9n+r20tObDabTCaTQkNDq11Rqjr3G1BbOPtCvEoVpebPn68777xTo0aNKvP2vLCwML399tuVaR4AAABl8PHxUYsWLSRJ3bp1008//aS5c+fqlltu0alTp5SRkeFwtVRqaqoiIiIkSRERESWuYk9NTbVPK/63eNyZMRaLpcyrpCTJbDbLbDaXGO/l5VXtfiEFaovifau67mcmk6la5lbd+w2oDZzdtyq1B+7bt09Tpkwp93lRPj4+GjlyZGWaBwAAgJNsNpvy8/PVrVs31a9fX6tWrbJP27t3r5KTkxUbGytJio2N1c6dOx1uV1m5cqUsFovatWtnjzmzjeKY4jYAAABcpVJXSi1cuFCBgYEaOnSow/glS5bo5MmTFKMAAACqwJQpUxQfH69mzZopKytLixYt0tq1a7V8+XIFBwdrzJgxmjx5sho2bCiLxaL77rtPsbGx6tGjhyRpwIABateunYYPH67nn39eKSkpeuKJJzR+/Hj7VU733HOPXnvtNT3yyCO68847tXr1an300Uf66quvPLnqAACgFqrUlVKzZs1S48aNS4wPCwvTM888c95JAQAAoKS0tDSNGDFCrVu3Vr9+/fTTTz9p+fLluvrqqyVJc+bM0XXXXachQ4boyiuvVEREhD755BP7/N7e3vryyy/l7e2t2NhY3XHHHRoxYoRmzpxpj4mJidFXX32llStXqnPnzpo9e7beeustxcXFuX19AQBA7VapK6WSk5MVExNTYnx0dLSSk5PPOykAAACUdK7ndfr6+mrevHmaN29emTHR0dH6+uuvy22nT58+2rZtW6VyBAAAcFalrpQKCwvTjh07Sozfvn27GjVqdN5JAQAAAAAAoHarVFFq2LBhuv/++7VmzRoVFRWpqKhIq1ev1gMPPKBbb73V1TkCAAAAAACglqnU7XtPPvmkDh06pH79+qlevdNN2Gw2jRgxgmdKAQAAAAAA4JwqVZTy8fHRhx9+qCeffFLbt2+Xn5+fOnbsqOjoaFfnBwAAAAAAgFqoUkWpYq1atVKrVq1clQtQqxQU5CspKancGIvFotDQUDdlhIpIT0+X1WotN6a6br/CQr571ZEz36mkpCQVFha6KaPT3H2sOtfyPNEHAAAA8IxKFaWKioqUkJCgVatWKS0tTTabzWH66tWrXZIcUFOdOnVcSUm/6777npXZbC4zrlEjsxYtmk9xoJpJT0/XbbeN0/Hj+eXGVcftV1iYpaSkg3z3qhlnv1P5+Tk6fDhVwcHlx7mKu49VzizP3X0AAAAAz6lUUeqBBx5QQkKCBg4cqA4dOshkMrk6L6BGKyrKVmGhj3x8JikkpPSrCXNzD+v48dmyWq0UBqoZq9Wq48fzZTY/KD+/qFJjquv2s9ny+O5VQ858pyTpr782q7DwaRUWFrklL3cfq5xZnrv7AAAAAJ5TqaLU4sWL9dFHH+naa691dT5AreLr21QBAReVOT2fCwGqNT+/qBq7/fjuVU/n+k7l5pZ/G11Vcff3pbzleaoPPKGoqEg7d+5UdHS0GjRo4Ol0AAAA3M6rMjP5+PioRYsWrs4FAACg1po4caLefvttSacLUr1791bXrl0VFRWltWvXejY5AAAAD6hUUerBBx/U3LlzZRiGq/MBAAColT7++GN17txZkvTFF1/o4MGD2rNnjyZNmqR//OMfHs4OAADA/Sp1+96GDRu0Zs0affPNN2rfvr3q16/vMP2TTz5xSXIAAAC1xbFjxxQRESFJ+vrrrzV06FC1atVKd955p+bOnevh7AAAANyvUkWpkJAQ/e1vf3N1LgAAALVWeHi4fv31VzVp0kTLli3T/PnzJUknT56Ut7e3h7MDAABwv0oVpRYuXOjqPAAAAGq10aNH6+abb1aTJk1kMpnUv39/SdIPP/ygNm3aeDg7AAAA96tUUUqSCgsLtXbtWh04cEC33XabgoKCdOTIEVksFgUGBroyRwAAgBpv+vTp6tChgw4fPqyhQ4fKbDZLkry9vfXYY495ODsAAAD3q1RRKikpSddcc42Sk5OVn5+vq6++WkFBQXruueeUn5+vBQsWuDpPAACAGu+mm26SJOXl5dnHjRw50lPpAAAAeFSl3r73wAMP6JJLLtFff/0lPz8/+/i//e1vWrVqlcuSAwAAqC2Kior05JNP6oILLlBgYKB+//13SdI///lPvf322x7ODgAAwP0qVZT67rvv9MQTT8jHx8dhfPPmzfXnn3863c769es1aNAgRUZGymQyaenSpQ7TDcPQ1KlT1aRJE/n5+al///7at2/fOdudN2+emjdvLl9fX3Xv3l0//vij0zkBAABUhaeffloJCQl6/vnnHc6hOnTooLfeesuDmQEAAHhGpYpSNptNRUVFJcb/8ccfCgoKcrqdnJwcde7cWfPmzSt1+vPPP69XXnlFCxYs0A8//KCAgADFxcU5XPJ+tg8//FCTJ0/WtGnTtHXrVnXu3FlxcXFKS0tzOi8AAABXe++99/Svf/1Lt99+u8Pb9jp37qw9e/Z4MDMAAADPqNQzpQYMGKCXX35Z//rXvyRJJpNJ2dnZmjZtmq699lqn24mPj1d8fHyp0wzD0Msvv6wnnnhCN9xwg6TTJ3Ph4eFaunSpbr311lLne+mll3TXXXdp9OjRkqQFCxboq6++0jvvvMNDRAEAgMf8+eefatGiRYnxNptNBQUFHsgIQG0QEWiSX8Zv0pFKXW9QdQxD9U6ckIqOSiaTp7Nx4JfxmyICq1dOQF1VqaLU7NmzFRcXp3bt2ikvL0+33Xab9u3bp8aNG+s///mPSxI7ePCgUlJS7K9LlqTg4GB1795dmzZtKrUoderUKW3ZskVTpkyxj/Py8lL//v21adMml+QFAABQGe3atdN3332n6Ohoh/Eff/yxLr74Yg9lBaCm+3s3H7Vd/3dpvaczceQlqbGnkyhDW53uNwCeV6miVNOmTbV9+3YtXrxYO3bsUHZ2tsaMGaPbb7/d4cHn5yMlJUWSFB4e7jA+PDzcPu1sx44dU1FRUanzlHdZfH5+vvLz8+3DVqtV0um/XNpsNqfytdlsMgzD6XhnHDt2zJ5LaZKSkmSzFclkMmQylb7c09NM58zNME7HuaItZ7hqeWe3U1Z7nsjdy8vLbf1ZHVTFPlDMVX1eHFfR71VZ7RQVndKhQ4dkGEa5+VssFjVufH6nZc7lZKu2371zHc8k1/ST5NrtV9HjbFl96kxOxW25avu58ljlyr5yZnmV3ZdddRyqqv1i6tSpGjlypP7880/ZbDZ98skn2rt3r9577z19+eWXVbJMALXfG1tO6ZapCWrbpo2nU3FgMwydOHFCDRs2lFc1u1Jq9549emP2bbre04kAqFxRSpLq1aunO+64w5W5eMysWbM0Y8aMEuPT09PLfX7VmWw2mzIzM2UYp0+mz1dmZqZefHG+srLKvpy/oCBPwcF+atr0hAIDA0uNycvLUk5OlLKyssp9rlZWVpZatoxSQECWfH1Lj3O2LWe4anlnt9O4ceZ/f2nyqnBbrsw9OLhIXl6tFBNzUhZL1fdndeDqfeBMrupzqXLfq9JkZx9RYaFZr7/+oerXr19u/kFB9fXQQ+MUHBxcblx5nMlJsikgwKbOnVupefPq891z5ngmuaafJNduv4ocZ7Ozs1VYWFjqPuDc9nPtscNV+40r+8qZ5Z3Pvuyq41BWVlal5y3PDTfcoC+++EIzZ85UQECApk6dqq5du+qLL77Q1VdfXSXLBFD7pWQbyg1pJUV28XQqjmw2FXqnSWFhkovPDc9XbopNKdnl/1ERgHtUqij13nvvlTt9xIgRlUrmTBEREZKk1NRUNWnSxD4+NTVVXbp0KXWexo0by9vbW6mpqQ7jU1NT7e2VZsqUKZo8ebJ92Gq1KioqSqGhobJYLE7la7PZZDKZFBoa6pJfyLOzs7V16+8ymyfJzy+q1JiMjB+0d+8sFRT4qnHjsFJjcnKylZFxWEFBQQoLKz2meHn79h1WSEiQAgLOry1nuGp5Z7YTGBgmk8mkP/4IlWF4VbgtV+Z+7Ji3duz4TTab/3lvm5rC1fvAmVzV51LFv1dlL2+Xduz4Xa1b36OQkFZlLi8397Dy8+fI29v7vLazMzmZTDYFB3tp+/bfVFRUfb57zhzPXNVPxctz1faryHE2MDBQgYGBpe4DzuR0Oi/XHTtctd+4sq+cW17l92VXHYd8fX0rPW95/vjjD/Xq1UsrV64sMW3z5s3q0aNHlSwXAACguqpUUeqBBx5wGC4oKNDJkyfl4+Mjf39/lxSlYmJiFBERoVWrVtmLUFarVT/88IPGjRtX6jw+Pj7q1q2bVq1apcGDB0s6fYK6atUqTZgwocxlmc1mmc3mEuO9vLwqdFJrMpkqPE95bRmGIV/fZvL3v6jUmJMnk/97q4KpRBGm2Olphj23cy3PFW05w1XLO7ud//3rVeG2XJ27q7ZNTeLKfeDsdl3R58VxFf1elbc8H58o+fuXfHDxmXF5eee/nZ3J6cy8qtN3z5njmav66czluWL7VfQ4W9Y+4Int58pjlSv7yhUxxXGl9YMrjkNVtV8MGDBAGzZsUMOGDR3Gf//99xo4cKAyMjKqZLkAAADVVaXOuv766y+HT3Z2tvbu3auePXtW6EHn2dnZSkxMVGJioqTTDzdPTExUcnKyTCaTJk6cqKeeekqff/65du7cqREjRigyMtJecJKkfv366bXXXrMPT548WW+++abeffdd7d69W+PGjVNOTo79bXwAAACe0KNHDw0YMMDh9sD169fr2muv1bRp0zyYGQAAgGdU+plSZ2vZsqWeffZZ3XHHHeU+VPxMP//8s/r27WsfLr6FbuTIkUpISNAjjzyinJwc3X333crIyFDPnj21bNkyh8vqDxw4oGPHjtmHb7nlFqWnp2vq1KlKSUlRly5dtGzZshIPPwcAAHCnt956SzfddJMGDRqk5cuXa+PGjbr++uv11FNPlbgKHQAAoC5wWVFKOv3w8yNHjjgd36dPn3Lf5GMymTRz5kzNnDmzzJhDhw6VGDdhwoRyb9cDAABwNy8vLy1evFgDBw7UVVddpR07dmjWrFmcswAAgDqrUkWpzz//3GHYMAwdPXpUr732mq644gqXJAYAAFDT7dixo8S46dOna9iwYbrjjjt05ZVX2mM6derk7vQAAAA8qlJFqTOf6STJ/qabq666SrNnz3ZFXgAAADVely5d7A+dL1Y8/MYbb+hf//qX/YHtRUVFHswUAADA/SpVlLLZbK7OAwAAoNY5ePCgp1MAAACotlz6TCkAAAD8T3R0tKdTAAAAqLYqVZQqfkueM1566aXKLAIAAKDG+/zzzxUfH6/69euXeCbn2a6//no3ZQUAAFA9VKootW3bNm3btk0FBQVq3bq1JOm3336Tt7e3unbtao8zmUyuyRIAAKAGGjx4sFJSUhQWFlbimZxn4plSAACgLqpUUWrQoEEKCgrSu+++qwYNGkiS/vrrL40ePVq9evXSgw8+6NIkAQAAaqIzn8NZ1jM5Dx8+rJkzZ7orJQAAgGrDqzIzzZ49W7NmzbIXpCSpQYMGeuqpp3j7HgAAQAWcOHFC77zzjqfTAAAAcLtKFaWsVqvS09NLjE9PT1dWVtZ5JwUAAAAAAIDarVK37/3tb3/T6NGjNXv2bF122WWSpB9++EEPP/ywbrzxRpcmiJonPT1dVqu13JikpCQVFhaes62CgnwlJSWddzvV1bnWr9ipU6fk4+Nz3jEWi0WhoaEVyrE2cvf3ypntXB23jTP7slQ9cwcAAABQ/VWqKLVgwQI99NBDuu2221RQUHC6oXr1NGbMGL3wwgsuTRA1S3p6um67bZyOH88vNy4/P0eHD6cqOLjsuFOnjisp6Xfdd9+zMpvNlW6nunJm/aTTBY0jRw7qggtaqF690ndZZ2IkqVEjsxYtml+nCwju/l45u52r27Zxdl+Wql/uAAAAAGqGShWl/P399frrr+uFF17QgQMHJEkXXXSRAgICXJocah6r1arjx/NlNj8oP7+oMuP++muzCgufVmFh2W8aKirKVmGhj3x8JikkpFWl26munFk/6fQ65uY+LW/v+8vth3PF5OYe1vHjs2W1Wut08cDd3ytnllcdt42z+3J1zB2obs51FXlGRoZ7EgEAAKhmKlWUKnb06FEdPXpUV155pfz8/GQYhkwmk6tyQw3m5xelgICLypyem3vuW9aK+fo2LbOtirRTXZW3ftL/1tGZfjhXW/k174KyKuPu71VN3Tbn2pel6ps7UF0EBwefc/qIESPclA0AAED1Uami1PHjx3XzzTdrzZo1MplM2rdvny688EKNGTNGDRo04A18AAAA/7Vw4UJPpwAAAFAtVerte5MmTVL9+vWVnJwsf39/+/hbbrlFy5Ytc1lyAAAAAAAAqJ0qdaXUihUrtHz5cjVt2tRhfMuWLZ16kxgAAAAAAADqtkpdKZWTk+NwhVSxEydOlPt2KQAAAAAAAECqZFGqV69eeu+99+zDJpNJNptNzz//vPr27euy5AAAAAAAAFA7Ver2veeff179+vXTzz//rFOnTumRRx7Rrl27dOLECX3//feuzhEAAAAAAAC1TKWulOrQoYN+++039ezZUzfccINycnJ04403atu2bbroovJfHQ4AAAAAAABU+EqpgoICXXPNNVqwYIH+8Y9/VEVOAAAAAAAAqOUqfKVU/fr1tWPHjqrIBQAAAOWYNWuWLr30UgUFBSksLEyDBw/W3r17HWLy8vI0fvx4NWrUSIGBgRoyZIhSU1MdYpKTkzVw4ED5+/srLCxMDz/8sAoLCx1i1q5dq65du8psNqtFixZKSEio6tUDAAB1TKVu37vjjjv09ttvuzoXAAAAlGPdunUaP368Nm/erJUrV6qgoEADBgxQTk6OPWbSpEn64osvtGTJEq1bt05HjhzRjTfeaJ9eVFSkgQMH6tSpU9q4caPeffddJSQkaOrUqfaYgwcPauDAgerbt68SExM1ceJEjR07VsuXL3fr+gIAgNqtUg86Lyws1DvvvKNvv/1W3bp1U0BAgMP0l156ySXJAQAA4H+WLVvmMJyQkKCwsDBt2bJFV155pTIzM/X2229r0aJFuuqqqyRJCxcuVNu2bbV582b16NFDK1as0K+//qpvv/1W4eHh6tKli5588kk9+uijmj59unx8fLRgwQLFxMRo9uzZkqS2bdtqw4YNmjNnjuLi4ty+3gAAoHaqUFHq999/V/PmzfXLL7+oa9eukqTffvvNIcZkMrkuO7hEQUG+kpKSyo1JSkoqcdl+Zdpytp3qKj09XVartdyYmryOznwXJOnUqVPy8fEpN8ZisSg0NLTcGGf609m24Fq1fV8G6orMzExJUsOGDSVJW7ZsUUFBgfr372+PadOmjZo1a6ZNmzapR48e2rRpkzp27Kjw8HB7TFxcnMaNG6ddu3bp4osv1qZNmxzaKI6ZOHFimbnk5+crPz/fPlx8/LfZbLLZbOe9rgBKKt63quN+ZrPZZBhGtctLqt79BtQWzu5bFSpKtWzZUkePHtWaNWskSbfccoteeeUVh5MaVC+nTh1XUtLvuu++Z2U2m8uMy8/P0eHDqQoOzi8zxpm2nGmnukpPT9dtt43T8ePl515T19HZ70JBQb6OHDmoCy5ooXr1yj5ENGpk1qJF88ssJjnbn860Bdeq7fsyUFfYbDZNnDhRV1xxhTp06CBJSklJkY+Pj0JCQhxiw8PDlZKSYo85+9ytePhcMVarVbm5ufLz8yuRz6xZszRjxowS49PT05WXl1e5lQRQrhMnTtj/TUtL83A2jmw2mzIzM2UYhry8KvXUmCpTnfsNqC2ysrKciqtQUcowDIfhb775xuEZBqh+ioqyVVjoIx+fSQoJaVVm3F9/bVZh4dMqLCw6r7acaae6slqtOn48X2bzg/LziyozrqauY0W+C7m5T8vb+/4y43JzD+v48dmyWq1lFpKc7U9n2oJr1fZ9Gagrxo8fr19++UUbNmzwdCqSpClTpmjy5Mn2YavVqqioKIWGhspisXgwM6D2Kr5KsmHDhgoLC/NwNo5sNptMJpNCQ0OrXVGqOvcbUFv4+vo6FVepZ0oVO7tIherL17epAgIuKnN6bu65b+lypq2KtFNd+flFuayvqiNnvwvnist38gKac/VnRdqCa9X2fRmozSZMmKAvv/xS69evV9OmTe3jIyIidOrUKWVkZDhcLZWamqqIiAh7zI8//ujQXvHb+c6MOfuNfampqbJYLKVeJSVJZrO51Ksvvby8qt0vpEBtUbxvVdf9zGQyVcvcqnu/AbWBs/tWhfZAk8lU4plRVf0MqebNm9uXe+Zn/PjxpcYnJCSUiHW2QgcAAFCdGYahCRMm6NNPP9Xq1asVExPjML1bt26qX7++Vq1aZR+3d+9eJScnKzY2VpIUGxurnTt3OtyysnLlSlksFrVr184ec2YbxTHFbQAAALhChW/fGzVqlP2vYHl5ebrnnntKvH3vk08+cVmCP/30k4qK/nf7yC+//KKrr75aQ4cOLXMei8WivXv32od5+DoAAKgNxo8fr0WLFumzzz5TUFCQ/RlQwcHB8vPzU3BwsMaMGaPJkyerYcOGslgsuu+++xQbG6sePXpIkgYMGKB27dpp+PDhev7555WSkqInnnhC48ePt5/j3XPPPXrttdf0yCOP6M4779Tq1av10Ucf6auvvvLYugMAgNqnQkWpkSNHOgzfcccdLk2mNGc/Y+bZZ5/VRRddpN69e5c5j8lksl9+DgAAUFvMnz9fktSnTx+H8QsXLtSoUaMkSXPmzJGXl5eGDBmi/Px8xcXF6fXXX7fHent768svv9S4ceMUGxurgIAAjRw5UjNnzrTHxMTE6KuvvtKkSZM0d+5cNW3aVG+99Zbi4uKqfB0BAEDdUaGi1MKFC6sqD6ecOnVKH3zwgSZPnlzu1U/Z2dmKjo6WzWZT165d9cwzz6h9+/ZuzBQAAMD1nHmep6+vr+bNm6d58+aVGRMdHa2vv/663Hb69Omjbdu2VThHAAAAZ53Xg87dbenSpcrIyLD/JbA0rVu31jvvvKNOnTopMzNTL774oi6//HLt2rXL4UGgZ8rPz1f+GU9atlqtkk6/McJmszmVm81mk2EYTsefi2EY/30mliGTqfQ2TabTr1c93xhXtuXp5ZUVe3q8qdxt5EyfV2XuNW15Z/fn2ftARfrTFdumtvXn2ZzrA5tH1s9V2+9c7TjLE9+X4tzLyt/Vxxdn+qou/Bw513Goslz1sxwAAADlq1FFqbffflvx8fGKjIwsMyY2NtbhIZyXX3652rZtqzfeeENPPvlkqfPMmjVLM2bMKDE+PT1deXl5TuVms9mUmZkpwzBc8gaHrKwstWwZpYCALPn6ppUaExxcJC+vVoqJOSmLpfIxrmzL08tr3Djzv39FdtwGeXlZysmJUlZWlsODXc/kTJ9XZe41aXml9efZ+4Cz/emqbVPb+vNszvWnTQEBNnXu3ErNm7tn/VyVuzPtOMvd35fi3LOzs1VYWFjqzwFXHl+c7ava/nPEmeNQZWVlZVV6XgAAADivxhSlkpKS9O2331b4Ier169fXxRdfrP3795cZM2XKFE2ePNk+bLVaFRUVpdDQUFksFqeWY7PZZDKZFBoa6pKiVHZ2tvbtO6yQkCAFBISVGnPsmLd27PhNNpu/GjeufIwr2/Lk8kJDw2QymfTHH6EyDMdtkJOTrYyMwwoKClJYWOltOdPnVZV7Tds2pfXn2fuAs/3pqm1T2/rzbM70gclkU3Cwl7Zv/01FRe5ZP1fl7kw7znL396U498DAQAUGBpb6c8CVxxdn+6q2/xxx5jhUWby1FwAAwD1qTFFq4cKFCgsL08CBAys0X1FRkXbu3Klrr722zBiz2Wx/28yZvLy8KnRSazKZKjxPeW2dvhXEVKLAUswwTP+9VeH8YlzZlqeX979/vUrEFd/KUtb2cabPqzL3mra80vrzzH2gIv3pim1TG/vzTNX5++mq7Xeudpzlie/L/26VK/3ngKu3nzN9VRd+jpzrOFRZrvg5DgAAgHOrEWddNptNCxcu1MiRI1WvnmMdbcSIEZoyZYp9eObMmVqxYoV+//13bd26VXfccYeSkpI0duxYd6cNAAAAAACAMtSIK6W+/fZbJScn68477ywxLTk52eEvmn/99ZfuuusupaSkqEGDBurWrZs2btyodu3auTNlAAAAAAAAlKNGFKUGDBigsl6BvHbtWofhOXPmaM6cOW7ICgAAAAAAAJVVI27fAwAAAAAAQO1SI66UAlyhoCBfSUlJZU5PSkpSYWGhGzOq2c7uT8MwlJWVpezsbJlMpgr1J9umZnPV9jtXO8UsFotCQ0MrlCMAAACA6oeiFOqEU6eOKynpd91337OlvmlRkvLzc3T4cKqCg/PdnF3NU1p/mkwmtWwZpX37DsswDKf7k21Ts7lq+znTTrFGjcxatGg+hSkAAACghqMohTqhqChbhYU+8vGZpJCQVqXG/PXXZhUWPq3CwiI3Z1fzlNafJpOhgIAshYQEyTBMTvcn26Zmc9X2c6YdScrNPazjx2fLarVSlAIAAABqOIpSqFN8fZsqIOCiUqfl5p77tiE4OrM/TSabfH3TFBAQJsPwqnB/sm1qNldtv/LaKZbPBXMAAABArcCDzgEAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdvU8nQAAQCooyFdSUlKZ05OSklRYWOjGjFARxduvYcOGys7Olslkcpju6u13ru9LVSwTAAAAcDWKUgDgYadOHVdS0u+6775nZTabS43Jz8/R4cOpCg7Od3N2OJfi7Tdx4vNq376F9u07LMMwHGJcuf2c+b64epkAAABAVaAoBQAeVlSUrcJCH/n4TFJISKtSY/76a7MKC59WYWGRm7PDufxv+z2ggIAmCgkJkmE4Xinlyu3nzPfF1csEAAAAqgJFKQCoJnx9myog4KJSp+Xmln+rFjzPbG4qX98wBQSEyTAcH9lYFduvvO9LVS0TAAAAcCUedA4AAAAAAAC3oygFAAAAAAAAt6MoBQAAAAAAALfjmVIAAAAAUAOdPHlSkrR161YPZ1LSyZMntX37dnXu3Fn+/v6eTsfB7t27PZ0CgP+iKAUAAAAANdCePXskSXfddZeHM6mZgoKCPJ0CUOdRlAIAAACAGmjw4MGSpDZt2lS7q5F+/fVXDR8+XO+//77atWvn6XRKCAoKUsuWLT2dBlDnUZQCAAAAgBqocePGGjt2rKfTKJXNZpN0umDWtWtXD2cDoLriQecAAAAAAABwO4pSAAAAAAAAcLtqXZSaPn26TCaTw6dNmzblzrNkyRK1adNGvr6+6tixo77++ms3ZQsAAAAAAABnVeuilCS1b99eR48etX82bNhQZuzGjRs1bNgwjRkzRtu2bdPgwYM1ePBg/fLLL27MGAAAAAAAAOdS7YtS9erVU0REhP3TuHHjMmPnzp2ra665Rg8//LDatm2rJ598Ul27dtVrr73mxowBAAAAAABwLtX+7Xv79u1TZGSkfH19FRsbq1mzZqlZs2alxm7atEmTJ092GBcXF6elS5eWu4z8/Hzl5+fbh61Wq6TTb4wofmvEudhsNhmG4VT8sWPH7MsoS1JSkmy2IplMhkym0ts0mQx5eXmdd4wr2/L08sqKrQm51/Tlnd3/tW39asLyirdBbV2/4jiTyVTu8dYwjP/e8u2J9av8Mahyy6te28bT34WK/Cwuz/nODwAAAOdU66JU9+7dlZCQoNatW+vo0aOaMWOGevXqpV9++UVBQUEl4lNSUhQeHu4wLjw8XCkpKeUuZ9asWZoxY0aJ8enp6crLy3MqV5vNpszMTBnG6ZPpsmRmZurFF+crK6ug3PYKCvIUHOynpk1PKDAwsNSY4OAieXm1UkzMSVksaZWOcWVbnl5e48ant8HZFwHWhNxr/vJsDv1f+9avJizPpoAAmzp3bqXmzWvj+kl5eVnKyYlSVlaW0tJKj8vKylLLllEKCMiSr6871y9XjRtnVPoYVPHlVa9tUx2+C87+LD6XrKysSs8LAAAA51XrolR8fLz9/506dVL37t0VHR2tjz76SGPGjHHZcqZMmeJwhZXValVUVJRCQ0NlsVicasNms8lkMik0NLTcE+Hs7Gxt3fq7zOZJ8vOLKjMuI+MH7d07SwUFvmrcOKzUmGPHvLVjx2+y2fzPK8aVbXlyeaGhYTKZTPrjj1AZhtd5tVXb+6oqlnf6Kp3/9X9tW7+asDyTyabgYC9t3/6biopq3/pJUk5OtjIyDisoKEhhYaXHZWdna9++wwoJCVJAgPvWzzD8FBwcUuljUEWXV922TXX4Ljj7s/hcfH19Kz0vAAAAnFeti1JnCwkJUatWrbR///5Sp0dERCg1NdVhXGpqqiIiIspt12w2y2w2lxjv5eVVoZNak8l0znmKbzXw9W0mf/+Lyow7eTL5v7chmEr8clPMMEwuiXFlW55e3v/+9Trvttyde21Y3pn9XxvXj+VVj+UV355X1rG2+DjrmfWr/DGocsurXtumOnwXnPlZfC7nMy8AAACcV6POurKzs3XgwAE1adKk1OmxsbFatWqVw7iVK1cqNjbWHekBAAAAAADASdW6KPXQQw9p3bp1OnTokDZu3Ki//e1v8vb21rBhwyRJI0aM0JQpU+zxDzzwgJYtW6bZs2drz549mj59un7++WdNmDDBU6sAAAAAAACAUlTr2/f++OMPDRs2TMePH1doaKh69uypzZs3KzQ0VJKUnJzscIn95ZdfrkWLFumJJ57Q448/rpYtW2rp0qXq0KGDp1YBAAAAAAAApajWRanFixeXO33t2rUlxg0dOlRDhw6toowAAAAAAADgCtX69j0AAAA4Wr9+vQYNGqTIyEiZTCYtXbrUYbphGJo6daqaNGkiPz8/9e/fX/v27XOIOXHihG6//XZZLBaFhIRozJgxys7OdojZsWOHevXqJV9fX0VFRen555+v6lUDAAB1DEUpAACAGiQnJ0edO3fWvHnzSp3+/PPP65VXXtGCBQv0ww8/KCAgQHFxccrLy7PH3H777dq1a5dWrlypL7/8UuvXr9fdd99tn261WjVgwABFR0dry5YteuGFFzR9+nT961//qvL1AwAAdUe1vn0PAAAAjuLj4xUfH1/qNMMw9PLLL+uJJ57QDTfcIEl67733FB4erqVLl+rWW2/V7t27tWzZMv3000+65JJLJEmvvvqqrr32Wr344ouKjIzUv//9b506dUrvvPOOfHx81L59eyUmJuqll15yKF4BAACcD66UAgAAqCUOHjyolJQU9e/f3z4uODhY3bt316ZNmyRJmzZtUkhIiL0gJUn9+/eXl5eXfvjhB3vMlVdeKR8fH3tMXFyc9u7dq7/++stNawMAAGo7rpQCAACoJVJSUiRJ4eHhDuPDw8Pt01JSUhQWFuYwvV69emrYsKFDTExMTIk2iqc1aNCgxLLz8/OVn59vH7ZarZIkm80mm812PqsFoAYq3u85BgB1k7P7PUUpAAAAnLdZs2ZpxowZJcanp6c7PM8KQN1QfFXlX3/9pbS0NA9nA8DdsrKynIqjKAUAAFBLRERESJJSU1PVpEkT+/jU1FR16dLFHnP2L4iFhYU6ceKEff6IiAilpqY6xBQPF8ecbcqUKZo8ebJ92Gq1KioqSqGhobJYLOe3YgBqnOIrKhs0aFDi6kwAtZ+vr69TcRSlAAAAaomYmBhFRERo1apV9iKU1WrVDz/8oHHjxkmSYmNjlZGRoS1btqhbt26SpNWrV8tms6l79+72mH/84x8qKChQ/fr1JUkrV65U69atS711T5LMZrPMZnOJ8V5eXvLy4jGmQF1TvN9zDADqJmf3e44OAAAANUh2drYSExOVmJgo6fTDzRMTE5WcnCyTyaSJEyfqqaee0ueff66dO3dqxIgRioyM1ODBgyVJbdu21TXXXKO77rpLP/74o77//ntNmDBBt956qyIjIyVJt912m3x8fDRmzBjt2rVLH374oebOnetwJRQAAMD54kopAACAGuTnn39W37597cPFhaKRI0cqISFBjzzyiHJycnT33XcrIyNDPXv21LJlyxwuo//3v/+tCRMmqF+/fvLy8tKQIUP0yiuv2KcHBwdrxYoVGj9+vLp166bGjRtr6tSpuvvuu923ogAAoNajKAUAAFCD9OnTR4ZhlDndZDJp5syZmjlzZpkxDRs21KJFi8pdTqdOnfTdd99VOk8AAIBz4fY9AAAAAAAAuB1FKQAAAAAAALgdRSkAAAAAAAC4HUUpAAAAAAAAuB1FKQAAAAAAALgdRSkAAAAAAAC4HUUpAAAAAAAAuB1FKQAAAAAAALgdRSkAAAAAAAC4HUUpAAAAAAAAuB1FKQAAAAAAALgdRSkAAAAAAAC4XT1PJwAAQEUUFOQrKSmpzOlJSUkqLCx0Y0YAAAAAKoOiFACgxjh16riSkn7Xffc9K7PZXGpMfn6ODh9OVXBwvpuzAwAAAFARFKUAADVGUVG2Cgt95OMzSSEhrUqN+euvzSosfFqFhUVuzg4AAABARVCUAgDUOL6+TRUQcFGp03Jzy761DwAAAED1wYPOAQAAAAAA4HbVuig1a9YsXXrppQoKClJYWJgGDx6svXv3ljtPQkKCTCaTw8fX19dNGQMAAAAAAMAZ1bootW7dOo0fP16bN2/WypUrVVBQoAEDBignJ6fc+SwWi44ePWr/lPeWJgAAAAAAALhftX6m1LJlyxyGExISFBYWpi1btujKK68scz6TyaSIiIiqTg8AAAAAAACVVK2LUmfLzMyUJDVs2LDcuOzsbEVHR8tms6lr16565pln1L59+zLj8/PzlZ//v1eHW61WSZLNZpPNZnMqN5vNJsMwzhlvGMZ/bys0ZDKVHWsyGfLy8io3zlUxtWl5ZcXWhNxr+vLO7v/atn41YXnF26C2rl/NWF7lj0Gez73mLc9kMjn87HX2Z/G5nO/8AAAAcE6NKUrZbDZNnDhRV1xxhTp06FBmXOvWrfXOO++oU6dOyszM1IsvvqjLL79cu3btUtOmTUudZ9asWZoxY0aJ8enp6crLy3M6v8zMTBnG6ZPpsmRlZallyygFBGTJ1zetzLjg4CJ5ebVSTMxJWSylx7kqpjYtr3Hj09vg7DtTa0LuNX95Nof+r33rVxOWZ1NAgE2dO7dS8+a1cf2q+/Jy1bhxRqWPQZ7NveYtLy8vSzk5UcrKylJa2uk4Z38Wn0tWVlal5wUAAIDzakxRavz48frll1+0YcOGcuNiY2MVGxtrH7788svVtm1bvfHGG3ryySdLnWfKlCmaPHmyfdhqtSoqKkqhoaGyWCxO5Wez2WQymRQaGlruiXB2drb27TuskJAgBQSElRl37Ji3duz4TTabvxo3Lj3OVTG1ZXmhoWEymUz6449QGYbXebVV2/uqKpZ3+iqd//V/bVu/mrA8k8mm4GAvbd/+m4qKat/6VfflGYafgoNDKn0M8mTuNXF5OTnZysg4bH8ZiuT8z+Jz4QUpAAAA7lEjilITJkzQl19+qfXr15d5tVNZ6tevr4svvlj79+8vM8ZsNstsNpcY7+XlVaGTWpPJdM55im81MAxTiV9azmQYpv/ehlB2nKtiatPy/vev13m35e7ca8Pyzuz/2rh+LI/lnTum8scgz+de85ZXfEv8mT93nflZfC7nMy8AAACcV63PugzD0IQJE/Tpp59q9erViomJqXAbRUVF2rlzp5o0aVIFGQIAAAAAAKAyqvWVUuPHj9eiRYv02WefKSgoSCkpKZKk4OBg+fn5SZJGjBihCy64QLNmzZIkzZw5Uz169FCLFi2UkZGhF154QUlJSRo7dqzH1gMAAAAAAACOqnVRav78+ZKkPn36OIxfuHChRo0aJUlKTk52uMz+r7/+0l133aWUlBQ1aNBA3bp108aNG9WuXTt3pQ0AAAAAAIBzqNZFqdNvMCrf2rVrHYbnzJmjOXPmVFFGAAAAAAAAcIVq/UwpAAAAAAAA1E4UpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB2FKUAAAAAAADgdhSlAAAAAAAA4HYUpQAAAAAAAOB29TydAAAAAADA806ePKk9e/a4pK3idvbs2SMvL9dcC9GmTRv5+/u7pC0A1QNFKQAAAACA9uzZo27durm0zeHDh7usrS1btqhr164uaw+A51GUAgAAAACoTZs22rJli0vaOnnypLZv367OnTu77OqmNm3auKQdANUHRSkAAACUat68eXrhhReUkpKizp0769VXX9Vll13m6bQAVBF/f3+XXYlks9nUokULhYWFuez2PQC1D0cHAAAAlPDhhx9q8uTJmjZtmrZu3arOnTsrLi5OaWlpnk4NAADUEhSlAAAAUMJLL72ku+66S6NHj1a7du20YMEC+fv765133vF0agAAoJbg9j0AAAA4OHXqlLZs2aIpU6bYx3l5eal///7atGlTqfPk5+crPz/fPmy1WiWdvoXHZrNVbcIAqh2bzSbDMNj/gTrK2X2fohQAAAAcHDt2TEVFRQoPD3cYHx4eXubr4mfNmqUZM2aUGJ+enq68vLwqyRNA9WWz2ZSZmSnDMHimFFAHZWVlORVHUQoAAADnbcqUKZo8ebJ92Gq1KioqSqGhobJYLB7MDIAn2Gw2mUwmhYaGUpQC6iBfX1+n4ihKAQAAwEHjxo3l7e2t1NRUh/GpqamKiIgodR6z2Syz2VxivJeXF7+QAnWUyWTiGADUUc7u9xwdAAAA4MDHx0fdunXTqlWr7ONsNptWrVql2NhYD2YGAABqkxpRlJo3b56aN28uX19fde/eXT/++GO58UuWLFGbNm3k6+urjh076uuvv3ZTpgAAALXD5MmT9eabb+rdd9/V7t27NW7cOOXk5Gj06NGeTg0AANQS1b4o9eGHH2ry5MmaNm2atm7dqs6dOysuLk5paWmlxm/cuFHDhg3TmDFjtG3bNg0ePFiDBw/WL7/84ubMAQAAaq5bbrlFL774oqZOnaouXbooMTFRy5YtK/HwcwAAgMqq9kWpl156SXfddZdGjx6tdu3aacGCBfL399c777xTavzcuXN1zTXX6OGHH1bbtm315JNPqmvXrnrttdfcnDkAAEDNNmHCBCUlJSk/P18//PCDunfv7umUAABALVKtH3R+6tQpbdmyRVOmTLGP8/LyUv/+/bVp06ZS59m0aZPDm18kKS4uTkuXLi1zOfn5+crPz7cPZ2ZmSpIyMjJks9mcytVms8lqtcrHx6fcB3pZrVbZbIXKzt6toiJrmXG5uQdkMhnKzd0rq7WwSmNq0/KysrJktR6VYdS83Gv68kwmOfR/bVu/mrA8k0mqX/+PWrt+NWF5WVkZlT4GeTr3mre8P2WzFcpqtSojI0OS8z+Lz8VqPf3z2Th7Q6JCivuvuD8B1C02m01ZWVny9fXlQedAHeT0+ZRRjf3555+GJGPjxo0O4x9++GHjsssuK3We+vXrG4sWLXIYN2/ePCMsLKzM5UybNs2QxIcPHz58+PDhY/8cPnz4/E9m6rDDhw97fBvy4cOHDx8+fDz7Odf5VLW+UspdpkyZ4nB1lc1m04kTJ9SoUSOZTCan2rBarYqKitLhw4dlsViqKlWUg23gWfS/57ENPIv+9zxXbQPDMJSVlaXIyEgXZlf3REZG6vDhwwoKCnL6fApA7cHPRaBuc/Z8qloXpRo3bixvb2+lpqY6jE9NTVVERESp80RERFQoXpLMZrPMZrPDuJCQkErlbLFYOOh6GNvAs+h/z2MbeBb973mu2AbBwcEuyqbu8vLyUtOmTT2dBgAP4+ciUHc5cz5VrW/u9fHxUbdu3bRq1Sr7OJvNplWrVik2NrbUeWJjYx3iJWnlypVlxgMAAAAAAMD9qvWVUpI0efJkjRw5Updccokuu+wyvfzyy8rJydHo0aMlSSNGjNAFF1ygWbNmSZIeeOAB9e7dW7Nnz9bAgQO1ePFi/fzzz/rXv/7lydUAAAAAAADAGap9UeqWW25Renq6pk6dqpSUFHXp0kXLli1TeHi4JCk5OdnhbQ6XX365Fi1apCeeeEKPP/64WrZsqaVLl6pDhw5VmqfZbNa0adNK3AYI92EbeBb973lsA8+i/z2PbQAA1QfHZADOMBkG7zsGAAAAAACAe1XrZ0oBAAAAAACgdqIoBQAAAAAAALejKAUAAAAAAAC3oygFAAAAAAAAt6Mo5SLz5s1T8+bN5evrq+7du+vHH3/0dEo10vr16zVo0CBFRkbKZDJp6dKlDtMNw9DUqVPVpEkT+fn5qX///tq3b59DzIkTJ3T77bfLYrEoJCREY8aMUXZ2tkPMjh071KtXL/n6+ioqKkrPP/98Va9ajTBr1ixdeumlCgoKUlhYmAYPHqy9e/c6xOTl5Wn8+PFq1KiRAgMDNWTIEKWmpjrEJCcna+DAgfL391dYWJgefvhhFRYWOsSsXbtWXbt2ldlsVosWLZSQkFDVq1ftzZ8/X506dZLFYpHFYlFsbKy++eYb+3T63v2effZZmUwmTZw40T6O7VC1pk+fLpPJ5PBp06aNfTr9DwDV27nO5wHgTBSlXODDDz/U5MmTNW3aNG3dulWdO3dWXFyc0tLSPJ1ajZOTk6POnTtr3rx5pU5//vnn9corr2jBggX64YcfFBAQoLi4OOXl5dljbr/9du3atUsrV67Ul19+qfXr1+vuu++2T7darRowYICio6O1ZcsWvfDCC5o+fbr+9a9/Vfn6VXfr1q3T+PHjtXnzZq1cuVIFBQUaMGCAcnJy7DGTJk3SF198oSVLlmjdunU6cuSIbrzxRvv0oqIiDRw4UKdOndLGjRv17rvvKiEhQVOnTrXHHDx4UAMHDlTfvn2VmJioiRMnauzYsVq+fLlb17e6adq0qZ599llt2bJFP//8s6666irdcMMN2rVrlyT63t1++uknvfHGG+rUqZPDeLZD1Wvfvr2OHj1q/2zYsME+jf4HgOrtXOfzAODAwHm77LLLjPHjx9uHi4qKjMjISGPWrFkezKrmk2R8+umn9mGbzWZEREQYL7zwgn1cRkaGYTabjf/85z+GYRjGr7/+akgyfvrpJ3vMN998Y5hMJuPPP/80DMMwXn/9daNBgwZGfn6+PebRRx81WrduXcVrVPOkpaUZkox169YZhnG6v+vXr28sWbLEHrN7925DkrFp0ybDMAzj66+/Nry8vIyUlBR7zPz58w2LxWLv80ceecRo3769w7JuueUWIy4urqpXqcZp0KCB8dZbb9H3bpaVlWW0bNnSWLlypdG7d2/jgQceMAyDfcAdpk2bZnTu3LnUafQ/ANQsZ5/PA8DZuFLqPJ06dUpbtmxR//797eO8vLzUv39/bdq0yYOZ1T4HDx5USkqKQ18HBwere/fu9r7etGmTQkJCdMkll9hj+vfvLy8vL/3www/2mCuvvFI+Pj72mLi4OO3du1d//fWXm9amZsjMzJQkNWzYUJK0ZcsWFRQUOGyDNm3aqFmzZg7boGPHjgoPD7fHxMXFyWq12q/42bRpk0MbxTHsM/9TVFSkxYsXKycnR7GxsfS9m40fP14DBw4s0VdsB/fYt2+fIiMjdeGFF+r2229XcnKyJPofAACgtqEodZ6OHTumoqIih5NfSQoPD1dKSoqHsqqdivuzvL5OSUlRWFiYw/R69eqpYcOGDjGltXHmMiDZbDZNnDhRV1xxhTp06CDpdP/4+PgoJCTEIfbsbXCu/i0rxmq1Kjc3typWp8bYuXOnAgMDZTabdc899+jTTz9Vu3bt6Hs3Wrx4sbZu3apZs2aVmMZ2qHrdu3dXQkKCli1bpvnz5+vgwYPq1auXsrKy6H8AAIBapp6nEwBQPY0fP16//PKLw7NcUPVat26txMREZWZm6uOPP9bIkSO1bt06T6dVZxw+fFgPPPCAVq5cKV9fX0+nUyfFx8fb/9+pUyd1795d0dHR+uijj+Tn5+fBzAAAAOBqXCl1nho3bixvb+8Sb/5JTU1VRESEh7KqnYr7s7y+joiIKPGA+cLCQp04ccIhprQ2zlxGXTdhwgR9+eWXWrNmjZo2bWofHxERoVOnTikjI8Mh/uxtcK7+LSvGYrHU+V86fXx81KJFC3Xr1k2zZs1S586dNXfuXPreTbZs2aK0tDR17dpV9erVU7169bRu3Tq98sorqlevnsLDw9kObhYSEqJWrVpp//797AcAAAC1DEWp8+Tj46Nu3bpp1apV9nE2m02rVq1SbGysBzOrfWJiYhQREeHQ11arVT/88IO9r2NjY5WRkaEtW7bYY1avXi2bzabu3bvbY9avX6+CggJ7zMqVK9W6dWs1aNDATWtTPRmGoQkTJujTTz/V6tWrFRMT4zC9W7duql+/vsM22Lt3r5KTkx22wc6dOx2KgytXrpTFYlG7du3sMWe2URzDPlOSzWZTfn4+fe8m/fr1086dO5WYmGj/XHLJJbr99tvt/2c7uFd2drYOHDigJk2asB8AAADUNp5+0nptsHjxYsNsNhsJCQnGr7/+atx9991GSEiIw5t/4JysrCxj27ZtxrZt2wxJxksvvWRs27bNSEpKMgzDMJ599lkjJCTE+Oyzz4wdO3YYN9xwgxETE2Pk5uba27jmmmuMiy++2Pjhhx+MDRs2GC1btjSGDRtmn56RkWGEh4cbw4cPN3755Rdj8eLFhr+/v/HGG2+4fX2rm3HjxhnBwcHG2rVrjaNHj9o/J0+etMfcc889RrNmzYzVq1cbP//8sxEbG2vExsbapxcWFhodOnQwBgwYYCQmJhrLli0zQkNDjSlTpthjfv/9d8Pf3994+OGHjd27dxvz5s0zvL29jWXLlrl1faubxx57zFi3bp1x8OBBY8eOHcZjjz1mmEwmY8WKFYZh0Peecubb9wyD7VDVHnzwQWPt2rXGwYMHje+//97o37+/0bhxYyMtLc0wDPofAKq7c53PA8CZKEq5yKuvvmo0a9bM8PHxMS677DJj8+bNnk6pRlqzZo0hqcRn5MiRhmEYhs1mM/75z38a4eHhhtlsNvr162fs3bvXoY3jx48bw4YNMwIDAw2LxWKMHj3ayMrKcojZvn270bNnT8NsNhsXXHCB8eyzz7prFau10vpekrFw4UJ7TG5urnHvvfcaDRo0MPz9/Y2//e1vxtGjRx3aOXTokBEfH2/4+fkZjRs3Nh588EGjoKDAIWbNmjVGly5dDB8fH+PCCy90WEZddeeddxrR0dGGj4+PERoaavTr189ekDIM+t5Tzi5KsR2q1i233GI0adLE8PHxMS644ALjlltuMfbv32+fTv8DQPV2rvN5ADiTyTAMw91XZwEAAAAAAKBu45lSAAAAAAAAcDuKUgAAAAAAAHA7ilIAAAAAAABwO4pSAAAAAAAAcDuKUgAAAAAAAHA7ilIAAAAAAABwO4pSAAAAAAAAcDuKUgDqHJPJpKVLl0qSDh06JJPJpMTERI/mBAAAAAB1TT1PJwAAVWHUqFHKyMiwF5/OdPToUTVo0MD9SQEAAAAA7ChKAahzIiIiPJ0CAAAAANR53L4HoM458/a9sxUVFenOO+9UmzZtlJycLEn67LPP1LVrV/n6+urCCy/UjBkzVFhYKEkyDEPTp09Xs2bNZDabFRkZqfvvv99dqwIAAAAANRZXSgHAf+Xn52vYsGE6dOiQvvvuO4WGhuq7777TiBEj9Morr6hXr146cOCA7r77bknStGnT9H//93+aM2eOFi9erPbt2yslJUXbt2/38JoAAAAAQPVHUQoAJGVnZ2vgwIHKz8/XmjVrFBwcLEmaMWOGHnvsMY0cOVKSdOGFF+rJJ5/UI488omnTpik5OVkRERHq37+/6tevr2bNmumyyy7z5KoAAAAAQI3A7XsAIGnYsGHKycnRihUr7AUpSdq+fbtmzpypwMBA++euu+7S0aNHdfLkSQ0dOlS5ubm68MILddddd+nTTz+139oHAAAAACgbRSkAkHTttddqx44d2rRpk8P47OxszZgxQ4mJifbPzp07tW/fPvn6+ioqKkp79+7V66+/Lj8/P91777268sorVVBQ4KE1AQAAAICagdv3AEDSuHHj1KFDB11//fX66quv1Lt3b0lS165dtXfvXrVo0aLMef38/DRo0CANGjRI48ePV5s2bbRz50517drVXekDAAAAQI1DUQpArZWZmanExESHcY0aNSoz/r777lNRUZGuu+46ffPNN+rZs6emTp2q6667Ts2aNdNNN90kLy8vbd++Xb/88oueeuopJSQkqKioSN27d5e/v78++OAD+fn5KTo6uorXDgAAAABqNopSAGqttWvX6uKLL3YYN2bMmHLnmThxomw2m6699lotW7ZMcXFx+vLLLzVz5kw999xzql+/vtq0aaOxY8dKkkJCQvTss89q8uTJKioqUseOHfXFF1+UW/wCAAAAAEgmwzAMTycBAAAAAACAuoUHnQMAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAQAAAAAAwO0oSgEAAAAAAMDtKEoBAAAAAADA7ShKAXXE9OnTZTKZ3LKsPn36qE+fPvbhtWvXymQy6eOPP3bL8keNGqXmzZu7ZVmVlZ2drbFjxyoiIkImk0kTJ0487zaLt/GxY8fOP0EAAFBrmEwmTZ8+3dNpOPjpp590+eWXKyAgQCaTSYmJiefdZvPmzXXdddedf3IA3IaiFFADJSQkyGQy2T++vr6KjIxUXFycXnnlFWVlZblkOUeOHNH06dNdcpLgatU5N2c888wzSkhI0Lhx4/T+++9r+PDhZcaeOnVKc+fO1cUXXyyLxaKQkBC1b99ed999t/bs2ePGrAEAwJnOPiczmUwKCwtT37599c0333g6vfP266+/avr06Tp06JBL2y0oKNDQoUN14sQJzZkzR++//76io6PLjD906JBGjx6tiy66SL6+voqIiNCVV16padOmuTQvAO5Xz9MJAKi8mTNnKiYmRgUFBUpJSdHatWs1ceJEvfTSS/r888/VqVMne+wTTzyhxx57rELtHzlyRDNmzFDz5s3VpUsXp+dbsWJFhZZTGeXl9uabb8pms1V5Dudj9erV6tGjh1MnU0OGDNE333yjYcOG6a677lJBQYH27NmjL7/8UpdffrnatGnjhowBAEBZis/JDMNQamqqEhISdO211+qLL76o0Vfu/Prrr5oxY4b69Onj0qvQDxw4oKSkJL355psaO3ZsubH79+/XpZdeKj8/P915551q3ry5jh49qq1bt+q5557TjBkzXJYXAPejKAXUYPHx8brkkkvsw1OmTNHq1at13XXX6frrr9fu3bvl5+cnSapXr57q1avaXf7kyZPy9/eXj49PlS7nXOrXr+/R5TsjLS1N7dq1O2fcTz/9pC+//FJPP/20Hn/8cYdpr732mjIyMqoow9IZhqG8vDz79woAAJQ8JxszZozCw8P1n//8p0YXpapKWlqaJCkkJOScsXPmzFF2drYSExNLXE1V3I475eXlycfHR15e3HQEuAJ7ElDLXHXVVfrnP/+ppKQkffDBB/bxpT1TauXKlerZs6dCQkIUGBio1q1b2wsfa9eu1aWXXipJGj16tP2S9ISEBEmnnxvVoUMHbdmyRVdeeaX8/f3t8579TKliRUVFevzxxxUREaGAgABdf/31Onz4sENM8+bNNWrUqBLzntnmuXIr7ZlSOTk5evDBBxUVFSWz2azWrVvrxRdflGEYDnEmk0kTJkzQ0qVL1aFDB5nNZrVv317Lli0rvcPPkpaWZj8R9fX1VefOnfXuu+/apxc/X+vgwYP66quv7LmXdVn8gQMHJElXXHFFiWne3t5q1KhRifEZGRkaNWqUQkJCFBwcrNGjR+vkyZMOMQsXLtRVV12lsLAwmc1mtWvXTvPnzy/RVvGzGZYvX65LLrlEfn5+euONN+zLmThxor1PW7Rooeeee67EVWqLFy9Wt27dFBQUJIvFoo4dO2ru3LnldyQAADVYSEiI/Pz8SvxB8FznI7m5uWrTpo3atGmj3Nxc+3wnTpxQkyZNdPnll6uoqEjS6fOdwMBA/f7774qLi1NAQIAiIyM1c+bMEuc3pdm2bZvi4+NlsVgUGBiofv36afPmzfbpCQkJGjp0qCSpb9++9nOWtWvXltvu6tWr1atXLwUEBCgkJEQ33HCDdu/ebZ8+atQo9e7dW5I0dOhQmUymUs8bix04cEBNmzYt9fa+sLCwUufZsGGDLrvsMvn6+urCCy/Ue++95zD9xIkTeuihh9SxY0cFBgbKYrEoPj5e27dvd4grPm9bvHixnnjiCV1wwQXy9/eX1WqVJP3www+65pprFBwcLH9/f/Xu3Vvff/+9QxtZWVmaOHGimjdvLrPZrLCwMF199dXaunVr2Z0I1CFcKQXUQsOHD9fjjz+uFStW6K677io1ZteuXbruuuvUqVMnzZw5U2azWfv377f/IG3btq1mzpypqVOn6u6771avXr0kSZdffrm9jePHjys+Pl633nqr7rjjDoWHh5eb19NPPy2TyaRHH31UaWlpevnll9W/f38lJiZW6MobZ3I7k2EYuv7667VmzRqNGTNGXbp00fLly/Xwww/rzz//1Jw5cxziN2zYoE8++UT33nuvgoKC9Morr2jIkCFKTk4utQhULDc3V3369NH+/fs1YcIExcTEaMmSJRo1apQyMjL0wAMPqG3btnr//fc1adIkNW3aVA8++KAkKTQ0tNQ2i0/A/v3vf+uKK65w6mq3m2++WTExMZo1a5a2bt2qt956S2FhYXruuefsMfPnz1f79u11/fXXq169evriiy907733ymazafz48Q7t7d27V8OGDdPf//533XXXXWrdurVOnjyp3r17688//9Tf//53NWvWTBs3btSUKVN09OhRvfzyy5JOFz6HDRumfv362Ze/e/duff/993rggQfOuS4AANQEmZmZOnbsmAzDUFpaml599VVlZ2frjjvusMc4cz7i5+end999V1dccYX+8Y9/6KWXXpIkjR8/XpmZmUpISJC3t7e9zaKiIl1zzTXq0aOHnn/+eS1btkzTpk1TYWGhZs6cWWa+u3btUq9evWSxWPTII4+ofv36euONN9SnTx+tW7dO3bt315VXXqn7779fr7zyih5//HG1bdtWkuz/lubbb79VfHy8LrzwQk2fPl25ubl69dVXdcUVV2jr1q1q3ry5/v73v+uCCy7QM888o/vvv1+XXnppueeQ0dHR+vbbb7V69WpdddVV59wW+/fv10033aQxY8Zo5MiReueddzRq1Ch169ZN7du3lyT9/vvvWrp0qYYOHaqYmBilpqbqjTfeUO/evfXrr78qMjLSoc0nn3xSPj4+euihh5Sfny8fHx+tXr1a8fHx6tatm6ZNmyYvLy/7H/2+++47XXbZZZKke+65Rx9//LEmTJigdu3a6fjx49qwYYN2796trl27nnN9gFrPAFDjLFy40JBk/PTTT2XGBAcHGxdffLF9eNq0acaZu/ycOXMMSUZ6enqZbfz000+GJGPhwoUlpvXu3duQZCxYsKDUab1797YPr1mzxpBkXHDBBYbVarWP/+ijjwxJxty5c+3joqOjjZEjR56zzfJyGzlypBEdHW0fXrp0qSHJeOqppxzibrrpJsNkMhn79++3j5Nk+Pj4OIzbvn27Icl49dVXSyzrTC+//LKh/2/vvuOjqPb/j793Q7Kpm5CeCMSoiIIUQUVUmiABuSrCvRZQAVEswQIWLlZAryjYFfV6fwp6FetVRFSkSFGJDcSIKAaEIJKEUJJNCKk7vz80+2VTF9jMJpvXM488YGfOzPmcMzO7k8/OnJGM1157zTWtvLzc6NOnjxEeHu7W9pSUFGP48OENrs8wDMPpdLr6OiEhwbj88suNuXPnGtnZ2bXKVm/jq6++2m36xRdfbMTExLhNKykpqbV8Wlqacdxxx7lNS0lJMSQZS5YscZv+wAMPGGFhYcavv/7qNv2f//ynERAQYOzYscMwDMO45ZZbDLvdblRWVjbaVgAAWprqc7KavzabzZg/f75b2cM5H5k2bZphtVqNNWvWGO+8844hyXjyySfdlhs7dqwhybjppptc05xOpzF8+HAjKCjI7RxPknH//fe7Xo8YMcIICgoytm7d6pq2a9cuIyIiwujXr59rWnXdK1eu9Kg/evToYcTHxxt79+51Tfvhhx8Mq9VqXHXVVa5p1eeG77zzTqPr3LhxoxESEmJIMnr06GHccsstxsKFC40DBw7UKlt93rJmzRrXtN27dxs2m8247bbbXNNKS0uNqqoqt2W3bdtm2Gw2Y+bMmbXiPO6449zOnZxOp9GxY0cjLS3NcDqdruklJSVGamqqcd5557mmRUZGGunp6Y22E2ituH0P8FPh4eENPoWv+h7+Dz744IgHBbfZbBo/frzH5a+66ipFRES4Xv/9739XUlKSPv744yOq31Mff/yxAgICdPPNN7tNv+2222QYRq2n4wwePFjHH3+863W3bt1kt9v122+/NVpPYmKiLr/8cte0wMBA3XzzzSouLtbq1asPO3aLxaJPP/1UDz74oNq2bas33nhD6enpSklJ0aWXXlrnmFLXX3+92+u+fftq7969rkvNJbldmVb97W7//v3122+/qbCw0G351NRUpaWluU1755131LdvX7Vt21Z79uxx/Q4ePFhVVVVas2aNpD/3swMHDmjZsmWH3XYAAFqKuXPnatmyZVq2bJlee+01DRw4UNdcc43ee+89V5nDOR+ZPn26unTporFjx+rGG29U//79ay1XbdKkSa7/Vw9DUF5eruXLl9dZvqqqSkuXLtWIESN03HHHuaYnJSVp9OjR+uKLL9zOGTyVk5OjDRs2aNy4cYqOjnZN79atm84777wjPt/r0qWLNmzYoCuuuELbt2/XU089pREjRighIUH/+c9/apXv3Lmz6yp66c+r0Tt16uR2Hmez2VxjQlVVVWnv3r2uoSzquq1u7NixbudOGzZsUFZWlkaPHq29e/e6zoMOHDigQYMGac2aNa7z66ioKH399dfatWvXEbUf8HckpQA/VVxc7JYAqunSSy/V2WefrWuuuUYJCQm67LLL9Pbbbx9WguqYY445rEHNO3bs6PbaYrHohBNO8PpjhmvKzs5WcnJyrf6ovvw8OzvbbXqHDh1qraNt27bav39/o/V07Nix1sCX9dXjKZvNprvvvls///yzdu3apTfeeENnnnmm3n77bbcT0frib9u2rSS5xf/ll19q8ODBrvEe4uLiXGOC1ZWUqikrK0tLlixRXFyc2+/gwYMl/d/AozfeeKNOPPFEDRs2TO3atdPVV1/t8fhcAAC0FGeccYYGDx6swYMHa8yYMfroo4/UuXNnV4JIOrzzkaCgIL388svatm2bioqKNG/evFpjg0qS1Wp1SyxJ0oknnihJ9Z5f5efnq6SkRJ06dao17+STT5bT6aw15qcnquOvb73VSZsjceKJJ+q///2v9uzZo8zMTD300ENq06aNJk6cWCv55sl5nNPp1BNPPKGOHTvKZrMpNjZWcXFxyszMrHUeJNU+F8rKypL0Z7Kq5rnQ//t//09lZWWu9cyePVsbN25U+/btdcYZZ2j69OmNftEJtCYkpQA/tHPnThUWFuqEE06ot0xISIjWrFmj5cuX68orr1RmZqYuvfRSnXfeea4BNBvTFE9gq+uES5LHMXnDoWM1HMrwYNDQppaUlKTLLrtMa9asUceOHfX222+rsrLSrUxj8W/dulWDBg3Snj179Pjjj+ujjz7SsmXLNHnyZEmqlZisazs7nU6dd955rm+Fa/6OGjVK0p8DkG7YsEGLFi1yjaMxbNgwjR079qj7AgCA5spqtWrgwIHKyclxJTAO16effirpz6e9Hek6/E1AQIC6du2qadOm6f3335f057ibNcvU5dDzuIceekhTpkxRv3799Nprr+nTTz/VsmXL1KVLlzq/oK15LlRdZs6cOfWeC4WHh0v6c6zP3377Tc8884ySk5M1Z84cdenSpdaV+kBrxUDngB/673//K0m1brmqyWq1atCgQRo0aJAef/xxPfTQQ7r77ru1cuVKDR48uN4E0ZGqeUJlGIa2bNmibt26uaa1bdu2zlvSsrOz3b4JPJzYqgfILCoqcvt28pdffnHN94aUlBRlZmbK6XS6XS3l7XqkP28L7Natm7KysrRnzx4lJiZ6vOyHH36osrIyLVq0yO3bxJUrV3q8juOPP17FxcWuK6MaEhQUpAsuuEAXXHCBnE6nbrzxRv373//Wvffe22DiFACAlqz6S6Pi4mJJh3c+kpmZqZkzZ2r8+PHasGGDrrnmGv3444+KjIx0q8PpdOq3335zXR0lSb/++qsk1XoScbW4uDiFhoZq8+bNteb98ssvslqtat++vaTDP9+SVO96Y2NjFRYW5vH6GnPaaadJ+vO2wcP17rvvauDAgXrppZfcphcUFCg2NrbR5auHebDb7R6dCyUlJenGG2/UjTfeqN27d6tnz57617/+pWHDhh127IC/4UopwM989tlneuCBB5SamqoxY8bUW27fvn21pvXo0UOSVFZWJkmuE4e6kkRH4tVXX3Ub5+rdd99VTk6O2wfy8ccfr6+++sp1qbskLV68uNZl5IcT2/nnn6+qqio9++yzbtOfeOIJWSwWr50QnH/++crNzdVbb73lmlZZWalnnnlG4eHhrscfH46srCzt2LGj1vSCggJlZGSobdu29T65rz7V3yAe+o1hYWGh5s2b5/E6LrnkEmVkZLi+xa0ZW/WJ+N69e93mWa1WVxKyej8DAMDfVFRUaOnSpQoKCnLdnufp+UhFRYXGjRun5ORkPfXUU5o/f77y8vJcVzTXdOj6DMPQs88+q8DAQA0aNKjO8gEBARoyZIg++OADt1v88vLytGDBAp1zzjmy2+2SDu98KykpST169NArr7ziVn7jxo1aunSpzj///EbXUZfPP/9cFRUVtaZXj1FV1+2CjQkICKh1Bfw777yjP/74w6Ple/XqpeOPP16PPvqoK+l4qPz8fEl/Xulf83bA+Ph4JScncx4E/IUrpYAW7JNPPtEvv/yiyspK5eXl6bPPPtOyZcuUkpKiRYsWKTg4uN5lZ86cqTVr1mj48OFKSUnR7t279dxzz6ldu3Y655xzJP2ZIIqKitILL7ygiIgIhYWFqXfv3nWOMeSJ6OhonXPOORo/frzy8vL05JNP6oQTTtC1117rKnPNNdfo3Xff1dChQ3XJJZdo69ateu2119wGHj/c2C644AINHDhQd999t7Zv367u3btr6dKl+uCDD3TrrbfWWveRmjhxov79739r3LhxWrdunY499li9++67+vLLL/Xkk082OMZXfX744QeNHj1aw4YNU9++fRUdHa0//vhDr7zyinbt2qUnn3yy3svU6zNkyBDX1UvXXXediouL9Z///Efx8fEef9t4xx13aNGiRfrb3/7meszygQMH9OOPP+rdd9/V9u3bFRsbq2uuuUb79u3Tueeeq3bt2ik7O1vPPPOMevTo0eAjpQEAaEmqz8mkP8dVXLBggbKysvTPf/7TleDx9HzkwQcf1IYNG7RixQpFRESoW7duuu+++3TPPffo73//u1tyJzg4WEuWLNHYsWPVu3dvffLJJ/roo4901113Nfil1YMPPqhly5bpnHPO0Y033qg2bdro3//+t8rKyjR79mxXuR49eiggIECPPPKICgsLZbPZdO655yo+Pr7O9c6ZM0fDhg1Tnz59NGHCBB08eFDPPPOMIiMjNX369CPq20ceeUTr1q3TyJEjXV9srV+/Xq+++qqio6N16623HvY6//a3v7muRDvrrLP0448/6vXXX681Pld9rFar/t//+38aNmyYunTpovHjx+uYY47RH3/8oZUrV8put+vDDz9UUVGR2rVrp7///e/q3r27wsPDtXz5cn377bd67LHHDjtuwC/57Ll/AI5YzccPBwUFGYmJicZ5551nPPXUU4bD4ai1zP33328cesivWLHCuOiii4zk5GQjKCjISE5ONi6//HLj119/dVvugw8+MDp37my0adPGkGTMmzfPMAzD6N+/v9GlS5c64+vfv7/Rv39/1+vqx+m+8cYbxrRp04z4+HgjJCTEGD58uJGdnV1r+ccee8w45phjDJvNZpx99tnGd999V2udDcU2duxYIyUlxa1sUVGRMXnyZCM5OdkIDAw0OnbsaMyZM8ftMb6G8ecjk+t6bG9KSooxduzYOtt7qLy8PGP8+PFGbGysERQUZHTt2tUVV831DR8+3KP1Pfzww0b//v2NpKQko02bNkbbtm2Nc88913j33XfdylZv40MfAW0Y/7e/bNu2zTVt0aJFRrdu3Yzg4GDj2GOPNR555BHj5ZdfrlWuoTiLioqMadOmGSeccIIRFBRkxMbGGmeddZbx6KOPGuXl5YZhGMa7775rDBkyxIiPjzeCgoKMDh06GNddd52Rk5PTaNsBAGjuap6TSTKCg4ONHj16GM8//3yt84zGzkfWrVtntGnTxrjpppvclqusrDROP/10Izk52di/f79hGH+e74SFhRlbt241hgwZYoSGhhoJCQnG/fffb1RVVbktL8m4//773aatX7/eSEtLM8LDw43Q0FBj4MCBxtq1a2u18T//+Y9x3HHHGQEBAYYkY+XKlQ32yfLly42zzz7bCAkJMex2u3HBBRcYmzZtcitTfW74zjvvNLguwzCML7/80khPTzdOOeUUIzIy0ggMDDQ6dOhgjBs3zti6datb2frOW2qeR5aWlhq33XabkZSUZISEhBhnn322kZGRUe85bH1xfv/998bIkSONmJgYw2azGSkpKcYll1xirFixwjAMwygrKzPuuOMOo3v37kZERIQRFhZmdO/e3XjuuecabTfQWlgMoxmM3AsAAAAA8Ni4ceP07rvv1nn7GAC0FIwpBQAAAAAAANORlAIAAAAAAIDpSEoBAAAAAADAdIwpBQAAAAAAANNxpRQAAAAAAABMR1IKAAAAAAAApiMpBQAAAAAAANO18XUAzZHT6dSuXbsUEREhi8Xi63AAAICJDMNQUVGRkpOTZbXy/d2R4nwKAIDWy9PzKZJSddi1a5fat2/v6zAAAIAP/f7772rXrp2vw2ixOJ8CAACNnU+RlKpDRESEpD87z263H/X6nE6n8vPzFRcX5/ffuNJW/0Rb/U9raadEW/1VU7bV4XCoffv2rvMBHBlvn08BaFla02cSgNo8PZ8iKVWH6kvM7Xa715JSpaWlstvtfv+GTFv9E231P62lnRJt9VdmtJVbzo6Ot8+nALQsrekzCUD9Gjuf4t0BAAAAAAAApiMpBQAAAAAAANORlAIAAAAAAIDpSEoBAAAAAADAdCSlAAAAAAAAYDqSUgAAAAAAADAdSSkAAIAWYtasWTr99NMVERGh+Ph4jRgxQps3b3YrU1paqvT0dMXExCg8PFyjRo1SXl6eW5kdO3Zo+PDhCg0NVXx8vO644w5VVla6lVm1apV69uwpm82mE044QfPnz2/q5gEAgFamxSWl1qxZowsuuEDJycmyWCxauHBhrTI///yzLrzwQkVGRiosLEynn366duzYYX6wAAAAXrR69Wqlp6frq6++0rJly1RRUaEhQ4bowIEDrjKTJ0/Whx9+qHfeeUerV6/Wrl27NHLkSNf8qqoqDR8+XOXl5Vq7dq1eeeUVzZ8/X/fdd5+rzLZt2zR8+HANHDhQGzZs0K233qprrrlGn376qantBQAA/q2NrwM4XAcOHFD37t119dVXu51gVdu6davOOeccTZgwQTNmzJDdbtdPP/2k4OBgH0QLAADgPUuWLHF7PX/+fMXHx2vdunXq16+fCgsL9dJLL2nBggU699xzJUnz5s3TySefrK+++kpnnnmmli5dqk2bNmn58uVKSEhQjx499MADD2jq1KmaPn26goKC9MILLyg1NVWPPfaYJOnkk0/WF198oSeeeEJpaWmmtxsAAPinFpeUGjZsmIYNG1bv/Lvvvlvnn3++Zs+e7Zp2/PHHmxEaAACAqQoLCyVJ0dHRkqR169apoqJCgwcPdpU56aST1KFDB2VkZOjMM89URkaGunbtqoSEBFeZtLQ03XDDDfrpp5906qmnKiMjw20d1WVuvfXWpm8UAABoNVpcUqohTqdTH330ke68806lpaXp+++/V2pqqqZNm6YRI0b4OjwAAACvcTqduvXWW3X22WfrlFNOkSTl5uYqKChIUVFRbmUTEhKUm5vrKnNoQqp6fvW8hso4HA4dPHhQISEhteIpKytTWVmZ67XD4XDF6XQ6j6KlAMxSUlKiX375xWvryszMVLdu3RQaGuqVdZ500kleWxeApuXpZ79fJaV2796t4uJiPfzww3rwwQf1yCOPaMmSJRo5cqRWrlyp/v3717lcU59EOZ1OGYbRKk7IaKt/oq1Nb8+ePa73nvrY7XbFxsZ6pT62qX+ird5bd0uQnp6ujRs36osvvvB1KJL+HIR9xowZtabn5+ertLTUBxEBOFyZmZnN+hbdTz/9VN26dfN1GAA8UFRU5FE5v0pKVZ9EXnTRRZo8ebIkqUePHlq7dq1eeOGFepNSTX0S5XQ6VVhYKMMwZLW2uLHlDwtt9U+0tWkVFhbq0aceVdHBht+4I0IidPsttysyMvKo62Sb+ifa6h2enkT50qRJk7R48WKtWbNG7dq1c01PTExUeXm5CgoK3K6WysvLU2JioqvMN99847a+6qfzHVqm5hP78vLyZLfb67xKSpKmTZumKVOmuF47HA61b99ecXFxstvtR95YAKY566yz9O2333plXZs2bdLYsWP1yiuvqHPnzl5ZJ1dKAS2Hp+N6+1VSKjY2Vm3atKn1plc9OGd9mvokyul0ymKxKC4urlX8kUBb/Q9tbVrFxcVav2m9bH1tComp+4+9g3sPquzzMgUEBCg+Pv6o62Sb+ifa6h3N+eEohmHopptu0vvvv69Vq1YpNTXVbX6vXr0UGBioFStWaNSoUZKkzZs3a8eOHerTp48kqU+fPvrXv/6l3bt3u95Pli1bJrvd7jqH6tOnjz7++GO3dS9btsy1jrrYbDbZbLZa061Wq9/vj4C/CA8P12mnnebVdXbu3Nnr6wTQ/Hn62e9XSamgoCCdfvrp2rx5s9v0X3/9VSkpKfUuZ8ZJlMViaTUnZbTVP9HWpq3PMAwFxwQrNKHub/8MGSo1Sl2xeatetqn/oa1Hrzn3XXp6uhYsWKAPPvhAERERrjGgIiMjFRISosjISE2YMEFTpkxRdHS07Ha7brrpJvXp00dnnnmmJGnIkCHq3LmzrrzySs2ePVu5ubm65557lJ6e7jofuv766/Xss8/qzjvv1NVXX63PPvtMb7/9tj766COftR0AAPifFpeUKi4u1pYtW1yvt23bpg0bNig6OlodOnTQHXfcoUsvvVT9+vXTwIEDtWTJEn344YdatWqV74IGAADwgueff16SNGDAALfp8+bN07hx4yRJTzzxhKxWq0aNGqWysjKlpaXpueeec5UNCAjQ4sWLdcMNN6hPnz4KCwvT2LFjNXPmTFeZ1NRUffTRR5o8ebKeeuoptWvXTv/v//2/Zj3WDAAAaHlaXFLqu+++08CBA12vq2+7Gzt2rObPn6+LL75YL7zwgmbNmqWbb75ZnTp10v/+9z+dc845vgoZAADAKwzDaLRMcHCw5s6dq7lz59ZbJiUlpdbteTUNGDBA33///WHHCAAA4KkWl5QaMGBAoydkV199ta6++mqTIgIAAAAAAMDhar6DJgAAAAAAAMBvkZQCAAAAAACA6UhKAQAAAAAAwHQkpQAAAAAAAGA6klIAAAAAAAAwHUkpAAAAAAAAmI6kFAAAAAAAAExHUgoAAAAAAACmIykFAAAAAAAA05GUAgAAAAAAgOlISgEAAAAAAMB0bXwdAJpefn6+HA5Ho+Xsdrvi4uJMiKh18KTf6XPvaq77emNxZWdnq7Ky0rR4JGnPnj3KyclRcXGxLBZLnWXYPwEAAAA0JZJSfi4/P1+jx4/W3qK9jZaNiYjRgnkL+CPUCzztd/rce5rrvu5JXGUHy/T7rt8VWR7Z5PFUx3TFhCsUHRutrG1ZMgyjznLsnwAAAACaEkkpP+dwOLS3aK9s/WwKiQmpt9zBvQe1d81eORwO/gD1Ak/6nT73rua6r3sS1/6s/ap8v9K0q6WqY0ron6Co7lEyVDspxf4JAAAAoKmRlGolQmJCFJYQ1mCZMpWZFE3r0Vi/0+fe11z39YbiOrjnoMnR/CkoIkhh9rA6k1IS+ycAAACApsVA5wAAAAAAADAdSSkAAAAAAACYjqQUAAAAAAAATEdSCgAAAAAAAKYjKQUAAAAAAADTkZQCAAAAAACA6UhKAQAAAAAAwHQkpQAAAAAAAGA6klIAAAAAAAAwHUkpAACAFmTNmjW64IILlJycLIvFooULF7rNt1gsdf7OmTPHVebYY4+tNf/hhx92W09mZqb69u2r4OBgtW/fXrNnzzajeQAAoBUhKQUAANCCHDhwQN27d9fcuXPrnJ+Tk+P2+/LLL8tisWjUqFFu5WbOnOlW7qabbnLNczgcGjJkiFJSUrRu3TrNmTNH06dP14svvtikbQMAAK1Li0tKNfbt4KGuv/56WSwWPfnkk6bFBwAA0JSGDRumBx98UBdffHGd8xMTE91+P/jgAw0cOFDHHXecW7mIiAi3cmFhYa55r7/+usrLy/Xyyy+rS5cuuuyyy3TzzTfr8ccfb9K2AQCA1qXFJaUa+3aw2vvvv6+vvvpKycnJJkUGAADQvOTl5emjjz7ShAkTas17+OGHFRMTo1NPPVVz5sxRZWWla15GRob69eunoKAg17S0tDRt3rxZ+/fvNyV2AADg/9r4OoDDNWzYMA0bNqzBMn/88Yduuukmffrppxo+fLhJkQEAADQvr7zyiiIiIjRy5Ei36TfffLN69uyp6OhorV27VtOmTVNOTo7rSqjc3Fylpqa6LZOQkOCa17Zt21p1lZWVqayszPXa4XBIkpxOp5xOp1fbBaD5qz7ueQ8AWidPj/sWl5RqjNPp1JVXXqk77rhDXbp08XU4AAAAPvPyyy9rzJgxCg4Odps+ZcoU1/+7deumoKAgXXfddZo1a5ZsNtsR1TVr1izNmDGj1vT8/HyVlpYe0ToBtFzVV1Xu379fu3fv9nE0AMxWVFTkUTm/S0o98sgjatOmjW6++WaPl2nqb/acTqcMw3Cta8+ePa46GmK32xUbG3tUdRuG8edTdf76qY9Ffz5559A4j4TT6VRBQYGKiopksdRfn+Sd9vlSze16KE/63Vt9boaG2uoNnhwT5eXlbreR1JSdnS1nlfOo93Vvt9XTfcFqtZq2v/jb/tmYpt5/m5Mj+bwx+73YWzE15Xb1l33l888/1+bNm/XWW281WrZ3796qrKzU9u3b1alTJyUmJiovL8+tTPXrxMTEOtcxbdo0t2SXw+FQ+/btFRcXJ7vdfhQtAdASVV9R2bZtW8XHx/s4GgBmq/mFWH38Kim1bt06PfXUU1q/fn2jCZFDNfU3e06nU4WFhTIMQ0VFRXr0qUdVdLDxrGFESIRuv+V2RUZGHnHdRUVF6pjaUWEhYQoOqH+nKA0p1YHUAyoqKjqqbzIKCgr03zf+q99+/02GYTRY1hvt86VDt6vV6j48myf97q0+N0NDbT1ahYWFjR4TlZWV2pe/TzHxMQoICKizTEV5hSLDI9UusJ3CA8LrXVdj/e7ttnqyL0RGRsraxarU8FTZA+r+w82b+0t1TPG2eNkC6r4ioiXtn41pyv23uTmSzxsz34s9Od49jakpt6un3+w1dy+99JJ69eql7t27N1p2w4YNslqtrj8c+/Tpo7vvvlsVFRUKDAyUJC1btkydOnWq89Y9SbLZbHVeZWW1Wv3+2ANQW/Vxz3sA0Dp5etz7VVLq888/1+7du9WhQwfXtKqqKt1222168skntX379jqXa+pv9pxOpywWi+Li4lRSUqL1m9bL1temkJiQepc5uPegyj4vU0BAwFF9s1BcXKysbVmK6h6lMHtYveUOHDyggm0FioiIOKr6ioqK9Nvvv2nHMTsUHFN/Esxb7fOlQ7drzQPOk373Vp+boaG2Hq3i4uJGj4mCLQXavHKzOl3eSVHHRNVfZvVmVfSrUGx0/VdYNNbv3m6rJ/vCnsI9yvwpU87+TsVW1R27N/eX6pjCeocp35YvQ7UTyC1p/2xMU+6/zc3hft6Y/V7syfHuaUxNuV09/WbPV4qLi7VlyxbX623btmnDhg2Kjo52nQM5HA698847euyxx2otn5GRoa+//loDBw5URESEMjIyNHnyZF1xxRWuhNPo0aM1Y8YMTZgwQVOnTtXGjRv11FNP6YknnjCnkQAAoFXwq6TUlVdeqcGDB7tNS0tL05VXXqnx48fXu5wZ3+xZLH/dnvPX7TDBMcEKTQitt7whQ6VGqWu5o6nXMAxV/zRUX/UtPd6oz6z2+Vp1/DXb4Em/e6vPzVJfW72x3sb2mZI9JXI6nQpqG9RoGW/s695sq6f7QmOxe3N/qRlTXXW2tP2zMU21/zZHh/N5Y/Z7sbdjaqrt2tz3k++++04DBw50va7+Ym3s2LGaP3++JOnNN9+UYRi6/PLLay1vs9n05ptvavr06SorK1NqaqomT57s9gVdZGSkli5dqvT0dPXq1UuxsbG67777NHHixKZtHAAAaFVaXFKqsW8HY2Ji3MoHBgYqMTFRnTp1MjtUAAAArxswYECjt8hPnDix3gRSz5499dVXXzVaT7du3fT5558fUYwAAACeaHFJKU++HQQAAAAAAEDz1uKSUp58O3io+saRAgAAAAAAgO8070ETAAAAAAAA4JdISgEAAAAAAMB0JKUAAAAAAABgOpJSAAAAAAAAMB1JKQAAAAAAAJiOpBQAAAAAAABMR1IKAAAAAAAApiMpBQAAAAAAANORlAIAAAAAAIDpSEoBAAAAAADAdCSlAAAAAAAAYLo2vg4AANA8VZRXKDs7u9Fy5eXlCgoKarCM3W5XXFyct0IDAAAA4AdISgEAaikvLlf2tmzddPdNsgXZ6i1XUV6hXb/v0jEpx6hNm/o/UmIiYrRg3gISUwAAAABcSEoBAGqpKq1SpbVSQecEKeqYqHrL7c/ar4PZBxVwVkC95Q7uPai9a/bK4XCQlAIAAADgQlIKAFCv4LbBCksIq3f+wT0HPSpXpjKvxwYAAACgZWOgcwAAAAAAAJiOpBQAAAAAAABMR1IKAAAAAAAApiMpBQAAAAAAANORlAIAAAAAAIDpSEoBAAAAAADAdCSlAAAAAAAAYDqSUgAAAAAAADAdSSkAAIAWZM2aNbrggguUnJwsi8WihQsXus0fN26cLBaL2+/QoUPdyuzbt09jxoyR3W5XVFSUJkyYoOLiYrcymZmZ6tu3r4KDg9W+fXvNnj27qZsGAABaGZJSAAAALciBAwfUvXt3zZ07t94yQ4cOVU5Ojuv3jTfecJs/ZswY/fTTT1q2bJkWL16sNWvWaOLEia75DodDQ4YMUUpKitatW6c5c+Zo+vTpevHFF5usXQAAoPVp4+sAAAAA4Llhw4Zp2LBhDZax2WxKTEysc97PP/+sJUuW6Ntvv9Vpp50mSXrmmWd0/vnn69FHH1VycrJef/11lZeX6+WXX1ZQUJC6dOmiDRs26PHHH3dLXgEAAByNFpeUWrNmjebMmaN169YpJydH77//vkaMGCFJqqio0D333KOPP/5Yv/32myIjIzV48GA9/PDDSk5O9m3gAAAAJlm1apXi4+PVtm1bnXvuuXrwwQcVExMjScrIyFBUVJQrISVJgwcPltVq1ddff62LL75YGRkZ6tevn4KCglxl0tLS9Mgjj2j//v1q27ZtrTrLyspUVlbmeu1wOCRJTqdTTqezqZoKtHpZWVkqKirydRi1bNq0ye3f5iYiIkIdO3b0dRiA3/L0s7/FJaWqL1m/+uqrNXLkSLd5JSUlWr9+ve699151795d+/fv1y233KILL7xQ3333nY8iBgAAMM/QoUM1cuRIpaamauvWrbrrrrs0bNgwZWRkKCAgQLm5uYqPj3dbpk2bNoqOjlZubq4kKTc3V6mpqW5lEhISXPPqSkrNmjVLM2bMqDU9Pz9fpaWl3moegEP89ttvOvvss30dRoPGjh3r6xDq9eWXX+q4447zdRiAX/I0Wd7iklINXbIeGRmpZcuWuU179tlndcYZZ2jHjh3q0KGDGSECAAD4zGWXXeb6f9euXdWtWzcdf/zxWrVqlQYNGtRk9U6bNk1TpkxxvXY4HGrfvr3i4uJkt9ubrF6gNdu5c6ck6dVXX9XJJ5/s42jclZSUKDMzU926dVNoaKivw3Hz888/66qrrlJQUFCtJD0A7wgODvaoXItLSh2uwsJCWSwWRUVF+ToUAAAA0x133HGKjY3Vli1bNGjQICUmJmr37t1uZSorK7Vv3z7XOFSJiYnKy8tzK1P9ur6xqmw2m2w2W63pVqtVVivP1gGaQvWx1aVLF/Xs2dPH0bhzOp068cQTFR8f3+zeA6rj4f0JaDqeHlt+nZQqLS3V1KlTdfnllzf4DV1Tj4HgdDplGIbrX4vFouqf+lj05yOcq5c7Uv5eny8dul1r8qQfWlIfNNTWhuzZs8d1PNUnOztbzipno31ltVqPukx1uaqKKm3fvl2GYdSabxiGioqKZLFYFBcX12DsnvB0X/Ckfd7aX7wV0+HE3lCfV7Pb7YqNjT28xnjgSPdfb/PkeJCOrh8O9/PG7G3jzffGptyuvt5XvG3nzp3au3evkpKSJEl9+vRRQUGB1q1bp169ekmSPvvsMzmdTvXu3dtV5u6771ZFRYUCAwMlScuWLVOnTp3qvHUPAADgSPhtUqqiokKXXHKJDMPQ888/32DZph4Dwel0qrCw0PXHbsfUjgoLCVNwQP2Xs5WGlOpA6gEVFRXV+jbzcJhdX3FxsZISkhQWEiZbQO1vS71dny8dul1rZoE96feW1AcNtbU+hYWFevSpR1V0sOF7iSvKKxQZHql2ge0UHhBeZ5nIyEhZu1iVGp4qe0DdCWZPykhSsaVYleGVem7+cwpsE1hrvsViUVJCkoodxbrt5tsUGRnZYPyN8WRf8CR2b+4v1THF2+LrPU497U9PyjXW59UiQiJ0+y23H3Wf13Qk+6+3eXo8SEfXD4f7eWP2tvHme2NTbtfmOGDwoYqLi7VlyxbX623btmnDhg2Kjo5WdHS0ZsyYoVGjRikxMVFbt27VnXfeqRNOOEFpaWmSpJNPPllDhw7VtddeqxdeeEEVFRWaNGmSLrvsMteDYUaPHq0ZM2ZowoQJmjp1qjZu3KinnnpKTzzxhE/aDAAA/JNfJqWqE1LZ2dn67LPPGh3HoKnHQHA6na6rLkpKSpS1LUtR3aMUZg+rd5kDBw+oYFuBIiIijuo+5+LiYlPrKyoqUk5ejvIT8hVqr//ecW/V50uHbteafxB50u8tqQ8aamt9iouLtX7Tetn62hQSE1JvuYItBdq8erMq+lUoNrruKzH2FO5R5k+ZcvZ3KrbqyMtI0p78PcrclKlO3Tsp6pioWvMtsiiwMlCbvtqkgICAo942nuwLnsTuzf2lOqaw3mHKt+XLUO0rZDzuT0+2TSN9LkkH9x5U2edlXunzmo5k//U2T4+Ho+2Hw/28MXvbePO9sSm3q6djIPjKd999p4EDB7peV5/DjB07Vs8//7wyMzP1yiuvqKCgQMnJyRoyZIgeeOABt1vrXn/9dU2aNEmDBg2S1WrVqFGj9PTTT7vmR0ZGaunSpUpPT1evXr0UGxur++67TxMnTjSvoQAAwO/5XVKqOiGVlZWllStXuh5/3BAzxkCwWP66xeWvWxKqf+pjyHDd5nA0Mfh7fb5WHX/NNnjSDy2tD+pra0PlDcNQcEywQhPqT1CW7Cn58zacRvrKG2UOLRfUNqjOuCyyKNAR6LVt4+m+4En7miqmuuo83P70pH319Xl1mVKjtMmOh8Pdf5uifk+OB2/0w+F83pi9bbz93thU27W5vycPGDCgwdstP/3000bXER0drQULFjRYplu3bvr8888POz4AAABPtbikVEOXrCclJenvf/+71q9fr8WLF6uqqsr1aOPo6GgFBQX5KmwAAAAAAAAcosUlpRq6ZH369OlatGiRJKlHjx5uy61cuVIDBgwwK0wAAAAAAAA0oMUlpRq7ZL2heQAAAAAAAGgemvegCQAAAAAAAPBLJKUAAAAAAABgOpJSAAAAAAAAMB1JKQAAAAAAAJiOpBQAAAAAAABMR1IKAAAAAAAApiMpBQAAAAAAANORlAIAAAAAAIDpSEoBAAAAAADAdCSlAAAAAAAAYDqSUgAAAAAAADAdSSkAAAAAAACYro2vAwBgnvz8fDkcjkbL2e12xcXFmRAR0DQO3dcNw1BRUZGKi4tlsVhcZZrrfl5RXqHs7OwGyzTX2AEAAIDDQVIKaCXy8/M1evxo7S3a22jZmIgYLZi3gD960SLV3NctFos6pnZU1rYsGYbhKtcc9/Py4nJlb8vWTXffJFuQrd5yzTF2AAAA4HCRlAJaCYfDob1Fe2XrZ1NITEi95Q7uPai9a/bK4XDwBy9apJr7ukUWhYWEKap7lAz9mZRqrvt5VWmVKq2VCjonSFHHRNVZprnGDgAAABwuklJAKxMSE6KwhLAGy5SpzKRogKZTva9bZFFwQLDC7GGupJTUvPfz4LbBDR6nzTl2AAAAwFMMdA4AAAAAAADTkZQCAAAAAACA6UhKAQAAAAAAwHQkpQAAAAAAAGA6klIAAAAAAAAwHUkpAACAFmTNmjW64IILlJycLIvFooULF7rmVVRUaOrUqeratavCwsKUnJysq666Srt27XJbx7HHHiuLxeL2+/DDD7uVyczMVN++fRUcHKz27dtr9uzZZjQPAAC0IiSlAAAAWpADBw6oe/fumjt3bq15JSUlWr9+ve69916tX79e7733njZv3qwLL7ywVtmZM2cqJyfH9XvTTTe55jkcDg0ZMkQpKSlat26d5syZo+nTp+vFF19s0rYBAIDWpY2vAwAAAIDnhg0bpmHDhtU5LzIyUsuWLXOb9uyzz+qMM87Qjh071KFDB9f0iIgIJSYm1rme119/XeXl5Xr55ZcVFBSkLl26aMOGDXr88cc1ceJE7zUGAAC0alwpBQAA4McKCwtlsVgUFRXlNv3hhx9WTEyMTj31VM2ZM0eVlZWueRkZGerXr5+CgoJc09LS0rR582bt37/frNABAICf40opAAAAP1VaWqqpU6fq8ssvl91ud02/+eab1bNnT0VHR2vt2rWaNm2acnJy9Pjjj0uScnNzlZqa6rauhIQE17y2bdvWqqusrExlZWWu1w6HQ5LkdDrldDq93jYAch1bzfE4czqdMgyj2cUlNe9+A/yFp8cWSSkAAAA/VFFRoUsuuUSGYej55593mzdlyhTX/7t166agoCBdd911mjVrlmw22xHVN2vWLM2YMaPW9Pz8fJWWlh7ROgE0bN++fa5/d+/e7eNo3DmdThUWFsowDFmtzesGnebcb4C/KCoq8qhci0tKrVmzRnPmzNG6deuUk5Oj999/XyNGjHDNNwxD999/v/7zn/+ooKBAZ599tp5//nl17NjRd0EDAACYqDohlZ2drc8++8ztKqm69O7dW5WVldq+fbs6deqkxMRE5eXluZWpfl3fOFTTpk1zS3Y5HA61b99ecXFxjdYP4MhER0e7/o2Pj/dxNO6cTqcsFovi4uKaXVKqOfcb4C+Cg4M9KmdaUuq3337Tcccdd9TrqX7izNVXX62RI0fWmj979mw9/fTTeuWVV5Samqp7771XaWlp2rRpk8edAgAA0FJVJ6SysrK0cuVKxcTENLrMhg0bZLVaXX+c9enTR3fffbcqKioUGBgoSVq2bJk6depU5617kmSz2eq8yspqtTa7P0gBf1F9bDXX48xisTTL2Jp7vwH+wNNjy7Sk1AknnKD+/ftrwoQJ+vvf/37ECaKGnjhjGIaefPJJ3XPPPbroooskSa+++qoSEhK0cOFCXXbZZUccPwAAQHNQXFysLVu2uF5v27ZNGzZsUHR0tJKSkvT3v/9d69ev1+LFi1VVVaXc3FxJf14REBQUpIyMDH399dcaOHCgIiIilJGRocmTJ+uKK65wJZxGjx6tGTNmaMKECZo6dao2btyop556Sk888YRP2gwAAPyTaUmp9evXa968eZoyZYomTZqkSy+9VBMmTNAZZ5zhtTq2bdum3NxcDR482DUtMjJSvXv3VkZGRr1JqaYemPPQQf4Mw5DFYlH1T30ssshisRz14ID+Xp8vNTR4oyf9YHYfHM22OZKBKg+nPqvV2mhfeaOMJ+VcEXtp23i6L3jSPk9j2rNnj+t9rC7Z2dkyqgxT+vNwyjRVnx/6cyT1NdafkmS32xUbG+txTPXxtK+qKqq0fft2GYZRq56ioiIVFRVpx44dclY5m/W2OZr6mnIA3eb+ufTdd99p4MCBrtfVt8yNHTtW06dP16JFiyRJPXr0cFtu5cqVGjBggGw2m958801Nnz5dZWVlSk1N1eTJk91uvYuMjNTSpUuVnp6uXr16KTY2Vvfdd58mTpzY9A0EAACthmlJqR49euipp57SY489pkWLFmn+/Pk655xzdOKJJ+rqq6/WlVdeqbi4uKOqo/qbwOqnw1RLSEhwzatLUw/Meeggf0VFReqY2lFhIWEKDqj/arHSkFIdSD2goqKioxp8z+z6iouLlZSQpLCQMNkC6h8o1Vv1+VJDgzd60u9m98HR7AtHMlClp/VFRkbK2sWq1PBU2QPqHnPEW2U8XpctUh1TO3pl23jSD57E5On+UlhYqEefelRFB+sfWLCivEL2CLti2sTUe5x6tT+92D5P1NXnsdZYGfq/BI43+1OSIkIidPsttysyMtLjmOriSV8VW4pVGV6p5+Y/p8A2gW7zLBaLkhKSlJOXo/KyckWGR6pdYDuFB4QfcX1NvW2OtL6mHEDX04E5fWXAgAG1EpKHamieJPXs2VNfffVVo/V069ZNn3/++WHHBwAA4CnTBzpv06aNRo4cqeHDh+u5557TtGnTdPvtt+uuu+7SJZdcokceeURJSUmmxtTUA3MeOshfSUmJsrZlKap7lMLsYfUuc+DgARVsK1BERMRRDb5XXFxsan1FRUXKyctRfkK+Qu2hTV6fLzU0eKMn/W52HxzNvnAkA1V6Wt+ewj3K/ClTzv5OxVbVfaWJt8p4Us4ii8rKypS1Lcsr28aTfvAkdk/3l+LiYq3ftF62vjaFxITUWaZgS4GyPs9Sh6EdVBha6JasOZyYPC3nzfZ5omafV1+Vs7Nqp6ut3uzPg3sPquzzMgUEBNS7Lq8eD/l7lLkpU526d1LUMVFu8yyyKCwkTPkJ+dq/Zb82r96sin4Vio1untvmaOprygF0GYMSAADAHKYnpb777ju9/PLLevPNNxUWFqbbb79dEyZM0M6dOzVjxgxddNFF+uabb45o3dVPg8nLy3NLbOXl5dW6hP1QZgzMWT3IX/UtCdU/9TFkuG5zOJoY/L0+X6tv8EZP+sHsPjjabXO4A1UeTn1Op7PRvvJGmcNZl7e2jaf7grdiqq4vOCZYoQl1J4ZL9pS41VdXnd7uT1/3ec22erM/DRkqNUobXFdTHA9BbYNqxWSRRbYAm0LtoTqw50CL2DZHU19TDaDbkj+XAAAAWhLTzroef/xxde3aVWeddZZ27dqlV199VdnZ2XrwwQeVmpqqvn37av78+Vq/fv0R15GamqrExEStWLHCNc3hcOjrr79Wnz59vNEMAAAAAAAAeIFpV0o9//zzuvrqqzVu3Lh6b8+Lj4/XSy+91OB6GnriTIcOHXTrrbfqwQcfVMeOHZWamqp7771XycnJGjFihDebAwAAAAAAgKNgWlIqKyur0TJBQUEaO3Zsg2UaeuLM/Pnzdeedd+rAgQOaOHGiCgoKdM4552jJkiWMDwEAAAAAANCMmJaUmjdvnsLDw/WPf/zDbfo777yjkpKSRpNR1Rp74ozFYtHMmTM1c+bMo4oXAAAAAAAATce0MaVmzZql2NjaT/aJj4/XQw89ZFYYAAAAAAAAaAZMS0rt2LFDqamptaanpKRox44dZoUBAADgE7///rt27tzpev3NN9/o1ltv1YsvvujDqAAAAHzHtKRUfHy8MjMza03/4YcfFBMTY1YYAAAAPjF69GitXLlSkpSbm6vzzjtP33zzje6++26GHQAAAK2SaUmpyy+/XDfffLNWrlypqqoqVVVV6bPPPtMtt9yiyy67zKwwAAAAfGLjxo0644wzJElvv/22TjnlFK1du1avv/665s+f79vgAAAAfMC0gc4feOABbd++XYMGDVKbNn9W63Q6ddVVVzGmFAAA8HsVFRWy2WySpOXLl+vCCy+UJJ100knKycnxZWgAAAA+YVpSKigoSG+99ZYeeOAB/fDDDwoJCVHXrl2VkpJiVggAAAA+06VLF73wwgsaPny4li1bpgceeECStGvXLoYyAAAArZJpSalqJ554ok488USzqwUAAPCpRx55RBdffLHmzJmjsWPHqnv37pKkRYsWuW7rAwAAaE1MS0pVVVVp/vz5WrFihXbv3i2n0+k2/7PPPjMrFAAAANMNGDBAe/bskcPhUNu2bV3TJ06cqNDQUB9GBgAA4BumJaVuueUWzZ8/X8OHD9cpp5wii8ViVtUAAADNgmEYWrdunbZu3arRo0crIiJCQUFBJKUAAECrZFpS6s0339Tbb7+t888/36wqAQAAmo3s7GwNHTpUO3bsUFlZmc477zxFRETokUceUVlZmV544QVfhwigBUoMtyik4Fdpl2kPVveMYajNvn1SVY7UzC5ICCn4VYnhzSsmoLUydaDzE044wazqAAAAmpVbbrlFp512mn744Qe3gc0vvvhiXXvttT6MDEBLdl2vIJ285jppja8jcWeVFOvrIOpxsv7sNwC+Z1pS6rbbbtNTTz2lZ599llv3PFRRXqHs7OwGy9jtdsXFxZkUEZqz/Px8ORyOeudnZ2ersrLSxIiAw+PJe54klZeXKyio/hNJT/d1T+rz1ro4/g6PJ9vGMAxVVVUpPj7epKiO3ueff661a9fW2n+PPfZY/fHHHz6KCkBL9+915br0vvk6+aSTfB2KG6dhaN++fYqOjpa1mf399/Mvv+jfj43Whb4OBIB5SakvvvhCK1eu1CeffKIuXbooMDDQbf57771nVigtQnlxubK3Zeumu2+SLchWb7mYiBgtmLeAxFQrl5+fr9HjR2tv0d56y5QdLNPvu35XZHmkiZEBnvH0Pa+ivEK7ft+lY1KOUZs2dX+EebKve1qft9bF8ec5T7eNxWJRz8499a/p/2oxiSmn06mqqqpa03fu3KmIiAgfRATAH+QWGzoYdaKU3MPXobhzOlUZsFuKj5eszevWwoO5TuUWG74OA4BMTEpFRUXp4osvNqu6Fq+qtEqV1koFnROkqGOi6ixzcO9B7V2zVw6Hg6RUK+dwOLS3aK9s/WwKiQmps8z+rP2qfL+SqzXQLHnynif9uR8fzD6ogLMC6i3nyb5+OPV5Y10cf57zdNuU7i1V0c4iORyOFpOUGjJkiJ588km9+OKLkv5MrBUXF+v+++9nzE0AANAqmZaUmjdvnllV+ZXgtsEKSwird36ZykyMBs1dSExIvfvLwT0HTY4GOHyNvedV78cNlTucfd3T+o52XRx/h6+xbWORRdppYkBe8Oijj2ro0KHq3LmzSktLNXr0aGVlZSk2NlZvvPGGr8MDAAAwnWlJKUmqrKzUqlWr3B6DvGvXLtntdoWHh5sZCgAAgKnat2+vH374QW+99ZZ++OEHFRcXa8KECRozZoxCQuq+yhUAAMCfmZaU4jHIAACgtaqoqNBJJ52kxYsXa8yYMRozZoyvQwIAAPA500acq34M8v79+92+Dbz44ou1YsUKs8IAAAAwXWBgoEpLS30dBgAAQLNiWlLq888/1z333MNjkAEAQKuUnp6uRx55hAHvAQAA/mJaUorHIAMAgNbs22+/1XvvvacOHTooLS1NI0eOdPv11Jo1a3TBBRcoOTlZFotFCxcudJtvGIbuu+8+JSUlKSQkRIMHD1ZWVpZbmX379mnMmDGy2+2KiorShAkTVFxc7FYmMzNTffv2VXBwsNq3b6/Zs2cfcdsBAADqYlpSqvoxyNV4DDIAAGhNoqKiNGrUKKWlpSk5OVmRkZFuv546cOCAunfvrrlz59Y5f/bs2Xr66af1wgsv6Ouvv1ZYWJjS0tLcbh8cM2aMfvrpJy1btkyLFy/WmjVrNHHiRNd8h8OhIUOGKCUlRevWrdOcOXM0ffp0vfjii0feAQAAADWYNtD5Y489prS0NB6DDAAAWqV58+Z5ZT3Dhg3TsGHD6pxnGIaefPJJ3XPPPbroooskSa+++qoSEhK0cOFCXXbZZfr555+1ZMkSffvttzrttNMkSc8884zOP/98Pfroo0pOTtbrr7+u8vJyvfzyywoKClKXLl20YcMGPf74427JKwAAgKNh2pVS7dq10w8//KC77rpLkydP1qmnnqqHH35Y33//veLj480KAwAAwG9t27ZNubm5Gjx4sGtaZGSkevfurYyMDElSRkaGoqKiXAkpSRo8eLCsVqu+/vprV5l+/fq5jQWalpamzZs3a//+/Sa1BgAA+DvTrpSSpDZt2uiKK64ws0oAAIBm491339Xbb7+tHTt2qLy83G3e+vXrj3r9ubm5kqSEhAS36QkJCa55ubm5tb4QbNOmjaKjo93KpKam1lpH9by2bdvWqrusrExlZWWu1w6HQ9Kf44o6nc6jaRaAelQfW83xOHM6nTIMo9nFJTXvfgP8hafHlmlJqVdffbXB+VdddZVJkQAAAJjv6aef1t13361x48bpgw8+0Pjx47V161Z9++23Sk9P93V4R23WrFmaMWNGren5+flu41kB8J59+/a5/t29e7ePo3HndDpVWFgowzBktZp2g45HmnO/Af6iqKjIo3KmJaVuueUWt9cVFRUqKSlRUFCQQkNDSUoBAAC/9txzz+nFF1/U5Zdfrvnz5+vOO+/Ucccdp/vuu8/1B9LRSkxMlCTl5eUpKSnJNT0vL089evRwlan5R1hlZaX27dvnWj4xMVF5eXluZapfV5epadq0aZoyZYrrtcPhUPv27RUXFye73X50DQNQp+joaNe/zW1IFKfTKYvFori4uGaXlGrO/Qb4i+DgYI/KmZaUqmv8gaysLN1www264447vFZPVVWVpk+frtdee025ublKTk7WuHHjdM8998hisXitHgAAgMOxY8cOnXXWWZKkkJAQ1zeIV155pc4880w9++yzR11HamqqEhMTtWLFClcSyuFw6Ouvv9YNN9wgSerTp48KCgq0bt069erVS5L02Wefyel0qnfv3q4yd999tyoqKhQYGChJWrZsmTp16lTnrXuSZLPZZLPZak23Wq3N7g9SwF9UH1vN9TizWCzNMrbm3m+AP/D02PLpEdixY0c9/PDDta6iOhqPPPKInn/+eT377LP6+eef9cgjj2j27Nl65plnvFYHAADA4UpMTHRdEdWhQwd99dVXkv4cnNwwDI/XU1xcrA0bNmjDhg2u5Tds2KAdO3bIYrHo1ltv1YMPPqhFixbpxx9/1FVXXaXk5GSNGDFCknTyySdr6NChuvbaa/XNN9/oyy+/1KRJk3TZZZcpOTlZkjR69GgFBQVpwoQJ+umnn/TWW2/pqaeecrsSCgAA4GiZOtB5nQG0aaNdu3Z5bX1r167VRRddpOHDh0uSjj32WL3xxhv65ptvvFYHAADA4Tr33HO1aNEinXrqqRo/frwmT56sd999V999951Gjhzp8Xq+++47DRw40PW6OlE0duxY122BBw4c0MSJE1VQUKBzzjlHS5YscbuM/vXXX9ekSZM0aNAgWa1WjRo1Sk8//bRrfmRkpJYuXar09HT16tVLsbGxuu+++zRx4kQv9AQAAMCfTEtKLVq0yO21YRjKycnRs88+q7PPPttr9Zx11ll68cUX9euvv+rEE0/UDz/8oC+++EKPP/54vcs09dNiDn3yhGEYslgsqv6pj0V/XuraUDmLLLJYLA0+1eJw6quqqNL27dsb/LbWbrcrNja23vlm13c49uzZ49q2R1vfnj17VFhYqKKiIhUVFdW6NTQ7O1vOKmej28+TPvAkLk/63ZN9qr64DMOo1dby8nK3R4XX5EkfeBqXt8p4Us7Vi40cW57y1rbxdH/xdN8zqz+bQ32H/vhj+2rOO/THW7E3t+PB23HV1FRPYnrxxRdd605PT1dMTIzWrl2rCy+8UNddd53H6xkwYECD7wMWi0UzZ87UzJkz6y0THR2tBQsWNFhPt27d9Pnnn3scFwAAwOEyLSlVfcl4tepB784991w99thjXqvnn//8pxwOh0466SQFBASoqqpK//rXvzRmzJh6l2nqp8Uc+uSJoqIidUztqLCQMAUH1D/wV2RkpKxdrEoNT5U9oO7BQUtDSnUg9YCKiorqfWqEp/UVW4pVGV6p5+Y/p8A2gfWWiwiJ0O233K7IyMi611NcrKSEJIWFhMkWUHtcCW/X56nCwkI9+tSjKjrY8BMAPKmvel3FpX+2NScvp9YfBxXlFYoMj1S7wHYKDwivcz2e9oEncXmynT3Zp+qLy2KxuLW1srJS+/L3KSY+RgEBAXWux5M+8DQub5XxeF22SHVM7djgseUpb20bT/cXT/o9MjJSAZ0DlBiSqIiAiCOOydNypm+/OsrEWmNlyDis9bSk9h2quq32SLtX4vLks8ZT3nyvKgspkz3BruLiYq8/OcnTp8Ucrppjl1x22WW67LLLmqQuAACAlsC0pFRTfetY09tvv63XX39dCxYsUJcuXbRhwwbdeuutSk5O1tixY+tcpqmfFnPokydKSkqUtS1LUd2jFGYPq3eZPYV7lPlTppz9nYqtqvsKmQMHD6hgW4EiIiLqfWpEcXGxZ/Xl71Hmpkx16t5JUcdE1Vnm4N6DKvu8TAEBAfXWV1RUpJy8HOUn5CvUHtrk9XmquLhY6zetl62vTSExIUdVX/W6gvsGK6xdmPIT8t3+2JWkgi0F2rx6syr6VSg2uu7t50kfeBqXJ9vZk32qvrgssigs5P/aWrClQJtXblany+uP3ZM+8DQub5XxpJxFFpWVlSlrW1aDx5anvLVtPN1fPNr3Cvdo46aNSj0/VYXhhbX2X09j8jh2E7dfXWWqr7jZWbXT1VZ/at+hDm1rfmG+V+Ly5LPGU958ryo5WKK4vDiFh4d7/clJnj4t5kgUFBTom2++0e7du2udG/EkYgAA0Nr4fEwpb7vjjjv0z3/+0/XNY9euXZWdna1Zs2bVm5Qy42kx1U+eqL7VoPqnPob+ut2vgXKGDNetEPXFebj1BbUNUmhC3ckkQ4ZKjdJmVZ+nquMKjgk+6voOXZetrU2h9tBabS3ZU+LR9musDzyNy5N+92Sfqi8uiyyyBfxfW6vb11DsnvSBp3F5q8zhrKuxY8tT3to2nu4vh7PvGao/Lm/3p9nbr2aZmm31t/bVnF/9463Ym9vx4O24amqqJzF9+OGHGjNmjIqLi2W3291u/bZYLCSlAABAq2NaUupwntbS0PhPjSkpKal1MhkQEGDalVoAAAB1ue2223T11VfroYceUmho/cllAACA1sK0pNT333+v77//XhUVFerUqZMk6ddff1VAQIB69uzpKldzwOjDdcEFF+hf//qXOnTooC5duuj777/X448/rquvvvqo1gsAAHA0/vjjD918880kpAAAAP5iWlLqggsuUEREhF555RW1bdtWkrR//36NHz9effv21W233eaVep555hnde++9uvHGG7V7924lJyfruuuu03333eeV9QMAAByJtLQ0fffddzruuON8HQoAAECzYFpS6rHHHtPSpUtdCSlJatu2rR588EENGTLEa0mpiIgIPfnkk3ryySe9sj4AAIAjtWjRItf/hw8frjvuuEObNm1S165dFRjo/iTNCy+80OzwAAAAfMq0pJTD4VB+fn6t6fn5+U326GUAAABfGjFiRK1pM2fOrDXNYrGoqqrKhIgAAACaj6Z5vEwdLr74Yo0fP17vvfeedu7cqZ07d+p///ufJkyYoJEjR5oVBgAAgGmcTqdHvySkAABAa2RaUuqFF17QsGHDNHr0aKWkpCglJUWjR4/W0KFD9dxzz5kVBgAAgKkyMjK0ePFit2mvvvqqUlNTFR8fr4kTJ6qsrMxH0QEAAPiOaUmp0NBQPffcc9q7d6/rSXz79u3Tc889p7CwMLPCAAAAMNWMGTP0008/uV7/+OOPmjBhggYPHqx//vOf+vDDDzVr1iwfRggAAOAbpiWlquXk5CgnJ0cdO3ZUWFiYDMMwOwQAAADT/PDDDxo0aJDr9ZtvvqnevXvrP//5j6ZMmaKnn35ab7/9tg8jBAAA8A3TklJ79+7VoEGDdOKJJ+r8889XTk6OJGnChAlee/IeAABAc7N//34lJCS4Xq9evVrDhg1zvT799NP1+++/+yI0AAAAnzItKTV58mQFBgZqx44dCg0NdU2/9NJLtWTJErPCAAAAMFVCQoK2bdsmSSovL9f69et15plnuuYXFRUpMDDQV+EBAAD4TBuzKlq6dKk+/fRTtWvXzm16x44dlZ2dbVYYAAAApjr//PP1z3/+U4888ogWLlyo0NBQ9e3b1zU/MzNTxx9/vA8jBAAA8A3TklIHDhxwu0Kq2r59+2Sz2cwKAwAAwFQPPPCARo4cqf79+ys8PFyvvPKKgoKCXPNffvllDRkyxIcRAgAA+IZpSam+ffvq1Vdf1QMPPCBJslgscjqdmj17tgYOHGhWGAAAAKaKjY3VmjVrVFhYqPDwcAUEBLjNf+eddxQeHu6j6AAAAHzHtKTU7NmzNWjQIH333XcqLy/XnXfeqZ9++kn79u3Tl19+aVYYAAAAPhEZGVnn9OjoaJMjAQAAaB5MS0qdcsop+vXXX/Xss88qIiJCxcXFGjlypNLT05WUlGRWGAAAoInk5+fL4XDUOz87O1uVlZUmRgQAAIDmzJSkVEVFhYYOHaoXXnhBd999txlVAgAAE+Xn52v0+NHaW7S33jJlB8v0+67fFVle9xVDAAAAaF1MSUoFBgYqMzPTjKoAAIAPOBwO7S3aK1s/m0JiQuossz9rvyrfr+RqKQAAAEiSrGZVdMUVV+ill14yqzoAAOADITEhCksIq/M3uG2wr8MDAABAM2LamFKVlZV6+eWXtXz5cvXq1UthYWFu8x9//HGzQgEAAAAAAICPNXlS6rffftOxxx6rjRs3qmfPnpKkX3/91a2MxWJp6jAAAAAAAADQjDR5Uqpjx47KycnRypUrJUmXXnqpnn76aSUkJDR11QAAAAAAAGimmnxMKcMw3F5/8sknOnDgQFNXCwAA0Code+yxslgstX7T09MlSQMGDKg17/rrr3dbx44dOzR8+HCFhoYqPj5ed9xxBwPUAwAArzNtTKlqNZNUAAAA8J5vv/1WVVVVrtcbN27Ueeedp3/84x+uaddee61mzpzpeh0aGur6f1VVlYYPH67ExEStXbtWOTk5uuqqqxQYGKiHHnrInEYAAIBWocmTUtXfwNWcBgAAAO+Li4tze/3www/r+OOPV//+/V3TQkNDlZiYWOfyS5cu1aZNm7R8+XIlJCSoR48eeuCBBzR16lRNnz5dQUFBTRo/AABoPZo8KWUYhsaNGyebzSZJKi0t1fXXX1/r6XvvvfdeU4cCAADQqpSXl+u1117TlClT3L4UfP311/Xaa68pMTFRF1xwge69917X1VIZGRnq2rWr2/ifaWlpuuGGG/TTTz/p1FNPrbOusrIylZWVuV47HA5JktPplNPpbIrmAa1e9bHVHI8zp9MpwzCaXVxS8+43wF94emw1eVJq7Nixbq+vuOKKpq4SAAAAkhYuXKiCggKNGzfONW306NFKSUlRcnKyMjMzNXXqVG3evNn1BWFubm6tB9JUv87Nza23rlmzZmnGjBm1pufn56u0tNQLrQFQ0759+1z/7t6928fRuHM6nSosLJRhGLJam3wo48PSnPsN8BdFRUUelWvypNS8efOaugoAAADU4aWXXtKwYcOUnJzsmjZx4kTX/7t27aqkpCQNGjRIW7du1fHHH3/EdU2bNk1TpkxxvXY4HGrfvr3i4uJkt9uPeL0A6hcdHe36Nz4+3sfRuHM6nbJYLIqLi2t2Sanm3G+AvwgODvaonOkDnQMAAKDpZWdna/ny5Y0OkdC7d29J0pYtW3T88ccrMTFR33zzjVuZvLw8Sap3HCpJstlsruEaDmW1WpvdH6SAv6g+tprrcWaxWJplbM293wB/4OmxxREIAADgh+bNm6f4+HgNHz68wXIbNmyQJCUlJUmS+vTpox9//NHtlpZly5bJbrerc+fOTRYvAABoffwyKfXHH3/oiiuuUExMjEJCQtS1a1d99913vg4LAADAFE6nU/PmzdPYsWPVps3/XRi/detWPfDAA1q3bp22b9+uRYsW6aqrrlK/fv3UrVs3SdKQIUPUuXNnXXnllfrhhx/06aef6p577lF6enqdV0IBAAAcKb+7fW///v06++yzNXDgQH3yySeKi4tTVlaW2rZt6+vQAAAATLF8+XLt2LFDV199tdv0oKAgLV++XE8++aQOHDig9u3ba9SoUbrnnntcZQICArR48WLdcMMN6tOnj8LCwjR27FjNnDnT7GYAAAA/53dJqUceeUTt27d3G2A9NTXVhxEBAACYa8iQITIMo9b09u3ba/Xq1Y0un5KSoo8//rgpQgMAAHDxu6TUokWLlJaWpn/84x9avXq1jjnmGN1444269tpr612mrKxMZWVlrtcOh0PSn5e+O53Oo47J6XTKMAzXvxaLRdU/9bHoz0EBGypnkUVVFVXavn17nSee0p+DnDqrnF6rz2KxuNpSF2+3r7H6POVJXJ7WV3Ndda3P0/Y1Vqa6nDe28+HUV7NczbZ6u33eWJe36nO11IN9Yc+ePa73i/p4a9u01P5sDvXVdaz6U/tqzjv0x1uxH8l7Y1O070jiOhLeXh8AAADq5ndJqd9++03PP/+8pkyZorvuukvffvutbr75ZgUFBWns2LF1LjNr1izNmDGj1vT8/HyVlpYedUxOp1OFhYUyDENFRUXqmNpRYSFhCg6o/xGJkZGRsnaxKjU8VfaAuh+jXGwpVmV4pZ6b/5wC2wTWWaaivEKR4ZFqF9hO4QHhR1VfaUipDqQeUFFRkdvgp24xFRcrKSFJYSFhsgXUP+6Et+rzlCf97ml91esKDwlXrDVWhmonijxpnydlJO9tZ0/rq6/coW31Zvu8tS6v1meLVMfUjg3uC4WFhXr0qUdVdLCo3rok720bb/dnQOcAJYYkKiIgwpT6fL2/1DxW/a19h6puqz3S7pW4Dve9saH3WW/2VVlImewJdhUXFx/1Z0RNRUUNH9cAAADwDr9LSjmdTp122ml66KGHJEmnnnqqNm7cqBdeeKHepNS0adM0ZcoU12uHw6H27dsrLi5Odnv9J8SHE5PFYlFcXJxKSkqUtS1LUd2jFGYPq3eZPYV7lPlTppz9nYqtiq27TP4eZW7KVKfunRR1TFSdZQq2FGjz6s2q6Feh2Oi61+NpfQcOHlDBtgJFREQoPj6+zjJFRUXKyctRfkK+Qu2hTV6fp4qLixvtd0/rq15X2+5tFewM1s6qnbUSUx5tPw/KSN7bzh7XV0e56isWqtvq1fZ5aV3eqs8ii8rKypS1LavBfaG4uFjrN62Xra9NITEh9dbnrW3j7f7cuGmjUs9PVWF4YZ2J1Za6/eoqU3P/9bf2HerQtuYX5nslrsN9b2zofdabfVVysERxeXEKDw8/6s+ImoKD6//SCAAAAN7jd0mppKSkWo8rPvnkk/W///2v3mVsNludT5OxWq2yWr3zgEKL5a/bEf661aD6pz6G/rrdr4Fy1WWC2gYpNKHuBFDJnpJG13M49VXfnlFfv3i7fY3V5ylP4vK0vprrqmudh7P9PO2ro93Oh1tfzXI129vU9TVFmcNZl6f7enBMcL3bRfLetmnK/qyrXEvffjXL1Gyrv7Wv5nxvHqeeHA+S5++z3uwrb31G1OTt9QEAAKBufnfWdfbZZ2vz5s1u03799VelpKT4KCIAAAAAAADU5HdJqcmTJ+urr77SQw89pC1btmjBggV68cUXlZ6e7uvQAAAAAAAA8Be/S0qdfvrpev/99/XGG2/olFNO0QMPPKAnn3xSY8aM8XVoAAAAAAAA+IvfjSklSX/729/0t7/9zddhAAAAAAAAoB5+d6UUAAAAAAAAmj+SUgAAAAAAADAdSSkAAAAAAACYjqQUAAAAAAAATEdSCgAAAAAAAKYjKQUAAAAAAADTkZQCAAAAAACA6dr4OgAAAAAAwOErKSmRJK1fv97HkdRWUlKiH374Qd27d1doaKivw3Hz888/+zoEAH8hKQUAAAAALdAvv/wiSbr22mt9HEnLFBER4esQgFaPpBQAAAAAtEAjRoyQJJ100knN7mqkTZs26corr9R///tfde7c2dfh1BIREaGOHTv6Ogyg1SMpBQAAAAAtUGxsrK655hpfh1Enp9Mp6c+EWc+ePX0cDYDmiqQUDktFeYWys7PrnZ+dna2qqirT6pMku92uuLg40+rLzs5WZWWlV+oDAAAAAKC1IikFj5UXlyt7W7Zuuvsm2YJsdZapKK1QdNtoGeWGKfVJUkxEjBbMW3DUiSlP6ys7WKbfd/2uqPKoo6oPAAAAAIDWjKQUPFZVWqVKa6WCzglS1DFRdZYp3FKoqqwqOSudptR3cO9B7V2zVw6H46iTUp7UJ0n7s/ar8v1KrpYCAAAAAOAokJTCYQtuG6ywhLA655XuKTW1PkkqU5mp9R3cc9Cr9QEAAAAA0BpZfR0AAAAAAAAAWh+SUgAAAAAAADAdSSkAAAA/Mn36dFksFrffk046yTW/tLRU6enpiomJUXh4uEaNGqW8vDy3dezYsUPDhw9XaGio4uPjdccddzCWIgAA8DrGlAIAAPAzXbp00fLly12v27T5v1O+yZMn66OPPtI777yjyMhITZo0SSNHjtSXX34pSaqqqtLw4cOVmJiotWvXKicnR1dddZUCAwP10EMPmd4WAADgv0hKAQAA+Jk2bdooMTGx1vTCwkK99NJLWrBggc4991xJ0rx583TyySfrq6++0plnnqmlS5dq06ZNWr58uRISEtSjRw898MADmjp1qqZPn66goCCzmwMAAPwUSSkAAAA/k5WVpeTkZAUHB6tPnz6aNWuWOnTooHXr1qmiokKDBw92lT3ppJPUoUMHZWRk6Mwzz1RGRoa6du2qhIQEV5m0tDTdcMMN+umnn3TqqafWWWdZWZnKyv7vibgOh0OS5HQ65XQ6m6ilAJqr6uOe9wCgdfL0uCcpBQAA4Ed69+6t+fPnq1OnTsrJydGMGTPUt29fbdy4Ubm5uQoKClJUVJTbMgkJCcrNzZUk5ebmuiWkqudXz6vPrFmzNGPGjFrT8/PzVVpaepStAtDS7N+/3/Xv7t27fRwNALMVFRV5VI6kFAAAgB8ZNmyY6//dunVT7969lZKSorffflshISFNVu+0adM0ZcoU12uHw6H27dsrLi5Odru9yeoF0Dy1bdvW9W98fLyPowFgtuDgYI/KkZQCAADwY1FRUTrxxBO1ZcsWnXfeeSovL1dBQYHb1VJ5eXmuMagSExP1zTffuK2j+ul8dY1TVc1ms8lms9WabrVaZbXywGegtak+7nkPAFonT4973h0AAAD8WHFxsbZu3aqkpCT16tVLgYGBWrFihWv+5s2btWPHDvXp00eS1KdPH/34449ut9ssW7ZMdrtdnTt3Nj1+AADgv7hSCgAAwI/cfvvtuuCCC5SSkqJdu3bp/vvvV0BAgC6//HJFRkZqwoQJmjJliqKjo2W323XTTTepT58+OvPMMyVJQ4YMUefOnXXllVdq9uzZys3N1T333KP09PQ6r4QCAAA4Un5/pdTDDz8si8WiW2+91dehAAAANLmdO3fq8ssvV6dOnXTJJZcoJiZGX331leLi4iRJTzzxhP72t79p1KhR6tevnxITE/Xee++5lg8ICNDixYsVEBCgPn366IorrtBVV12lmTNn+qpJAADAT/n1lVLffvut/v3vf6tbt26+DgUAAMAUb775ZoPzg4ODNXfuXM2dO7feMikpKfr444+9HRoAAIAbv71Sqri4WGPGjNF//vMf15MfAAAAAAAA0Dz47ZVS6enpGj58uAYPHqwHH3ywwbJlZWUqKytzvXY4HJIkp9Mpp9N51LE4nU4ZhuH612KxqPqnPhZZZLVaGyznrTLers/s9lksFlf/1seTfj/SvqqrbHPdNkdaX822+lv7as73ZL9qDceyv9RX17HqT+2rOe/QH2/FXlVRpe3bt8swjHpjz87OlrPKaWpfefL+fyS8vT4AAADUzS+TUm+++abWr1+vb7/91qPys2bN0owZM2pNz8/PV2lp6VHH43Q6VVhYKMMwVFRUpI6pHRUWEqbggOB6l4mMjJS1i1Wp4amyB9ibtIzX6+tglTPcaUp9pSGlOpB6QEVFRW5PCarJk34/kr6KtcbKUO0/0prttjmK+g5tqz+2z62MLVIdUzs2uF+19GM5oHOAEkMSFREQYUp9vt5fah6r/ta+Q1W31R5p90pcxZZiVYZX6rn5zymwTWC9sVeUVygyPFLtAtspPCC8ydpXrSykTPYEu4qLixt8/z8SRUVFXl0fAAAA6uZ3Sanff/9dt9xyi5YtW6bg4Pr/UDzUtGnTNGXKFNdrh8Oh9u3bKy4uTnZ7/SfEnnI6nbJYLIqLi1NJSYmytmUpqnuUwuxh9S6zp3CPMn/KlLO/U7FVsU1axpvr2lu4V9YdVjmPdSqmKqbJ6ztw8IAKthUoIiJC8fHx9dZXXFzcaL8fbl8Z/Q1FOiO1s2pnrcRUc9w2R1Nf9RUL1W31t/YdyiKLysrKlLUtq8H9ypN9qjm2r7rMxk0blXp+qgrDC+tMrLbU7VdXmZr7r7+171CHtjW/MN87sefvUeamTHXq3klRx0TVG3vBlgJtXr1ZFf0qFBvd9H1VcrBEcXlxCg8Pb/D9/0h4ev4AAACAo+N3Sal169Zp9+7d6tmzp2taVVWV1qxZo2effVZlZWUKCAhwW8Zms9X5iGOr1Sqr1TvDblksf92O8NetBtU/9TH01+1+DZTzVhlv12d2+6pvo2poW3nS70faV3WVb67b5mjqq9lef2tfzTKN7Vf+dCzXVa6lb7+aZWq21d/aV3O+N4/T6jJBbYMUmhBab+wle0pM7ytP3v+PhLfXBwAAgLr5XVJq0KBB+vHHH92mjR8/XieddJKmTp1aKyEFAAAAAAAA8/ldUioiIkKnnHKK27SwsDDFxMTUmg4AAAAAAADf4Pp0AAAAAAAAmM7vrpSqy6pVq3wdAgAAAAAAAA7BlVIAAAAAAAAwHUkpAAAAAAAAmI6kFAAAAAAAAExHUgoAAAAAAACmIykFAAAAAAAA05GUAgAAAAAAgOlISgEAAAAAAMB0JKUAAAAAAABgOpJSAAAAAAAAMB1JKQAAAAAAAJiOpBQAAAAAAABM18bXAQBHq6K8QtnZ2Q2Wyc7OVmVlpUkRAQAAAACAxpCUQotWXlyu7G3Zuunum2QLstVbruxgmX7f9bsiyyNNjA4AAAAAANSHpBRatKrSKlVaKxV0TpCijomqt9z+rP2qfL+Sq6UAAAAAAGgmSErBLwS3DVZYQli98w/uOWhiNAAAAAAAoDEMdA4AAOBHZs2apdNPP10RERGKj4/XiBEjtHnzZrcyAwYMkMVicfu9/vrr3crs2LFDw4cPV2hoqOLj43XHHXdwxTEAAPAqrpQCAADwI6tXr1Z6erpOP/10VVZW6q677tKQIUO0adMmhYX931XF1157rWbOnOl6HRoa6vp/VVWVhg8frsTERK1du1Y5OTm66qqrFBgYqIceesjU9gAAAP9FUgoAAMCPLFmyxO31/PnzFR8fr3Xr1qlfv36u6aGhoUpMTKxzHUuXLtWmTZu0fPlyJSQkqEePHnrggQc0depUTZ8+XUFBQU3aBgAA0Dpw+x4AAIAfKywslCRFR0e7TX/99dcVGxurU045RdOmTVNJSYlrXkZGhrp27aqEhATXtLS0NDkcDv3000/mBA4AAPweV0oBAAD4KafTqVtvvVVnn322TjnlFNf00aNHKyUlRcnJycrMzNTUqVO1efNmvffee5Kk3Nxct4SUJNfr3NzcOusqKytTWVmZ67XD4XDF4HQ6vdouAM1f9XHPewDQOnl63JOUAgAA8FPp6enauHGjvvjiC7fpEydOdP2/a9euSkpK0qBBg7R161Ydf/zxR1TXrFmzNGPGjFrT8/PzVVpaekTrBNBy7d+/3/Xv7t27fRwNALMVFRV5VI6kFAAAgB+aNGmSFi9erDVr1qhdu3YNlu3du7ckacuWLTr++OOVmJiob775xq1MXl6eJNU7DtW0adM0ZcoU12uHw6H27dsrLi5Odrv9aJoCoAVq27at69/4+HgfRwPAbMHBwR6VIykFAADgRwzD0E033aT3339fq1atUmpqaqPLbNiwQZKUlJQkSerTp4/+9a9/affu3a4/JpctWya73a7OnTvXuQ6bzSabzVZrutVqldXKMKZAa1N93PMeALROnh73JKUAAAD8SHp6uhYsWKAPPvhAERERrjGgIiMjFRISoq1bt2rBggU6//zzFRMTo8zMTE2ePFn9+vVTt27dJElDhgxR586ddeWVV2r27NnKzc3VPffco/T09DoTTwAAAEeClDUAAIAfef7551VYWKgBAwYoKSnJ9fvWW29JkoKCgrR8+XINGTJEJ510km677TaNGjVKH374oWsdAQEBWrx4sQICAtSnTx9dccUVuuqqqzRz5kxfNQsAAPghrpQCAADwI4ZhNDi/ffv2Wr16daPrSUlJ0ccff+ytsAAAAGrxyyulZs2apdNPP10RERGKj4/XiBEjtHnzZl+HBQAAAAAAgL/4ZVJq9erVSk9P11dffaVly5apoqJCQ4YM0YEDB3wdGgAAAAAAAOSnt+8tWbLE7fX8+fMVHx+vdevWqV+/fj6KCgAAAAAAANX88kqpmgoLCyVJ0dHRPo4EAAAAAAAAkp9eKXUop9OpW2+9VWeffbZOOeWUOsuUlZWprKzM9drhcLiWdTqdXonBMAzXvxaLRdU/9bHIIqvV2mA5b5Xxdn3+3L66ytVVtjnGfjT11Wyrv7Wv5nyLLHJWOLV9+/Z6BwzOzs6Ws8rZ4trXGuur61j1p/bVnHfoT0uK/Ujqs1gsrs9Xb/L2+gAAAFA3v09Kpaena+PGjfriiy/qLTNr1izNmDGj1vT8/HyVlpYedQxOp1OFhYUyDENFRUXqmNpRYSFhCg4IrneZyMhIWbtYlRqeKnuAvUnLeL2+DlY5w53m1Wdi+2qWi7XGylDtpEVzjP1o6zu0rf7YvkOFW8IVGR6p5+Y/p8A2gXWWqSivUGR4pNoFtlN4QHiLal9kZKQCOgcoMSRREQERptTn6/2l5rHqb+07VHVb7ZH2Fhf74dRXFlIme4JdxcXF2r17d73ljkRRUZFX1wcAAIC6+XVSatKkSVq8eLHWrFmjdu3a1Vtu2rRpmjJliuu1w+FQ+/btFRcXJ7u9/hNiTzmdTlksFsXFxamkpERZ27IU1T1KYfawepfZU7hHmT9lytnfqdiq2CYt48117S3cK+sOq5zHOhVTFeN37Tu0nNHfUKQzUjurdtZKTDXH2I+mvuorFqrb6m/tO5RFFkUWRmr9z+vVsVtHRR0TVed6CrYUaPPqzaroV6HY6JbTvuoyGzdtVOr5qSoML6wzsdpSt19dZWruv/7WvkMd2tb8wvwWFfvh1ldysERxeXEKDw9XfHx8veWORHBw/V8aAQAAwHv8MillGIZuuukmvf/++1q1apVSU1MbLG+z2WSz2WpNt1qtslq9M+yWxfLX7Qh/3WpQ/VMfQ3/d7tdAOW+V8XZ9/ty+usrVVb45xn609dVsr7+1r64yQW2DFJoQWmeZkj0lLb599e2/TV2f2e2rnlbztT+1r+Z8bx6nzbmvqm+J99ZndTVvrw8AAAB188ukVHp6uhYsWKAPPvhAERERys3NlfTnLQEhISE+jg4AAAAAAAB++VXg888/r8LCQg0YMEBJSUmu37feesvXoQEAAAAAAEB+eqVUfU/LAgAAAAAAQPPgl1dKAQAAAAAAoHkjKQUAAAAAAADTkZQCAAAAAACA6UhKAQAAAAAAwHQkpQAAAAAAAGA6klIAAAAAAAAwHUkpAAAAAAAAmI6kFAAAAAAAAExHUgoAAAAAAACmIykFAAAAAAAA05GUAgAAAAAAgOlISgEAAAAAAMB0JKUAAAAAAABgOpJSAAAAAAAAMB1JKQAAANRp7ty5OvbYYxUcHKzevXvrm2++8XVIAADAj5CUAgAAQC1vvfWWpkyZovvvv1/r169X9+7dlZaWpt27d/s6NAAA4Cfa+DoAAAAAND+PP/64rr32Wo0fP16S9MILL+ijjz7Syy+/rH/+858+jg5AUygpKdEvv/zilXVVr+eXX36R1eqdayFOOukkhYaGemVdAJoHklIAAABwU15ernXr1mnatGmuaVarVYMHD1ZGRkady5SVlamsrMz12uFwSJKcTqecTmfTBgzAKzZt2qTTTz/dq+u88sorvbaub7/9Vj179vTa+gA0HU8/+0lKAQAAwM2ePXtUVVWlhIQEt+kJCQn1XkUxa9YszZgxo9b0/Px8lZaWNkmcALwrOjpan376qVfWdfDgQf3666868cQTFRIS4pV1RkdHcwsx0EIUFRV5VI6kFAAAAI7atGnTNGXKFNdrh8Oh9u3bKy4uTna73YeRATgcxx57rFfW43Q6dcYZZyguLs5rt+8BaDmCg4M9KkdSCgAAAG5iY2MVEBCgvLw8t+l5eXlKTEyscxmbzSabzVZrutVq5Q9SoJWyWCy8BwCtlKfHPe8OAAAAcBMUFKRevXppxYoVrmlOp1MrVqxQnz59fBgZAADwJ1wpBQAAgFqmTJmisWPH6rTTTtMZZ5yhJ598UgcOHHA9jQ8AAOBokZQCAABALZdeeqny8/N13333KTc3Vz169NCSJUtqDX4OAABwpEhKAQAAoE6TJk3SpEmTfB0GAADwU4wpBQAAAAAAANP5bVJq7ty5OvbYYxUcHKzevXvrm2++8XVIAAAAAAAA+ItfJqXeeustTZkyRffff7/Wr1+v7t27Ky0tTbt37/Z1aAAAAAAAAJCfJqUef/xxXXvttRo/frw6d+6sF154QaGhoXr55Zd9HRoAAAAAAADkh0mp8vJyrVu3ToMHD3ZNs1qtGjx4sDIyMnwYGQAAAAAAAKr53dP39uzZo6qqqlqPK05ISNAvv/xS5zJlZWUqKytzvS4sLJQkFRQUyOl0HnVMTqdTDodDQUFBcjgcclY5VbyrWFWlVfUuc3D3QVlk0cHcg3JYHU1axqv15R9UcFWwSnNLzanP5PbVLFcUWiRHqUOGjGYf+9HUZ5FFRcH/11Z/a9+hLLIosDDQb9t3aJmSvSVylNTef/2lfdVlau6//ta+Qx3a1pYW++HWV7qvVG0r2qqoqEgFBQX1ljsSDsef9RpG7WMDnqvuv+r+BNC6OJ1OFRUVKTg4WFar310LAaARnp5PWQw/O+PatWuXjjnmGK1du1Z9+vRxTb/zzju1evVqff3117WWmT59umbMmGFmmAAAoJn7/fff1a5dO1+H0WLt3LlT7du393UYAADAhxo7n/K7K6ViY2MVEBCgvLw8t+l5eXlKTEysc5lp06ZpypQprtdOp1P79u1TTEyMLBbLUcfkcDjUvn17/f7777Lb7Ue9vuaMtvon2up/Wks7Jdrqr5qyrYZhqKioSMnJyV5db2uTnJys33//XREREV45nwLQsrSmzyQAtXl6PuV3SamgoCD16tVLK1as0IgRIyT9mWRasWKFJk2aVOcyNptNNpvNbVpUVJTXY7Pb7a3mDZm2+ifa6n9aSzsl2uqvmqqtkZGRXl9na2O1WrnSDECr+kwC4M6T8ym/S0pJ0pQpUzR27FiddtppOuOMM/Tkk0/qwIEDGj9+vK9DAwAAAAAAgPw0KXXppZcqPz9f9913n3Jzc9WjRw8tWbKk1uDnAAAAAAAA8A2/TEpJ0qRJk+q9Xc9sNptN999/f61bBP0RbfVPtNX/tJZ2SrTVX7WmtgJAS8T7NABP+N3T9wAAAAAAAND8WX0dAAAAAAAAAFofklIAAAAAAAAwHUkpAAAAAAAAmI6klAnmzp2rY489VsHBwerdu7e++eYbX4d0WGbNmqXTTz9dERERio+P14gRI7R582a3MgMGDJDFYnH7vf76693K7NixQ8OHD1doaKji4+N1xx13qLKy0symNGr69Om12nHSSSe55peWlio9PV0xMTEKDw/XqFGjlJeX57aOltBOSTr22GNrtdVisSg9PV1Sy96ma9as0QUXXKDk5GRZLBYtXLjQbb5hGLrvvvuUlJSkkJAQDR48WFlZWW5l9u3bpzFjxshutysqKkoTJkxQcXGxW5nMzEz17dtXwcHBat++vWbPnt3UTXPTUDsrKio0depUde3aVWFhYUpOTtZVV12lXbt2ua2jrv3g4Ycfdivj63ZKjW/TcePG1WrH0KFD3cq0hG0qNd7Wuo5bi8WiOXPmuMq0hO3qyWeLt95zV61apZ49e8pms+mEE07Q/Pnzm7p5ANBqNfY5BgCHIinVxN566y1NmTJF999/v9avX6/u3bsrLS1Nu3fv9nVoHlu9erXS09P11VdfadmyZaqoqNCQIUN04MABt3LXXnutcnJyXL+H/oFTVVWl4cOHq7y8XGvXrtUrr7yi+fPn67777jO7OY3q0qWLWzu++OIL17zJkyfrww8/1DvvvKPVq1dr165dGjlypGt+S2rnt99+69bOZcuWSZL+8Y9/uMq01G164MABde/eXXPnzq1z/uzZs/X000/rhRde0Ndff62wsDClpaWptLTUVWbMmDH66aeftGzZMi1evFhr1qzRxIkTXfMdDoeGDBmilJQUrVu3TnPmzNH06dP14osvNnn7qjXUzpKSEq1fv1733nuv1q9fr/fee0+bN2/WhRdeWKvszJkz3bbzTTfd5JrXHNopNb5NJWno0KFu7XjjjTfc5reEbSo13tZD25iTk6OXX35ZFotFo0aNcivX3LerJ58t3njP3bZtm4YPH66BAwdqw4YNuvXWW3XNNdfo008/Na2tANCaePKZDQAuBprUGWecYaSnp7teV1VVGcnJycasWbN8GNXR2b17tyHJWL16tWta//79jVtuuaXeZT7++GPDarUaubm5rmnPP/+8YbfbjbKysqYM97Dcf//9Rvfu3eucV1BQYAQGBhrvvPOOa9rPP/9sSDIyMjIMw2g57azLLbfcYhx//PGG0+k0DMN/tqkk4/3333e9djqdRmJiojFnzhzXtIKCAsNmsxlvvPGGYRiGsWnTJkOS8e2337rKfPLJJ4bFYjH++OMPwzAM47nnnjPatm3r1tapU6canTp1auIW1a1mO+vyzTffGJKM7Oxs17SUlBTjiSeeqHeZ5tZOw6i7rWPHjjUuuuiiepdpidvUMDzbrhdddJFx7rnnuk1ridu15meLt95z77zzTqNLly5udV166aVGWlpaUzcJAFo9Tz7HALRuXCnVhMrLy7Vu3ToNHjzYNc1qtWrw4MHKyMjwYWRHp7CwUJIUHR3tNv31119XbGysTjnlFE2bNk0lJSWueRkZGeratasSEhJc09LS0uRwOPTTTz+ZE7iHsrKylJycrOOOO05jxozRjh07JEnr1q1TRUWF2/Y86aST1KFDB9f2bEntPFR5eblee+01XX311bJYLK7p/rJND7Vt2zbl5ua6bcfIyEj17t3bbTtGRUXptNNOc5UZPHiwrFarvv76a1eZfv36KSgoyFUmLS1Nmzdv1v79+01qzeEpLCyUxWJRVFSU2/SHH35YMTExOvXUUzVnzhy3W59aUjtXrVql+Ph4derUSTfccIP27t3rmuev2zQvL08fffSRJkyYUGteS9uuNT9bvPWem5GR4baO6jIt+XMYAADAX7TxdQD+bM+ePaqqqnI7WZakhIQE/fLLLz6K6ug4nU7deuutOvvss3XKKae4po8ePVopKSlKTk5WZmampk6dqs2bN+u9996TJOXm5tbZD9XzmovevXtr/vz56tSpk3JycjRjxgz17dtXGzduVG5uroKCgmr9QZ+QkOBqQ0tpZ00LFy5UQUGBxo0b55rmL9u0purY6or90O0YHx/vNr9NmzaKjo52K5OamlprHdXz2rZt2yTxH6nS0lJNnTpVl19+uex2u2v6zTffrJ49eyo6Olpr167VtGnTlJOTo8cff1xSy2nn0KFDNXLkSKWmpmrr1q266667NGzYMGVkZCggIMAvt6kkvfLKK4qIiHC7pU1qedu1rs8Wb73n1lfG4XDo4MGDCgkJaYomAQAAwAMkpXBY0tPTtXHjRrdxliS5jcvStWtXJSUladCgQdq6dauOP/54s8M8YsOGDXP9v1u3burdu7dSUlL09ttv+/UfLi+99JKGDRum5ORk1zR/2ab4c9DzSy65RIZh6Pnnn3ebN2XKFNf/u3XrpqCgIF133XWaNWuWbDab2aEescsuu8z1/65du6pbt246/vjjtWrVKg0aNMiHkTWtl19+WWPGjFFwcLDb9Ja2Xev7bAEAAIB/4/a9JhQbG6uAgIBaTwrKy8tTYmKij6I6cpMmTdLixYu1cuVKtWvXrsGyvXv3liRt2bJFkpSYmFhnP1TPa66ioqJ04oknasuWLUpMTFR5ebkKCgrcyhy6PVtiO7Ozs7V8+XJdc801DZbzl21aHVtDx2ViYmKthxFUVlZq3759LW5bVyeksrOztWzZMrerpOrSu3dvVVZWavv27ZJaTjtrOu644xQbG+u2v/rLNq32+eefa/PmzY0eu1Lz3q71fbZ46z23vjJ2u92vv2wAAABoCUhKNaGgoCD16tVLK1ascE1zOp1asWKF+vTp48PIDo9hGJo0aZLef/99ffbZZ7Vu+ajLhg0bJElJSUmSpD59+ujHH390+6Ow+g/kzp07N0nc3lBcXKytW7cqKSlJvXr1UmBgoNv23Lx5s3bs2OHani2xnfPmzVN8fLyGDx/eYDl/2aapqalKTEx0244Oh0Nff/2123YsKCjQunXrXGU+++wzOZ1OV3KuT58+WrNmjSoqKlxlli1bpk6dOjWb27yqE1JZWVlavny5YmJiGl1mw4YNslqtrlvdWkI767Jz507t3bvXbX/1h216qJdeekm9evVS9+7dGy3bHLdrY58t3nrP7dOnj9s6qsu0pM9hAAAAv+Xjgdb93ptvvmnYbDZj/vz5xqZNm4yJEycaUVFRbk8Kau5uuOEGIzIy0li1apWRk5Pj+i0pKTEMwzC2bNlizJw50/juu++Mbdu2GR988IFx3HHHGf369XOto7Ky0jjllFOMIUOGGBs2bDCWLFlixMXFGdOmTfNVs+p02223GatWrTK2bdtmfPnll8bgwYON2NhYY/fu3YZhGMb1119vdOjQwfjss8+M7777zujTp4/Rp08f1/ItpZ3VqqqqjA4dOhhTp051m97St2lRUZHx/fffG99//70hyXj88ceN77//3vXUuYcfftiIiooyPvjgAyMzM9O46KKLjNTUVOPgwYOudQwdOtQ49dRTja+//tr44osvjI4dOxqXX365a35BQYGRkJBgXHnllcbGjRuNN9980wgNDTX+/e9/N4t2lpeXGxdeeKHRrl07Y8OGDW7HbvVTydauXWs88cQTxoYNG4ytW7car732mhEXF2dcddVVzaqdjbW1qKjIuP32242MjAxj27ZtxvLly42ePXsaHTt2NEpLS13raAnbtLG2VissLDRCQ0ON559/vtbyLWW7NvbZYhjeec/97bffjNDQUOOOO+4wfv75Z2Pu3LlGQECAsWTJEtPaCgCtiSefYwBQjaSUCZ555hmjQ4cORlBQkHHGGWcYX331la9DOiyS6vydN2+eYRiGsWPHDqNfv35GdHS0YbPZjBNOOMG44447jMLCQrf1bN++3Rg2bJgREhJixMbGGrfddptRUVHhgxbV79JLLzWSkpKMoKAg45hjjjEuvfRSY8uWLa75Bw8eNG688Uajbdu2RmhoqHHxxRcbOTk5butoCe2s9umnnxqSjM2bN7tNb+nbdOXKlXXus2PHjjUMwzCcTqdx7733GgkJCYbNZjMGDRpUqw/27t1rXH755UZ4eLhht9uN8ePHG0VFRW5lfvjhB+Occ84xbDabccwxxxgPP/ywWU00DKPhdm7btq3eY3flypWGYRjGunXrjN69exuRkZFGcHCwcfLJJxsPPfSQWyKnObSzsbaWlJQYQ4YMMeLi4ozAwEAjJSXFuPbaa2sl/1vCNjWMxvdfwzCMf//730ZISIhRUFBQa/mWsl0b+2wxDO+9565cudLo0aOHERQUZBx33HFudQAAvMuTzzEAqGYxDMPw+uVXAAAAAAAAQAMYUwoAAAAAAACmIykFAAAAAAAA05GUAgAAAAAAgOlISgEAAAAAAMB0JKUAAAAAAABgOpJSAAAAAAAAMB1JKQAAAAAAAJiOpBQAAAAAAABMR1IKgF+zWCxauHChr8MAAAAAANRAUgpAi5afn68bbrhBHTp0kM1mU2JiotLS0vTll1/6OjQAAAAAQAPa+DoAADgao0aNUnl5uV555RUdd9xxysvL04oVK7R3794mq7O8vFxBQUFNtn4AAAAAaA24UgpAi1VQUKDPP/9cjzzyiAYOHKiUlBSdccYZmjZtmi688EJXuT179ujiiy9WaGioOnbsqEWLFrnmVVVVacKECUpNTVVISIg6deqkp556yq2ecePGacSIEfrXv/6l5ORkderUSZL0+++/65JLLlFUVJSio6N10UUXafv27a7lVq1apTPOOENhYWGKiorS2Wefrezs7KbtFAAAAABoIUhKAWixwsPDFR4eroULF6qsrKzecjNmzNAll1yizMxMnX/++RozZoz27dsnSXI6nWrXrp3eeecdbdq0Sffdd5/uuusuvf32227rWLFihTZv3qxly5Zp8eLFqqioUFpamiIiIvT555/ryy+/VHh4uIYOHary8nJVVlZqxIgR6t+/vzIzM5WRkaGJEyfKYrE0aZ8AAAAAQEthMQzD8HUQAHCk/ve//+naa6/VwYMH1bNnT/Xv31+XXXaZunXrJunPgc7vuecePfDAA5KkAwcOKDw8XJ988omGDh1a5zonTZqk3Nxcvfvuu5L+vFJqyZIl2rFjh+u2vddee00PPvigfv75Z1eiqby8XFFRUVq4cKFOO+00xcTEaNWqVerfv39TdwMAAAAAtDhcKQWgRRs1apR27dqlRYsWaejQoVq1apV69uyp+fPnu8pUJ6gkKSwsTHa7Xbt373ZNmzt3rnr16qW4uDiFh4frxRdf1I4dO9zq6dq1q9s4Uj/88IO2bNmiiIgI1xVb0dHRKi0t1datWxUdHa1x48YpLS1NF1xwgZ566inl5OQ0XUcAAAAAQAtDUgpAixccHKzzzjtP9957r9auXatx48bp/vvvd80PDAx0K2+xWOR0OiVJb775pm6//XZNmDBBS5cu1YYNGzR+/HiVl5e7LRMWFub2uri4WL169dKGDRvcfn/99VeNHj1akjRv3jxlZGTorLPO0ltvvaUTTzxRX331VVN0AQAAAAC0ODx9D4Df6dy5sxYuXOhR2S+//FJnnXWWbrzxRte0rVu3Nrpcz5499dZbbyk+Pl52u73ecqeeeqpOPfVUTZs2TX369NGCBQt05plnehQbAAAAAPgzrpQC0GLt3btX5557rl577TVlZmZq27ZteueddzR79mxddNFFHq2jY8eO+u677/Tpp5/q119/1b333qtvv/220eXGjBmj2NhYXXTRRfr888+1bds2rVq1SjfffLN27typbdu2adq0acrIyFB2draWLl2qrKwsnXzyyUfbbAAAAADwC1wpBaDFCg8PV+/evfXEE09o69atqqioUPv27XXttdfqrrvu8mgd1113nb7//ntdeumlslgsuvzyy3XjjTfqk08+aXC50NBQrVmzRlOnTtXIkSNVVFSkY445RoMGDZLdbtfBgwf1yy+/6JVXXtHevXuVlJSk9PR0XXfddd5oOgAAAAC0eDx9DwAAAAAAAKbj9j0AAAAAAACYjqQUAAAAAAAATEdSCgAAAAAAAKYjKQUAAAAAAADTkZQCAAAAAACA6UhKAQAAAAAAwHQkpQAAAAAAAGA6klIAAAAAAAAwHUkpAAAAAAAAmI6kFAAAAAAAAExHUgoAAAAAAACmIykFAAAAAAAA0/1/Jd/aKUcVokYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Correlation between Likes and Shares: -0.029\n" ] } ], "source": [ "# Target Variable Analysis\n", "\n", "# Analyze the target variables\n", "print(\"=\"*60)\n", "print(\"TARGET VARIABLES ANALYSIS\")\n", "print(\"=\"*60)\n", "\n", "# Define targets and features\n", "y_likes = df['likes']\n", "y_shares = df['shares']\n", "\n", "# Remove both likes and shares from features, along with other non-predictive columns\n", "X = df.drop(columns=['image_id', 'user_id', 'prompt', 'shares', 'likes', 'comments',\n", " 'top_comment', 'resolution', 'creation_date'])\n", "\n", "# One-hot encode platform\n", "X = pd.get_dummies(X, columns=['platform'], prefix='platform')\n", "\n", "# Target statistics\n", "print(f\"\\nLikes Statistics:\")\n", "print(f\"Mean: {y_likes.mean():.2f}\")\n", "print(f\"Median: {y_likes.median():.2f}\")\n", "print(f\"Std Dev: {y_likes.std():.2f}\")\n", "print(f\"Skewness: {y_likes.skew():.2f}\")\n", "\n", "print(f\"\\nShares Statistics:\")\n", "print(f\"Mean: {y_shares.mean():.2f}\")\n", "print(f\"Median: {y_shares.median():.2f}\")\n", "print(f\"Std Dev: {y_shares.std():.2f}\")\n", "print(f\"Skewness: {y_shares.skew():.2f}\")\n", "\n", "# Visualize both target distributions\n", "fig, axes = plt.subplots(2, 2, figsize=(12, 8))\n", "\n", "# Likes distribution\n", "axes[0,0].hist(y_likes, bins=50, edgecolor='black', alpha=0.7, color='blue')\n", "axes[0,0].set_xlabel('Likes')\n", "axes[0,0].set_ylabel('Frequency')\n", "axes[0,0].set_title('Distribution of Likes')\n", "axes[0,0].grid(True, alpha=0.3)\n", "\n", "axes[0,1].boxplot(y_likes, vert=True)\n", "axes[0,1].set_ylabel('Likes')\n", "axes[0,1].set_title('Boxplot of Likes')\n", "axes[0,1].grid(True, alpha=0.3)\n", "\n", "# Shares distribution\n", "axes[1,0].hist(y_shares, bins=50, edgecolor='black', alpha=0.7, color='green')\n", "axes[1,0].set_xlabel('Shares')\n", "axes[1,0].set_ylabel('Frequency')\n", "axes[1,0].set_title('Distribution of Shares')\n", "axes[1,0].grid(True, alpha=0.3)\n", "\n", "axes[1,1].boxplot(y_shares, vert=True)\n", "axes[1,1].set_ylabel('Shares')\n", "axes[1,1].set_title('Boxplot of Shares')\n", "axes[1,1].grid(True, alpha=0.3)\n", "\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Show correlation between likes and shares\n", "correlation = y_likes.corr(y_shares)\n", "print(f\"\\nCorrelation between Likes and Shares: {correlation:.3f}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "x3AkuY7LBlTP" }, "source": [ "# Train-Test Split and Scaling for Multiple Targets" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7o5a1IBIBoYr", "outputId": "518232f1-b5eb-4a14-fe27-dc00800bf082" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "============================================================\n", "DATA SPLITTING AND SCALING\n", "============================================================\n", "Training set: (400, 27)\n", "Test set: (100, 27)\n", "Data preprocessing completed!\n" ] } ], "source": [ "# Train-Test Split and Scaling\n", "\n", "# Split the data\n", "print(\"=\"*60)\n", "print(\"DATA SPLITTING AND SCALING\")\n", "print(\"=\"*60)\n", "\n", "# Split for both targets\n", "X_train, X_test, y_likes_train, y_likes_test, y_shares_train, y_shares_test = train_test_split(\n", " X, y_likes, y_shares, test_size=0.2, random_state=42\n", ")\n", "\n", "print(f\"Training set: {X_train.shape}\")\n", "print(f\"Test set: {X_test.shape}\")\n", "\n", "# Scale features\n", "scaler = StandardScaler()\n", "X_train_scaled = scaler.fit_transform(X_train)\n", "X_test_scaled = scaler.transform(X_test)\n", "\n", "print(\"Data preprocessing completed!\")" ] }, { "cell_type": "markdown", "metadata": { "id": "a9p0hQpBBosr" }, "source": [ "# Training Models for Both Targets" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "YdVJjloPhWrK", "outputId": "6e8ad345-263b-446f-cd42-4129b71539b2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "============================================================\n", "TRAINING REGRESSION MODELS FOR LIKES AND SHARES\n", "============================================================\n", "\n", "Training Linear Regression...\n", "\n", "Training Ridge Regression...\n", "\n", "Training Lasso Regression...\n", "\n", "Training Random Forest...\n", "\n", "Training Gradient Boosting...\n", "\n", "All models trained successfully!\n" ] } ], "source": [ "# Training Multiple Regression Models for Both Targets\n", "\n", "# Train multiple regression models for both likes and shares\n", "print(\"=\"*60)\n", "print(\"TRAINING REGRESSION MODELS FOR LIKES AND SHARES\")\n", "print(\"=\"*60)\n", "\n", "# Dictionaries to store results\n", "results_likes = {}\n", "results_shares = {}\n", "\n", "# Model configurations\n", "models_config = {\n", " 'Linear Regression': LinearRegression(),\n", " 'Ridge Regression': Ridge(alpha=10.0),\n", " 'Lasso Regression': Lasso(alpha=1.0),\n", " 'Random Forest': RandomForestRegressor(n_estimators=100, max_depth=10, random_state=42),\n", " 'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, max_depth=5, random_state=42)\n", "}\n", "\n", "# Train models for both targets\n", "for model_name, model in models_config.items():\n", " print(f\"\\nTraining {model_name}...\")\n", "\n", " # Clone the model for each target to avoid interference\n", " from sklearn.base import clone\n", "\n", " # Train for likes\n", " model_likes = clone(model)\n", " model_likes.fit(X_train_scaled, y_likes_train)\n", " y_pred_likes = model_likes.predict(X_test_scaled)\n", "\n", " results_likes[model_name] = {\n", " 'model': model_likes,\n", " 'predictions': y_pred_likes,\n", " 'r2': r2_score(y_likes_test, y_pred_likes),\n", " 'mae': mean_absolute_error(y_likes_test, y_pred_likes),\n", " 'rmse': np.sqrt(mean_squared_error(y_likes_test, y_pred_likes))\n", " }\n", "\n", " # Train for shares\n", " model_shares = clone(model)\n", " model_shares.fit(X_train_scaled, y_shares_train)\n", " y_pred_shares = model_shares.predict(X_test_scaled)\n", "\n", " results_shares[model_name] = {\n", " 'model': model_shares,\n", " 'predictions': y_pred_shares,\n", " 'r2': r2_score(y_shares_test, y_pred_shares),\n", " 'mae': mean_absolute_error(y_shares_test, y_pred_shares),\n", " 'rmse': np.sqrt(mean_squared_error(y_shares_test, y_pred_shares))\n", " }\n", "\n", "print(\"\\nAll models trained successfully!\")" ] }, { "cell_type": "markdown", "metadata": { "id": "1GgeDPqbZyH0" }, "source": [ "# Model Comparison for Both Targets" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "yEScyc2GiX86", "outputId": "8f33961c-be90-485b-8b18-eb4ab9f8d405" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "============================================================\n", "MODEL PERFORMANCE COMPARISON\n", "============================================================\n", "\n", "LIKES Prediction Performance:\n", " Model R² Score MAE RMSE\n", " Random Forest -0.039935 1315.402912 1509.824436\n", " Ridge Regression -0.068577 1367.631135 1530.475089\n", " Lasso Regression -0.093193 1374.475798 1548.002391\n", "Linear Regression -0.102456 1377.323365 1554.547192\n", "Gradient Boosting -0.238477 1414.755863 1647.658788\n", "\n", "SHARES Prediction Performance:\n", " Model R² Score MAE RMSE\n", " Ridge Regression -0.078386 526.231070 591.928400\n", " Lasso Regression -0.078879 526.242848 592.063513\n", " Random Forest -0.082518 518.135561 593.061334\n", "Linear Regression -0.085271 527.394265 593.814853\n", "Gradient Boosting -0.229741 529.924491 632.104378\n", "\n", "Best model for LIKES: Random Forest\n", "Best model for SHARES: Ridge Regression\n" ] } ], "source": [ "# Model Comparison Table for Both Targets\n", "\n", "# Create comparison tables\n", "print(\"=\"*60)\n", "print(\"MODEL PERFORMANCE COMPARISON\")\n", "print(\"=\"*60)\n", "\n", "# Likes comparison\n", "comparison_likes_df = pd.DataFrame({\n", " 'Model': results_likes.keys(),\n", " 'R² Score': [results_likes[m]['r2'] for m in results_likes],\n", " 'MAE': [results_likes[m]['mae'] for m in results_likes],\n", " 'RMSE': [results_likes[m]['rmse'] for m in results_likes]\n", "})\n", "comparison_likes_df = comparison_likes_df.sort_values('R² Score', ascending=False)\n", "\n", "print(\"\\nLIKES Prediction Performance:\")\n", "print(comparison_likes_df.to_string(index=False))\n", "\n", "# Shares comparison\n", "comparison_shares_df = pd.DataFrame({\n", " 'Model': results_shares.keys(),\n", " 'R² Score': [results_shares[m]['r2'] for m in results_shares],\n", " 'MAE': [results_shares[m]['mae'] for m in results_shares],\n", " 'RMSE': [results_shares[m]['rmse'] for m in results_shares]\n", "})\n", "comparison_shares_df = comparison_shares_df.sort_values('R² Score', ascending=False)\n", "\n", "print(\"\\nSHARES Prediction Performance:\")\n", "print(comparison_shares_df.to_string(index=False))\n", "\n", "# Find best models\n", "best_model_likes = comparison_likes_df.iloc[0]['Model']\n", "best_model_shares = comparison_shares_df.iloc[0]['Model']\n", "print(f\"\\nBest model for LIKES: {best_model_likes}\")\n", "print(f\"Best model for SHARES: {best_model_shares}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "Lf-wrybgaish" }, "source": [ "# Save Models for Both Targets\n", "\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Ax8GI5zaalkF", "outputId": "d17e0f3a-4a8b-4c81-c39e-3b2ff774ab9e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All models and scaler have been saved successfully!\n" ] } ], "source": [ "# Save Models\n", "\n", "import joblib\n", "import os\n", "\n", "# Create models directory if it doesn't exist\n", "os.makedirs('models', exist_ok=True)\n", "\n", "# Save all models and the scaler\n", "for model_name in models_config.keys():\n", " # Save likes models\n", " joblib.dump(results_likes[model_name]['model'],\n", " f'models/{model_name.lower().replace(\" \", \"_\")}_likes.joblib')\n", "\n", " # Save shares models\n", " joblib.dump(results_shares[model_name]['model'],\n", " f'models/{model_name.lower().replace(\" \", \"_\")}_shares.joblib')\n", "\n", "# Save the scaler\n", "joblib.dump(scaler, 'models/scaler.joblib')\n", "\n", "print(\"All models and scaler have been saved successfully!\")" ] }, { "cell_type": "markdown", "metadata": { "id": "IxqiL3sz28by" }, "source": [ "# Prediction Function" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "id": "TIy5twgB48tl" }, "outputs": [], "source": [ "# Prediction Function for Both Likes and Shares\n", "\n", "def predict_virality_all_models(generation_time, gpu_usage, file_size_kb,\n", " width, height, style_accuracy_score,\n", " is_hand_edited, ethical_concerns_flag,\n", " day_of_week, month, hour, platform):\n", " \"\"\"\n", " Predicts both likes and shares using all loaded models.\n", " \"\"\"\n", "\n", " # Create feature dictionary (WITHOUT likes)\n", " sample_data = {\n", " 'style_accuracy_score': style_accuracy_score,\n", " 'generation_time': generation_time,\n", " 'gpu_usage': gpu_usage,\n", " 'file_size_kb': file_size_kb,\n", " 'is_hand_edited': int(is_hand_edited),\n", " 'ethical_concerns_flag': int(ethical_concerns_flag),\n", " 'width': width,\n", " 'height': height,\n", " 'day_of_week': day_of_week,\n", " 'month': month,\n", " 'hour': hour\n", " }\n", "\n", " # Perform feature engineering\n", " sample_data['aspect_ratio'] = width / height if height > 0 else 0\n", " sample_data['total_pixels'] = width * height\n", " sample_data['is_square'] = int(width == height)\n", " sample_data['is_weekend'] = int(day_of_week >= 5)\n", "\n", " # One-hot encode platform\n", " for p in ['Twitter', 'TikTok', 'Reddit', 'Instagram']:\n", " sample_data[f'platform_{p}'] = 1 if platform == p else 0\n", "\n", " # Technical features\n", " sample_data['file_density'] = file_size_kb / (sample_data['total_pixels'] / 1000 + 1)\n", " sample_data['gpu_efficiency'] = generation_time / (gpu_usage + 1)\n", "\n", " # Temporal cyclical features (continued)\n", " sample_data['month_sin'] = np.sin(2 * np.pi * month / 12)\n", " sample_data['month_cos'] = np.cos(2 * np.pi * month / 12)\n", " sample_data['day_sin'] = np.sin(2 * np.pi * day_of_week / 7)\n", " sample_data['day_cos'] = np.cos(2 * np.pi * day_of_week / 7)\n", " sample_data['hour_sin'] = np.sin(2 * np.pi * hour / 24)\n", " sample_data['hour_cos'] = np.cos(2 * np.pi * hour / 24)\n", "\n", " # Create DataFrame and align columns\n", " sample_df = pd.DataFrame([sample_data])\n", " sample_df = sample_df.reindex(columns=expected_columns, fill_value=0)\n", "\n", " # Scale features\n", " try:\n", " sample_scaled = scaler.transform(sample_df)\n", " except Exception as e:\n", " return {}, {}, f\"Error during scaling: {e}\"\n", "\n", " # Predict with all models\n", " predictions_likes = {}\n", " predictions_shares = {}\n", "\n", " for name in model_names:\n", " # Predict likes\n", " if name in all_models_likes:\n", " pred_likes = all_models_likes[name].predict(sample_scaled)[0]\n", " predictions_likes[name] = max(0, int(pred_likes))\n", "\n", " # Predict shares\n", " if name in all_models_shares:\n", " pred_shares = all_models_shares[name].predict(sample_scaled)[0]\n", " predictions_shares[name] = max(0, int(pred_shares))\n", "\n", " return predictions_likes, predictions_shares, None" ] }, { "cell_type": "markdown", "metadata": { "id": "D6X_WgAS0uZw" }, "source": [ "# Load Models for Both Targets" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "jHDEssBjarnA", "outputId": "08b992af-1dd6-476f-afa4-d332fe83556c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loaded: Linear Regression (both likes and shares)\n", "Loaded: Ridge Regression (both likes and shares)\n", "Loaded: Lasso Regression (both likes and shares)\n", "Loaded: Random Forest (both likes and shares)\n", "Loaded: Gradient Boosting (both likes and shares)\n", "Loaded: scaler.joblib\n", "\n", "✅ All models and scaler loaded successfully!\n", "Model expects 27 features.\n" ] } ], "source": [ "# Load Models for Both Likes and Shares\n", "\n", "# Dictionaries to hold the loaded model objects\n", "all_models_likes = {}\n", "all_models_shares = {}\n", "model_names = [\n", " 'Linear Regression', 'Ridge Regression', 'Lasso Regression',\n", " 'Random Forest', 'Gradient Boosting'\n", "]\n", "\n", "try:\n", " # Load all the regression models for both targets\n", " for name in model_names:\n", " # Load likes model\n", " filename_likes = f\"models/{name.lower().replace(' ', '_')}_likes.joblib\"\n", " all_models_likes[name] = joblib.load(filename_likes)\n", "\n", " # Load shares model\n", " filename_shares = f\"models/{name.lower().replace(' ', '_')}_shares.joblib\"\n", " all_models_shares[name] = joblib.load(filename_shares)\n", "\n", " print(f\"Loaded: {name} (both likes and shares)\")\n", "\n", " # Load the scaler\n", " scaler = joblib.load('models/scaler.joblib')\n", " print(\"Loaded: scaler.joblib\")\n", "\n", " models_loaded = True\n", " print(\"\\n✅ All models and scaler loaded successfully!\")\n", "\n", " # Get the feature names\n", " expected_columns = scaler.feature_names_in_\n", " print(f\"Model expects {len(expected_columns)} features.\")\n", "\n", "except FileNotFoundError as e:\n", " print(f\"\\n❌ ERROR: Could not find a model file: {e}\")\n", " print(\"Please make sure all '.joblib' files are in the 'models/' directory.\")\n", " models_loaded = False" ] }, { "cell_type": "markdown", "metadata": { "id": "yIHAkurD1Kbt" }, "source": [ "# Test Model Predictions" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gzQjdwbF1NS6", "outputId": "660a603c-9c62-4d6c-9750-9123ff69311d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "==================================================\n", " TESTING VIRALITY PREDICTIONS\n", "==================================================\n", "\n", "--- Input Values ---\n", " generation_time: 7.5\n", " gpu_usage: 88\n", " file_size_kb: 1200\n", " width: 1080\n", " height: 1350\n", " style_accuracy_score: 92\n", " is_hand_edited: True\n", " ethical_concerns_flag: False\n", " day_of_week: 4\n", " month: 6\n", " hour: 19\n", " platform: Instagram\n", "\n", "--- LIKES Predictions ---\n", " Model Predicted Likes\n", "Gradient Boosting 2788\n", " Ridge Regression 2500\n", " Lasso Regression 2447\n", "Linear Regression 2208\n", " Random Forest 2161\n", "\n", "--- SHARES Predictions ---\n", " Model Predicted Shares\n", "Gradient Boosting 1622\n", " Random Forest 1341\n", "Linear Regression 1230\n", " Ridge Regression 1177\n", " Lasso Regression 1175\n", "\n", "--- Virality Metrics ---\n", "Average Predicted Likes: 2421\n", "Average Predicted Shares: 1309\n", "\n", "✅ Test complete!\n" ] } ], "source": [ "# Test the Updated Models\n", "\n", "if models_loaded:\n", " print(\"\\n\" + \"=\"*50)\n", " print(\" TESTING VIRALITY PREDICTIONS\")\n", " print(\"=\"*50)\n", "\n", " # Test input (without likes)\n", " test_input = {\n", " \"generation_time\": 7.5,\n", " \"gpu_usage\": 88,\n", " \"file_size_kb\": 1200,\n", " \"width\": 1080,\n", " \"height\": 1350, # Portrait aspect ratio\n", " \"style_accuracy_score\": 92,\n", " \"is_hand_edited\": True,\n", " \"ethical_concerns_flag\": False,\n", " \"day_of_week\": 4, # Friday\n", " \"month\": 6, # June\n", " \"hour\": 19, # 7 PM\n", " \"platform\": \"Instagram\"\n", " }\n", "\n", " # Get predictions\n", " likes_predictions, shares_predictions, error = predict_virality_all_models(**test_input)\n", "\n", " if not error:\n", " print(\"\\n--- Input Values ---\")\n", " for key, value in test_input.items():\n", " print(f\"{key:>25}: {value}\")\n", "\n", " print(\"\\n--- LIKES Predictions ---\")\n", " likes_df = pd.DataFrame(list(likes_predictions.items()),\n", " columns=['Model', 'Predicted Likes'])\n", " likes_df = likes_df.sort_values('Predicted Likes', ascending=False)\n", " print(likes_df.to_string(index=False))\n", "\n", " print(\"\\n--- SHARES Predictions ---\")\n", " shares_df = pd.DataFrame(list(shares_predictions.items()),\n", " columns=['Model', 'Predicted Shares'])\n", " shares_df = shares_df.sort_values('Predicted Shares', ascending=False)\n", " print(shares_df.to_string(index=False))\n", "\n", " # Calculate virality metrics\n", " avg_likes = np.mean(list(likes_predictions.values()))\n", " avg_shares = np.mean(list(shares_predictions.values()))\n", "\n", " print(f\"\\n--- Virality Metrics ---\")\n", " print(f\"Average Predicted Likes: {avg_likes:.0f}\")\n", " print(f\"Average Predicted Shares: {avg_shares:.0f}\")\n", " else:\n", " print(f\"Error: {error}\")\n", "\n", " print(\"\\n✅ Test complete!\")" ] }, { "cell_type": "markdown", "metadata": { "id": "rG65NIL22nAS" }, "source": [ "# Visualisation for Both Targets" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 706 }, "id": "XkaigHSA2pVZ", "outputId": "a30d3a51-4aee-45bb-cd16-ae85768fef18" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAASlCAYAAADaj7M5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFMf/B/D33QFH712lCCiKqNg7WCJiicZeomI3VqImakxsiRpj18SaBP0lGntJ7N3Ye++9ICKC9M7N7w++bDzuQNRDEN+v5+FJdnZmdvb2zp3dz+6MTAghQEREREREREREREREREREVEzJC7sBREREREREREREREREREREBYmBcSIiIiIiIiIiIiIiIiIiKtYYGCciIiIiIiIiIiIiIiIiomKNgXEiIiIiIiIiIiIiIiIiIirWGBgnIiIiIiIiIiIiIiIiIqJijYFxIiIiIiIiIiIiIiIiIiIq1hgYJyIiIiIiIiIiIiIiIiKiYo2BcSIiIiIiIiIiIiIiIiIiKtYYGCciIiIiIiIiIiIiIiIiomKNgXH6qDx48AAymQzLly+X0oKDg2Fqalp4jSoigoOD4ebmppYmk8kwceJEnW0jICAAAQEBOquPqChYvnw5ZDIZHjx4UNhNISKiD5hMJsOQIUMKuxnFRs5+rK7P19quK4iKA16zERER0fuSkJCAvn37wtHRETKZDCEhIYXdJI175Nn9/pkzZxZeo4oAbdc/EydOhEwm09k2Dh48CJlMhoMHD+qsTiJtGBinYiP7ZteZM2cKuylvLPvEkv2nUCjg4uKCzz77DBcuXCjs5r2Ra9euYeLEiR9skDDnsZDL5bC2tkZQUBCOHz+ulvfq1ato0KAB/P394ePjg2HDhiEzM/O12zhy5AiCgoJQokQJGBoawsXFBa1atcKqVasKarcK3KZNmxAUFARbW1sYGBjA2dkZHTt2xP79+wu7aURERIXq8uXLaN++PVxdXWFoaIgSJUrgk08+wYIFCwq7aQUm+wZJ9p+xsTHKly+Pb7/9FnFxcYXdvDeyatUqzJ07t7Cb8dZyHgt9fX24ublh2LBhiImJUcs7d+5c1KlTBw0aNEDFihXx999/v7b+tLQ0zJs3D35+fjA3N4elpSV8fHzQv39/3Lhxo4D2qmDFxcVh0qRJqFSpEkxNTWFkZIQKFSpg9OjRePr0aWE3j4iI6IPwav8jr7/3EQBbtGgROnToABcXF8hkMgQHB+eaNyYmBv3794ednR1MTEzQsGFDnDt3Ll/bCQgIyHU/C6pftHDhwg/6Qc2pU6di+fLl+OKLL/DHH3+ge/fuBbo9Nzc3tGzZskC3UVCCg4PVvlPm5uaoVKkSZs2ahdTU1MJu3hv50L+39OHTK+wGEL1Prq6uSE5Ohr6+fmE3RasuXbqgefPmyMzMxPXr17Fo0SLs2LEDJ06cQOXKld97e5KTk6Gn92b/TFy7dg2TJk1CQECAxhvou3fv1mHrCtarx+LWrVtYuHAhGjZsiNOnT8PX1xcA4ODggM2bN8Pa2hoJCQnw9vZG1apV0bNnz1zrXbduHTp16oTKlStj+PDhsLKywv379/Hvv/9i2bJl6Nq16/vaRZ0QQqB3795Yvnw5/Pz8MGLECDg6OiI8PBybNm1C48aNcfToUdSpU6ewm1pgunfvjs6dO0OpVBZ2U4iIqIg5duwYGjZsCBcXF/Tr1w+Ojo54/PgxTpw4gXnz5mHo0KGF3cQCtWjRIpiamiIhIQG7d+/GlClTsH//fhw9elSnbxbkx9uer1etWoUrV65ovL1S1K8rcso+FomJidi3bx8WLFiAc+fO4ciRI1Keli1bYtiwYZDL5di8eTM6deqEly9fwtDQMNd627Vrhx07dqBLly7o168f0tPTcePGDWzduhV16tSBt7f3+9g9nbl37x6aNGmCR48eoUOHDujfvz8MDAxw6dIl/Pbbb9i0aRNu3bpV2M0sUB/SNRsRERVdf/zxh9ry//3f/2HPnj0a6eXKlSvwtkyfPh3x8fGoUaMGwsPDc82nUqnQokULXLx4EV999RVsbW2xcOFCBAQE4OzZs/Dy8nrttkqWLIlp06ZppDs7O7/TPuRm4cKFsLW1zTPYX5Tt378ftWrVwoQJEwq7KZJly5ZBpVIVdjO0UiqV+PXXXwFkPcSxYcMGjBo1CqdPn8bq1avfe3u+/fZbjBkz5o3L5fa9bdCgAZKTk2FgYKCjFhJpx8A4fVRkMlmeN3YKW5UqVfD5559Ly3Xr1sWnn36KRYsWYcmSJVrLJCYmwsTEpEDao+vP6kM6qeU8FvXr10dQUBAWLVqEhQsXAgBsbW2l9XK5HJmZmZDL8x6IY+LEiShfvjxOnDih8Xk8f/5ch3uQNyEEUlJSYGRk9E71zJo1C8uXL0dISAhmz56tdpN73Lhx+OOPP9744YoPRfZvT6FQQKFQFHZziIioCJoyZQosLCxw+vRpWFpaqq17n+f9bAXZb9Smffv2Un9p4MCBaNeuHTZu3IgTJ06gdu3aWsskJSXB2NhY523R9fm6qF9X5PTqsRgwYAA6d+6MNWvW4NSpU6hRowYAwNPTU8ovhHjt53X69Gls3boVU6ZMwTfffKO27ueff9Z4I70gpaSkwMDA4LV98bxkZGSgbdu2iIiIwMGDB1GvXj219VOmTMH06dPftalFVvZv70O6ZiMioqLr1XtqAHDixAns2bNHI/19OHTokPS2eF7Taa5fvx7Hjh3DunXr0L59ewBAx44dUaZMGUyYMCFfIz1aWFgUyj7qkq7uGebH8+fPUb58eZ3Vl5GRAZVK9U79maL84Kuenp7a92vQoEGoWbMm1qxZg9mzZ2t9AKMgj6eenp5O7/vK5fIP6hqLPlwcSp0+KvmdC/DChQuws7NDQEAAEhISAABhYWHo3bs3HBwcoFQq4ePjg99//12j7IIFC+Dj4wNjY2NYWVmhWrVqbz1EdqNGjQAA9+/fB/DfcPGHDh3CoEGDYG9vj5IlS0r5d+zYgfr168PExARmZmZo0aIFrl69qlHv5s2bUaFCBRgaGqJChQrYtGmT1u1rm2M8LCwMffr0gbOzM5RKJdzd3fHFF18gLS0Ny5cvR4cOHQAADRs21BgWSdt8dc+fP0efPn3g4OAAQ0NDVKpUCStWrFDL8+pcLkuXLoWHhweUSiWqV6+O06dP5/vzfBf169cHANy9e1fr+sGDB6NUqVLo0qVLnvXcvXsX1atX19pBs7e3V1tWqVSYN28efH19YWhoCDs7OzRr1kxtuoCMjAx8//330mfi5uaGb775RmMIneyhgnbt2oVq1arByMhIetgiJiYGISEhKFWqFJRKJTw9PTF9+vTXPh2ZnJyMadOmwdvbGzNnztT65lf37t2lm61A1ls4HTp0gLW1NYyNjVGrVi1s27ZNrUz2fDJr167FpEmTUKJECZiZmaF9+/aIjY1FamoqQkJCYG9vD1NTU/Tq1Utjf7PnaV25ciXKli0LQ0NDVK1aFf/++69avocPH2LQoEEoW7YsjIyMYGNjgw4dOmhMBZDXb0/bnKVnzpxBYGAgbG1tYWRkBHd3d/Tu3VutzsTERIwcOVL63MuWLYuZM2dCCKF1X7J/t9n//uzcuTPP40NERIXv7t278PHx0QiKA5rn/Wyv+/deF+cuIH/9xmfPnqFXr14oWbIklEolnJyc0Lp167eeMidn3zYgIAAVKlTA2bNn0aBBAxgbG0sB1tTUVEyYMAGenp5QKpUoVaoUvv76a41zfmpqKr788kvY2dnBzMwMn376KZ48eaKx7dzmGN+xYwf8/f1hZmYGc3NzVK9eXeq7BwQEYNu2bXj48KHUr80eESm364r9+/dLn6ulpSVat26N69evq+XJHt78zp07CA4OhqWlJSwsLNCrVy8kJSW91Wf7pvLq24aFhWHo0KGYOnVqnjemssvWrVtXY51CoYCNjY1GvbldR2R7k77i6tWr8e2336JEiRIwNjaWhuk/efIkmjVrBgsLCxgbG8Pf3x9Hjx597WeyYcMGXLx4EePGjdMIigOAubk5pkyZopa2bt06VK1aFUZGRrC1tcXnn3+OsLAwtTzBwcEwNTXFo0eP0LJlS5iamqJEiRL45ZdfAGRNt9CoUSOYmJjA1dVV49ox+7v777//YsCAAbCxsYG5uTl69OiBly9fquXdsmULWrRoIX3GHh4e+P777zWme8rrt6ftmi0/17jnz59HUFAQzM3NYWpqisaNG+PEiRNa9+Xo0aMYMWKENEztZ599hsjISG2HhYiIirE3vS/yuns8uXF1dc3XaEXr16+Hg4MD2rZtK6XZ2dmhY8eO2LJli06Gq85vHzc0NBSNGjWCvb09lEolypcvj0WLFqnlcXNzw9WrV3Ho0CGpr5p9Ds9t7mdtfWJd3DNcvXo1qlatKvWpfX19MW/evFw/h+z+3P3797Ft2zap/dntetP7xXPnzpXujV67di3PY/A6OecY10YIIY0stHHjRin9zz//lPqG1tbW6Ny5Mx4/fqxW9vbt22jXrh0cHR1haGiIkiVLonPnzoiNjX3jtsrlcumYZ392ujieMTExCA4OhoWFBSwtLdGzZ0+tD73m9j37888/UaNGDanv2KBBA2lUory+t7nNMf4mfe6wsDC0adMGpqamsLOzw6hRo/I19Sl9XIrna3xE7+D06dMIDAxEtWrVsGXLFhgZGSEiIgK1atWSOmJ2dnbYsWMH+vTpg7i4OGloxWXLlmHYsGFo3749hg8fjpSUFFy6dAknT558qyGys2825bypNGjQINjZ2WH8+PFITEwEkDVEUc+ePREYGIjp06cjKSkJixYtQr169XD+/HnphL579260a9cO5cuXx7Rp0xAVFSXd8Hydp0+fokaNGtJ8O97e3ggLC8P69euRlJSEBg0aYNiwYZg/fz6++eYbaTik3IZFSk5ORkBAAO7cuYMhQ4bA3d0d69atQ3BwMGJiYjB8+HC1/KtWrUJ8fDwGDBgAmUyGn376CW3btsW9e/cK/Gm+7M6FlZWVxrpvvvkGx44dw6FDh177lJyrqyv27duHJ0+evPYz79OnD5YvX46goCD07dsXGRkZOHz4ME6cOIFq1aoBAPr27YsVK1agffv2GDlyJE6ePIlp06bh+vXrGg883Lx5E126dMGAAQPQr18/lC1bFklJSfD390dYWBgGDBgAFxcXHDt2DGPHjkV4eHiec2oeOXIE0dHRCAkJydcbWBEREahTpw6SkpIwbNgw2NjYYMWKFfj000+xfv16fPbZZ2r5p02bBiMjI4wZMwZ37tzBggULoK+vD7lcjpcvX2LixIk4ceIEli9fDnd3d4wfP16t/KFDh7BmzRoMGzYMSqUSCxcuRLNmzXDq1ClUqFABQNbv/dixY+jcuTNKliyJBw8eYNGiRQgICMC1a9c03ljT9tvL6fnz52jatCns7OwwZswYWFpa4sGDB2odZSEEPv30Uxw4cAB9+vRB5cqVsWvXLnz11VcICwvDnDlzND7rjRs3YtCgQTAzM8P8+fPRrl07PHr0SOPfByIiKjpcXV1x/PhxXLlyRTr35CU//97r4tyV335ju3btcPXqVQwdOhRubm54/vw59uzZg0ePHr32ZpE22vq2UVFRCAoKQufOnfH555/DwcEBKpUKn376KY4cOYL+/fujXLlyuHz5MubMmYNbt25h8+bNUvm+ffvizz//RNeuXVGnTh3s378fLVq0yFd7li9fjt69e8PHxwdjx46FpaUlzp8/j507d6Jr164YN24cYmNj8eTJE+ncnNdbRnv37kVQUBBKly6NiRMnIjk5GQsWLEDdunVx7tw5jc+sY8eOcHd3x7Rp03Du3Dn8+uuvsLe3fy9vJefWt80+Hu3atcOwYcPyrMPV1RUAsHLlStStWzfPfvDrriMMDAzeuK/4/fffw8DAAKNGjUJqaioMDAywf/9+BAUFoWrVqpgwYQLkcrl0Y/nw4cNqD2zmlD2nen7ntly+fDl69eqF6tWrY9q0aYiIiMC8efNw9OhRnD9/Xu2BmMzMTAQFBaFBgwb46aefsHLlSgwZMgQmJiYYN24cunXrhrZt22Lx4sXo0aMHateuDXd3d7XtDRkyBJaWlpg4cSJu3ryJRYsW4eHDh9INxOw2mZqaYsSIETA1NcX+/fsxfvx4xMXFYcaMGWr1afvtaZOfa9yrV6+ifv36MDc3x9dffw19fX0sWbIEAQEBOHToEGrWrKlW59ChQ2FlZYUJEybgwYMHmDt3LoYMGYI1a9bk67MnIqIP35veF8nPPZ53df78eVSpUkVjBJoaNWpg6dKluHXrljS9Ym4yMzPx4sULtTRDQ0OYmpq+UR930aJF8PHxwaeffgo9PT38888/GDRoEFQqFQYPHgwAmDt3LoYOHQpTU1OMGzcOAHI9n7/Ou9wz3LNnD7p06YLGjRtL/djr16/j6NGjGvd2s5UrVw5//PEHvvzyS5QsWRIjR44EkPUgwpveLw4NDUVKSgr69+8PpVIJa2vrt/oM8iszMxO9e/fGmjVrsGnTJunaY8qUKfjuu+/QsWNH9O3bF5GRkViwYAEaNGgg9Q3T0tIQGBiI1NRUDB06FI6OjggLC8PWrVsRExMDCwuLN26PtmusdzmeQgi0bt0aR44cwcCBA1GuXDls2rQpz6lDXzVp0iRMnDgRderUweTJk2FgYICTJ09i//79aNq06Rt/b9+0zx0YGIiaNWti5syZ2Lt3L2bNmgUPDw988cUXb/jJUrEmiIqJ0NBQAUCcPn061zz3798XAERoaKiU1rNnT2FiYiKEEOLIkSPC3NxctGjRQqSkpEh5+vTpI5ycnMSLFy/U6uvcubOwsLAQSUlJQgghWrduLXx8fN647dntmjRpkoiMjBTPnj0TBw8eFH5+fgKA2LBhg9o+1qtXT2RkZEjl4+PjhaWlpejXr59avc+ePRMWFhZq6ZUrVxZOTk4iJiZGStu9e7cAIFxdXdXKAxATJkyQlnv06CHkcrnWz1ilUgkhhFi3bp0AIA4cOKCRx9/fX/j7+0vLc+fOFQDEn3/+KaWlpaWJ2rVrC1NTUxEXF6f2+djY2Ijo6Ggp75YtWwQA8c8//2hs621pOxaHDx8W1atXFwDEunXr1PKPGzdOVKxYUTx79ixf9f/2228CgDAwMBANGzYU3333nTh8+LDIzMxUy7d//34BQAwbNkyjjuzP+sKFCwKA6Nu3r9r6UaNGCQBi//79Upqrq6sAIHbu3KmW9/vvvxcmJibi1q1bauljxowRCoVCPHr0KNd9mTdvngAgNm3alK99DwkJEQDE4cOHpbT4+Hjh7u4u3NzcpM/gwIEDAoCoUKGCSEtLk/J26dJFyGQyERQUpFZv7dq1tX53AYgzZ85IaQ8fPhSGhobis88+k9Kyf7uvOn78uAAg/u///k9Ky+239+q6+/fvCyGE2LRp02v/Ldq8ebMAIH744Qe19Pbt2wuZTCbu3Lmjti8GBgZqaRcvXhQAxIIFC3LdBhERFb7du3cLhUIhFAqFqF27tvj666/Frl271M5v2fL77/27nrvy2298+fKlACBmzJjxxvs9YcIEAUDcvHlTREZGivv374slS5YIpVIpHBwcRGJiohAiq28IQCxevFit/B9//CHkcrlan0EIIRYvXiwAiKNHjwoh/usLDRo0SC1f165dNfqxOc/XMTExwszMTNSsWVMkJyerlc/uawkhRIsWLTT6GUJov66oXLmysLe3F1FRUVLaxYsXhVwuFz169ND4fHr37q1W52effSZsbGw0tvUuch6LBw8eiN9//10YGRkJOzs76VgIIURkZKSoVKmSGD16dL7qVqlU0jF0cHAQXbp0Eb/88ot4+PChRt78XEe8aV+xdOnSar8HlUolvLy8RGBgoNoxTEpKEu7u7uKTTz7Jc3/8/PyEhYVFvvY9LS1N2NvbiwoVKqh9f7Zu3SoAiPHjx0tpPXv2FADE1KlTpbSXL18KIyMjIZPJxOrVq6X0Gzdu5PrdrVq1qtq/HT/99JMAILZs2aK2rzkNGDBAGBsbq13f5vbby1736jVbfq5x27RpIwwMDMTdu3eltKdPnwozMzPRoEEDjX1p0qSJ2jH68ssvhUKhULtGJSKi4mXw4MHi1VDEm94Xyc89nvwwMTERPXv2zHVdzv6ZEEJs27ZN6z21nLLPrzn/sreX3z6uENrP6YGBgaJ06dJqaT4+Pmrn7WzZfcCccvaJhXj3e4bDhw8X5ubmGvfL8sPV1VW0aNFCLe1N7xebm5uL58+fv/X2curZs6da/z97OzNmzBDp6emiU6dOwsjISOzatUvK8+DBA6FQKMSUKVPU6rp8+bLQ09OT0s+fP6/1/nJ+ZMcwIiMjRWRkpLhz546YOnWqkMlkomLFimr7+C7HM/u3+dNPP0l5MjIyRP369TWuf3J+z27fvi3kcrn47LPPNO51v9r3y+17m93Pz44rvE2fe/LkyWp1+vn5iapVq2psiz5uHEqd6H8OHDiAwMBANG7cGBs3boRSqQSQ9ZTUhg0b0KpVKwgh8OLFC+kvMDAQsbGxOHfuHADA0tIST548eevhvSdMmAA7Ozs4OjoiICAAd+/exfTp09WG8AGAfv36qb2hu2fPHsTExKBLly5q7VMoFKhZsyYOHDgAAAgPD8eFCxfQs2dPtSfQPvnkk9fO56JSqbB582a0atVKelv5VfkZkiin7du3w9HRUW34cX19fQwbNgwJCQk4dOiQWv5OnTqpvdWSPQTkvXv33njbr/Pqsahfvz6uX7+OWbNmSXMMAVmf+5QpU6BQKNCpUycEBARoDGuUU+/evbFz504EBATgyJEj+P7771G/fn14eXnh2LFjUr4NGzZAJpNhwoQJGnVkf9bbt28HAIwYMUJtffZTljmHnXR3d0dgYKBa2rp161C/fn1YWVmpfXeaNGmCzMzMPIelyh6u0szMLM99zrZ9+3bUqFFDbWhKU1NT9O/fHw8ePNAY6qhHjx5qIwHUrFkTQgiNIclr1qyJx48fIyMjQy29du3aqFq1qrTs4uKC1q1bY9euXdIQOq/Or5Oeno6oqCh4enrC0tJS+l2/KudvT5vsJxW3bt2K9PR0rXm2b98OhUKh8SbWyJEjIYTAjh071NKbNGkCDw8PablixYowNzcvkO8+ERHpzieffILjx4/j008/xcWLF/HTTz8hMDAQJUqUkN5OfVV+/r1/13NXfvuNRkZGMDAwwMGDBzWGa86vsmXLws7ODu7u7hgwYAA8PT2xbds2tbfalUolevXqpVZu3bp1KFeuHLy9vdXamD0Ue3Ybs/tCOc+n2aM55WXPnj2Ij4/HmDFjNIYLf5t+bXY/Ozg4WO0tlYoVK+KTTz6R2vqqgQMHqi3Xr18fUVFRUh9Ll7KPhZubG3r37g1PT0/s2LFD7VgMHz4ct27dwokTJ6ThtLOHvddGJpNh165d+OGHH2BlZYW//voLgwcPhqurKzp16iQNt5jf64g37Sv27NlT7fdw4cIF3L59G127dkVUVJT0vUlMTETjxo3x77//5jlVUFxcXL77tWfOnMHz588xaNAgte9PixYt4O3trdEPB7JGN8hmaWmJsmXLwsTEBB07dpTSy5YtC0tLS619vP79+6v1jb/44gvo6empfbde/Tzi4+Px4sUL1K9fH0lJSbhx44Zafdp+e9q87ho3MzMTu3fvRps2bVC6dGkp3cnJCV27dsWRI0c0vtP9+/dX+53Vr18fmZmZePjw4WvbQ0RExcOb3hfJzz2ed5WcnCzdD35V9rk+OTn5tXW4ublhz549an9ff/01gPz3cQH1c3psbCxevHgBf39/3Lt3762G3H6dd7lnaGlpicTEROzZs0cnbXnT+8Xt2rWDnZ2dTradl7S0NHTo0AFbt27F9u3b0bRpU2ndxo0boVKp0LFjR7XPytHREV5eXtKxzb4fv2vXrreaQikxMRF2dnaws7ODp6cnvvnmG9SuXVtj1NB3OZ7bt2+Hnp6e2hvWCoUCQ4cOfW37Nm/eDJVKhfHjx2uMvPA211hv0+fWdo3F+6eUE4dSJwKQkpKCFi1aoGrVqli7dq3aMICRkZGIiYnB0qVLsXTpUq3lnz9/DgAYPXo09u7dixo1asDT0xNNmzZF165dtc67p03//v3RoUMHyOVyWFpawsfHR2uHLOewerdv3wbw37yNOZmbmwOAdKPBy8tLI0/ZsmW13kzNFhkZibi4OJ0NT5TdHi8vL40TZfbQ6zlvjLi4uKgtZwfJ87pZm5mZqTFfnbW1tdY5vl+VfSxSUlKwf/9+zJ8/X6Oj/cknn2jMe5QfgYGBCAwMRFJSEs6ePYs1a9Zg8eLFaNmyJW7cuAF7e3vcvXsXzs7OeQ7/8/DhQ8jlcnh6eqqlOzo6wtLSUuPzy/m9AbK+O5cuXcq1A5n93dYm+3sVHx+fa56c7c05jCKgfrxf/X7lPN7ZncdSpUpppKtUKsTGxqoNG6Tte16mTBkkJSUhMjISjo6O0jzpoaGhCAsLUzue2i40tH2GOfn7+6Ndu3aYNGkS5syZg4CAALRp0wZdu3aVfs8PHz6Es7Ozxs3X/H73gazv/9sGKoiI6P2pXr06Nm7ciLS0NFy8eBGbNm3CnDlz0L59e1y4cEHt4cT8/Hv/rueu/PYblUolpk+fjpEjR8LBwQG1atVCy5Yt0aNHDzg6OuZr3zds2ABzc3Po6+ujZMmSakH/bCVKlNDol92+fRvXr19/bf8kuy+Us96yZcu+tm3ZQw7qqm+bfe7Wtu1y5cph165dSExMhImJiZSeV982+zjklJCQgISEBGlZoVDk60Zg9rGIjIzE/Pnzcf/+fbUbrkDWkOhvSqlUYty4cRg3bhzCw8Nx6NAhzJs3D2vXroW+vj7+/PPPfF9HvGlfMbfvdl7DPMbGxmqdGgnAGz10mNfx9vb2xpEjR9TSDA0NNY6ThYUFSpYsqXGT0MLCQmsfL2ff1tTUFE5OTmpzhF69ehXffvst9u/frxGMzvnvg7bfnjavu8aNjIxEUlJSrt99lUqFx48fw8fHR0p/m+s6IiIqXt70vkh+7vG8KyMjI63ziKekpEjrX8fExARNmjTRui6/fVwAOHr0KCZMmIDjx49rBFBjY2PfasjtvLzLPcNBgwZh7dq1CAoKQokSJdC0aVN07NgRzZo1e6u2vOn94vzcq9OFadOmISEhATt27JDmxM52+/ZtCCG0fk8BSA83uru7Y8SIEZg9ezZWrlyJ+vXr49NPP8Xnn3+er2NqaGiIf/75B0BWP9zd3V3rVJ3vcjwfPnwIJycnjSmk8nuNJZfLX/sCXn7pos/N+6ekDQPjRMg6kTRv3hxbtmzBzp070bJlS2ld9lsFn3/+ea43WSpWrAgg6wR98+ZNbN26FTt37sSGDRuwcOFCjB8/HpMmTXptO7y8vHLtPL0qZ0csu41//PGH1o7g6+a9/lDk9qZuXsHpx48fa3QGDhw4oNGByenVY9GyZUsoFAqMGTMGDRs21Pqmy9swNjZG/fr1Ub9+fdja2mLSpEnYsWNHvudsyZbfJ+60deBVKhU++eQT6enVnMqUKZNrfd7e3gCAy5cvo02bNvlqw5vI7Xi/zfcgN0OHDkVoaChCQkJQu3ZtWFhYQCaToXPnzlrfKMrPRZBMJsP69etx4sQJ/PPPP9i1axd69+6NWbNm4cSJE3nOTZobXe4zEREVDgMDA1SvXh3Vq1dHmTJl0KtXL6xbt05tdJj8/Hv/rueuN+k3hoSEoFWrVti8eTN27dqF7777DtOmTcP+/fvh5+f32n1u0KABbG1t88yTW//E19cXs2fP1lom50NyH6q3Ob/PnDlT7brC1dVVLTCam1ePRatWreDr64tu3brh7NmzGjcd35aTkxM6d+6Mdu3awcfHB2vXrsXy5ct1Urc2uX23Z8yYgcqVK2stk1c/zNvbG+fPn8fjx491/h17H/3amJgY+Pv7w9zcHJMnT4aHhwcMDQ1x7tw5jB49WuPfh/z0a4F3v8bVhn1bIiIqipycnBAeHq6Rnp3m7Oz8TvXnt4979+5dNG7cGN7e3pg9ezZKlSoFAwMDbN++HXPmzMlzBJxsud0rzO3t+ne5Z2hvb48LFy5g165d2LFjB3bs2IHQ0FD06NEDK1aseG1b31V++zTvKjAwEDt37sRPP/2EgIAAtTeYVSoVZDIZduzYobWf82ofdNasWQgODsaWLVuwe/duDBs2DNOmTcOJEye0BrlfpVAo3ip2kN3Gt70H/KF43SifRNmKR7SM6B3JZDKsXLkSrVu3RocOHdSe/LKzs4OZmRkyMzPzdeIxMTFBp06d0KlTJ6SlpaFt27aYMmUKxo4dqzFMo65kvyVjb2+fZxtdXV0B/Pc2xatu3ryZ5zbs7Oxgbm6OK1eu5JnvTYZFcXV1xaVLl6BSqdRuyGUP85fd3nfh6OioMZRPpUqV3riecePGYdmyZfj222+xc+fOd25XTtnB9uzOtoeHB3bt2oXo6Ohc3xp3dXWFSqXC7du3pacmASAiIgIxMTH5+vw8PDyQkJCQr+92TvXq1ZOGzfzmm29e2/lwdXXV+j3T5fF+lbbv+a1bt2BsbCw9Pbh+/Xr07NkTs2bNkvKkpKRIQ3++i1q1aqFWrVqYMmUKVq1ahW7dumH16tXo27cvXF1dsXfvXsTHx6s9HV1QnwURERUtOc/7b+Jdz1357Te+mn/kyJEYOXIkbt++jcqVK2PWrFn4888/37jt+eXh4YGLFy+icePGefYts/tCd+/eVXuL4HX92uxtAMCVK1c0Rt95VX77ttnn7tz6Ora2tmpvi7+tHj16qA01/jY3Ak1NTTFhwgT06tULa9euRefOnd+5Xa/S19dHxYoVcfv2bbx48QL29vb5uo54175i9jE1Nzd/q75tq1at8Ndff+HPP//E2LFjX9tWIOt45xx94ebNmwXSl7t9+zYaNmwoLSckJCA8PBzNmzcHABw8eBBRUVHYuHEjGjRoIOXLazj8/MrrGtfOzg7Gxsa5Hju5XF5sHmYhIiLdedP7Ivm5x/OuKleujMOHD2vcpzx58iSMjY3fOXCY3z7uP//8g9TUVPz9999qo6y8OtR6ttzqyR6NJSYmRpryD9B82/p17c3vPUMDAwO0atUKrVq1gkqlwqBBg7BkyRJ89913efa1tXkf94vfRq1atTBw4EC0bNkSHTp0wKZNm6SHij08PCCEgLu7e76+J76+vvD19cW3336LY8eOoW7duli8eDF++OGHAmt/fo+nq6sr9u3bh4SEBLWAfn6vsVQqFa5du5brg6rA211jva8+N30cOMc40f8YGBhg48aNqF69Olq1aoVTp04ByHrSqF27dtiwYYPWmzmvDtMdFRWlUWf58uUhhMh1rmFdCAwMhLm5OaZOnap1O9ltdHJyQuXKlbFixQq1ofT27NmjMWdfTnK5HG3atME///yDM2fOaKzPfro/+4Zffm7ONm/eHM+ePcOaNWuktIyMDCxYsACmpqbw9/d/bR2vY2hoiCZNmqj95TZ8Yl4sLS0xYMAA7Nq1CxcuXHjr9uzbt09revbcgNk3ddu1awchhNa3MLI/6+ybYHPnzlVbn/3kaYsWLV7bno4dO+L48ePYtWuXxrqYmBiNebtfZWxsjNGjR+P69esYPXq01jc8/vzzT+m31Lx5c5w6dQrHjx+X1icmJmLp0qVwc3PT2TA72Y4fP642PcDjx4+xZcsWNG3aVAriKxQKjXYvWLDgneanevnypUad2Z3B7CG5mjdvjszMTPz8889q+ebMmQOZTIagoKC33j4RERUdBw4c0Hp+zHnefxPveu7Kb78xKSlJGjYym4eHB8zMzLQOMalLHTt2RFhYGJYtW6axLjk5GYmJiQAgnS/nz5+vlidn30ibpk2bwszMDNOmTdPYz1c/XxMTk3zN4/hqP/vVfvCVK1ewe/duqd/2rkqXLq3Wr83vlE05devWDSVLlsT06dPfui23b9/Go0ePNNJjYmJw/PhxWFlZwc7OLt/XEe/aV6xatSo8PDwwc+ZMteHms+WcXimn9u3bw9fXF1OmTFFrQ7b4+HiMGzcOQNbDLfb29li8eLHa72HHjh24fv16vvrhb2rp0qVqv9lFixYhIyND+h1k929f/f6mpaVh4cKF77Td113jKhQKNG3aFFu2bFEbvSAiIgKrVq1CvXr1cp0agIiIPl5vel8kP/d43lX79u0RERGBjRs3SmkvXrzAunXr0KpVK63TXb6J/PZxtZ3TY2NjERoaqlHOxMRE6z3Y7AcGs+eNBrL6VW/yBnd+7xnm7CvI5XJpdNW3uW54H/eL31aTJk2wevVq7Ny5E927d5fe3m/bti0UCgUmTZqkca0mhJA+o7i4OI17rb6+vpDL5e/lGis/x7N58+bIyMjAokWLpPWZmZlYsGDBa7fRpk0byOVyTJ48WWNkg5zXWPmJHRRGn5s+DnxjnIqd33//XesbvcOHD39tWSMjI2zduhWNGjVCUFAQDh06hAoVKuDHH3/EgQMHULNmTfTr1w/ly5dHdHQ0zp07h7179yI6OhpA1g02R0dH1K1bFw4ODrh+/Tp+/vlntGjRQmPOHF0yNzfHokWL0L17d1SpUgWdO3eGnZ0dHj16hG3btqFu3bpSR3PatGlo0aIF6tWrh969eyM6OhoLFiyAj4+P1htIr5o6dSp2794Nf39/9O/fH+XKlUN4eDjWrVuHI0eOwNLSEpUrV4ZCocD06dMRGxsLpVKJRo0awd7eXqO+/v37Y8mSJQgODsbZs2fh5uaG9evX4+jRo5g7d26BfmZvY/jw4Zg7dy5+/PFHrF69+q3qaN26Ndzd3dGqVSt4eHggMTERe/fuxT///CM9lAEADRs2RPfu3TF//nzcvn0bzZo1g0qlwuHDh9GwYUMMGTIElSpVQs+ePbF06VJp6MRTp05hxYoVaNOmjdobJbn56quv8Pfff6Nly5YIDg5G1apVkZiYiMuXL2P9+vV48OBBnkOgfvXVV7h69SpmzZqFAwcOoH379nB0dMSzZ8+wefNmnDp1CseOHQMAjBkzBn/99ReCgoIwbNgwWFtbY8WKFbh//z42bNigs2E8s1WoUAGBgYEYNmwYlEqldFPw1YcNWrZsiT/++AMWFhYoX748jh8/jr1796rNVf6mVqxYgYULF+Kzzz6Dh4cH4uPjsWzZMpibm0s3xVu1aoWGDRti3LhxePDgASpVqoTdu3djy5YtCAkJ0ToHKxERfXiGDh2KpKQkfPbZZ/D29kZaWhqOHTuGNWvWwM3NDb169XrjOt/13JXffuOtW7fQuHFjdOzYEeXLl4eenh42bdqEiIgInb9hnFP37t2xdu1aDBw4EAcOHEDdunWRmZmJGzduYO3atdi1axeqVauGypUro0uXLli4cCFiY2NRp04d7Nu3D3fu3MnX5zBnzhz07dsX1atXR9euXWFlZYWLFy8iKSlJumlYtWpVrFmzBiNGjED16tVhamoq9ddymjFjBoKCglC7dm306dMHycnJWLBgASwsLDBx4kRdfkTvTF9fH8OHD8dXX32FnTt3vtUckBcvXkTXrl0RFBSE+vXrw9raGmFhYVixYgWePn2KuXPnSjd283Md8a59Rblcjl9//RVBQUHw8fFBr169UKJECYSFheHAgQMwNzeX5mTM7TPZuHEjmjRpggYNGqBjx46oW7cu9PX1cfXqVaxatQpWVlaYMmUK9PX1MX36dPTq1Qv+/v7o0qULIiIiMG/ePLi5ueHLL79848/zddLS0qTf5M2bN7Fw4ULUq1cPn376KQCgTp06sLKyQs+ePTFs2DDIZDL88ccf7zw8eX6ucX/44Qfs2bMH9erVw6BBg6Cnp4clS5YgNTUVP/300zvvOxERFT9vel8kP/d4cvPPP//g4sWLAID09HRcunRJejP3008/lYK47du3R61atdCrVy9cu3YNtra2WLhwITIzM996+pBX5beP27RpU+kN7AEDBiAhIQHLli2Dvb29xohTVatWxaJFi/DDDz/A09MT9vb2aNSoEZo2bQoXFxf06dMHX331FRQKBX7//Xep358f+b1n2LdvX0RHR6NRo0YoWbIkHj58iAULFqBy5cpqI1zmV0HfL75z547WN7P9/PzyFWht06aNNFS8ubk5lixZAg8PD/zwww8YO3YsHjx4gDZt2sDMzAz379/Hpk2b0L9/f4waNQr79+/HkCFD0KFDB5QpUwYZGRn4448/pBfzClJ+j2erVq1Qt25djBkzBg8ePED58uWxcePGfD0s7OnpiXHjxuH7779H/fr10bZtWyiVSpw+fRrOzs6YNm0agNy/tzkVRp+bPhKCqJgIDQ0VAHL9e/z4sbh//74AIEJDQ6VyPXv2FCYmJmp1vXjxQpQvX144OjqK27dvCyGEiIiIEIMHDxalSpUS+vr6wtHRUTRu3FgsXbpUKrdkyRLRoEEDYWNjI5RKpfDw8BBfffWViI2NzbPt2e2aMWNGvvbx9OnTWtcfOHBABAYGCgsLC2FoaCg8PDxEcHCwOHPmjFq+DRs2iHLlygmlUinKly8vNm7cKHr27ClcXV3V8gEQEyZMUEt7+PCh6NGjh7CzsxNKpVKULl1aDB48WKSmpkp5li1bJkqXLi0UCoUAIA4cOCCEEMLf31/4+/ur1RcRESF69eolbG1thYGBgfD19VU7Pq/7fLS18V287lgEBwcLhUIh7ty581b1//XXX6Jz587Cw8NDGBkZCUNDQ1G+fHkxbtw4ERcXp5Y3IyNDzJgxQ3h7ewsDAwNhZ2cngoKCxNmzZ6U86enpYtKkScLd3V3o6+uLUqVKibFjx4qUlBS1ulxdXUWLFi20tik+Pl6MHTtWeHp6CgMDA2Frayvq1KkjZs6cKdLS0vK1X+vXrxdNmzYV1tbWQk9PTzg5OYlOnTqJgwcPquW7e/euaN++vbC0tBSGhoaiRo0aYuvWrWp5Dhw4IACIdevWqaXn9v2fMGGCACAiIyOlNABi8ODB4s8//xReXl5CqVQKPz8/6buY7eXLl9L3z9TUVAQGBoobN24IV1dX0bNnz9du+9V19+/fF0IIce7cOdGlSxfh4uIilEqlsLe3Fy1bttT4HcbHx4svv/xSODs7C319feHl5SVmzJghVCqVWr7sfckpZxuJiKjo2bFjh+jdu7fw9vYWpqamwsDAQHh6eoqhQ4eKiIgItbz5/fdeF+cuIV7fb3zx4oUYPHiw8Pb2FiYmJsLCwkLUrFlTrF279rX7re3crI2/v7/w8fHRui4tLU1Mnz5d+Pj4CKVSKaysrETVqlXFpEmT1PrWycnJYtiwYcLGxkaYmJiIVq1aicePH2v0EXOer7P9/fffok6dOsLIyEiYm5uLGjVqiL/++ktan5CQILp27SosLS0FAKm/rO26Qggh9u7dK+rWrSvV16pVK3Ht2rV8fT65tfFd5HUsYmNjhYWFhUb/PL8iIiLEjz/+KPz9/YWTk5PQ09MTVlZWolGjRmL9+vUa+fNzHfEufcVs58+fF23btpWuyVxdXUXHjh3Fvn378rVfL1++FOPHjxe+vr7C2NhYGBoaigoVKoixY8eK8PBwtbxr1qwRfn5+QqlUCmtra9GtWzfx5MkTtTzarjeFyP37n7Pfnv29OHTokOjfv7+wsrISpqamolu3biIqKkqt7NGjR0WtWrWEkZGRcHZ2Fl9//bXYtWuX2jVZXtvOXvfqdyK/17jnzp0TgYGBwtTUVBgbG4uGDRuKY8eOqeXJ7d+l7GOas69ORETFx+DBg0XOUMSb3hd53T2e3PTs2TPX+8U5+3LR0dGiT58+wsbGRhgbGwt/f/9c+9M55XV+zZbfPu7ff/8tKlasKAwNDYWbm5uYPn26+P333zX6is+ePRMtWrQQZmZmAoDaOfzs2bOiZs2awsDAQLi4uIjZs2dr7W++6z3D7HuC9vb20rYGDBig0W/SJrdtv+v94ry2l9t3oU+fPkIIoXGPPLftLFy4UAAQo0aNktI2bNgg6tWrJ0xMTISJiYnw9vYWgwcPFjdv3hRCCHHv3j3Ru3dv4eHhIQwNDYW1tbVo2LCh2Lt372vbnlufUts+vus94KioKNG9e3dhbm4uLCwsRPfu3cX58+c1fjPZ1xo5/f7771If2crKSvj7+4s9e/ZI63P73ubWJ3yXPndubaSPm0yId3x8mIiIqIiRyWQYPHiwxpBcREREREQfkuXLl6NXr144ffo0qlWrVtjNISIieu94j4eIiHSJc4wTEREREREREREREREREVGxxsA4EREREREREREREREREREVawyMExERERERERERERERERFRsfbBBcZ/+eUXuLm5wdDQEDVr1sSpU6fyzL9u3Tp4e3vD0NAQvr6+2L59u9p6IQTGjx8PJycnGBkZoUmTJrh9+3ZB7gIRERUwIQTnniKiIoF9VyIiehfBwcEQQnB+cSIi+mjxHg8REenSBxUYX7NmDUaMGIEJEybg3LlzqFSpEgIDA/H8+XOt+Y8dO4YuXbqgT58+OH/+PNq0aYM2bdrgypUrUp6ffvoJ8+fPx+LFi3Hy5EmYmJggMDAQKSkp72u3iIiIiKgYYt+ViIiIiIiIiIio6JAJIURhNyK/atasierVq0tPiKlUKpQqVQpDhw7FmDFjNPJ36tQJiYmJ2Lp1q5RWq1YtVK5cGYsXL4YQAs7Ozhg5ciRGjRoFAIiNjYWDgwOWL1+Ozp07a21HamoqUlNTpWWVSoXo6GjY2NhAJpPpcpeJiIioiBNCID4+Hs7OzpDLP6hnDqmAFYW+K/utRERE9Cr2XelDolKp8PTpU5iZmbHvSkRE9JEpqH6rns5qKmBpaWk4e/Ysxo4dK6XJ5XI0adIEx48f11rm+PHjGDFihFpaYGAgNm/eDAC4f/8+nj17hiZNmkjrLSwsULNmTRw/fjzXwPi0adMwadKkd9wjIiIiKk4eP36MkiVLFnYzqIgoKn1X9luJiIhIG/Zd6UPw9OlTlCpVqrCbQURERIVI1/3WDyYw/uLFC2RmZsLBwUEt3cHBATdu3NBa5tmzZ1rzP3v2TFqfnZZbHm3Gjh2rdtMyNjYWLi4uePjwIczNzfO/U/k07/BDndepE0LAJCMBiXqmQBF8anN4fVed1TVy41Wd1aVLMgjYyFMQpTKEQNE7BrPa+ui0vq6/nNBpfboig0AJo3SEJesXyeOwanAtndXV7Lvtr89UCGQA3KyABy+BojgMys7vm+u0vmb95+m0Pl2RyQA3exM8eJ6Iojgezc6lwwuk3ri4OLi6usLMzKxA6qcPU1Hpu77vfisALL68tEDqfScCMEwxRIphCorgqRoDffvrtL4RB6fptD5dkQnARmWOKHkcRBE8DrMDxr4+Uz51W/OVzurSJRlkKKGwRlhmNEQR7DWt7DRDp/U1mt9Hp/XpigwylDZ2wL2kiCJ5HPYP+01ndTX6qqPO6tIlmUyG0talcC/6MYriQIr7Z6wtsLrZd6UPSfb39PHjxwXWdyUiIqKiKS4uDqVKldJ5v/WDCYwXJUqlEkqlUiPd0tKyQDpphqYvdV6nTggBowwZMvXMimRg3NLSUmd16RsXzQtGGQSUcj3oq4yKZEBWl8cAAPQMTXVan67IIKBvlA49UTQD47o8Dgqlsc7q0iUZAH1DQKEsmoFxXf8WFHqGOq1PV2QyQF9pBIVeZpEMjOv6OGTLHsqHQ/tRUfS++60AYGhWBP+NEoCRnhFghCIZGNf1v0/6pprHvCiQCUCZaQh9RWqRDIzr8jjoGenrrC5dkkEGfT0l9DL0i2RAVte/Bblh0bzlIYMMekZKyFV6xf44yPWL6DGQyaCn1IdcX69IBsYLqt8KsO9KH5bs76m5uTkD40RERB8pXfdbP5jJhGxtbaFQKBAREaGWHhERAUdHR61lHB0d88yf/d83qZOIiIiI6HXYdyUiIiIiIiIiIipaPpjAuIGBAapWrYp9+/ZJaSqVCvv27UPt2rW1lqldu7ZafgDYs2ePlN/d3R2Ojo5qeeLi4nDy5Mlc6yQiIiIieh32XYmIiIiIiIiIiIqWojmmVS5GjBiBnj17olq1aqhRowbmzp2LxMRE9OrVCwDQo0cPlChRAtOmZc2pN3z4cPj7+2PWrFlo0aIFVq9ejTNnzmDp0qx5D2UyGUJCQvDDDz/Ay8sL7u7u+O677+Ds7Iw2bdoU1m4SERERUTHAvisREREREREREVHR8UEFxjt16oTIyEiMHz8ez549Q+XKlbFz5044ODgAAB49eiTNlQQAderUwapVq/Dtt9/im2++gZeXFzZv3owKFSpIeb7++mskJiaif//+iImJQb169bBz504YGhbBuRGJiIiI6IPBvisREREREREREVHR8UEFxgFgyJAhGDJkiNZ1Bw8e1Ejr0KEDOnTokGt9MpkMkydPxuTJk3XVRCIiIiIiAOy7EhERERERERERFRUfzBzjREREREREREREREREREREb4OBcSIiIiIiIiIiIiIiIiIiKtYYGCciIiIiIiIiIiIiIiIiomKNgXEiIiIiIiIiIiIiIiIiIirWGBgnIiIiIiIiIiIiIiIiIqJijYFxIiIiIiIiIiIiIiIiIiIq1hgYJyIiIiIiIiIiIiIiIiKiYo2BcSIiIiIiIiIiIiIiIiIiKtYYGCciIiIiIiIiIiIiIiIiomKNgXEiIiIiIiIiIiIiIiIiIirWGBgnIiIiIiIiIiIiIiIiIqJijYFxIiIiIiIiIiIiIiIiIiIq1hgYJyIiIiIiIiIiIiIiIiKiYo2BcSIiIiIiIiIiIiIiIiIiKtb0CrsBRERERERERERERETa+PsDCkVht4KIiIhyOnOmsFvw5vjGOBERERERERERERERERERFWsMjBMRERERERERERERERERUbHGwDgRERERERERERERERERERVrDIwTEREREREREREREREREVGxxsA4EREREREREREREREREREVawyMExERERERERERERERERFRscbAOBERERERERERERERERERFWsMjBMRERERERERERERERERUbHGwDgRERERERERERERERERERVrDIwTEREREREREREREREREVGxxsA4EREREREREREREREREREVawyMExERERERERERERERERFRscbAOBEREREREREREVEhO3jwIGQyGWJiYgq1HcHBwWjTpk2htoGIiIioIDAwTkRERERERERERPQeBQQEICQkRC2tTp06CA8Ph4WFxXtpw4MHDyCTyXDhwgW19Hnz5mH58uXvpQ1ERERE75NeYTeAiIiIiIiIiIiIqDhIT0+Hvr7+W5U1MDCAo6Ojjlv05t5XYJ6IiIjofeMb40RERERERERERPRBiY+PR7du3WBiYgInJyfMmTNH7S3s1NRUjBo1CiVKlICJiQlq1qyJgwcPSuWXL18OS0tL7Nq1C+XKlYOpqSmaNWuG8PBwte38+uuvKFeuHAwNDeHt7Y2FCxdK67LfuF6zZg38/f1haGiIlStXIioqCl26dEGJEiVgbGwMX19f/PXXX1K54OBgHDp0CPPmzYNMJoNMJsODBw+0DqW+YcMG+Pj4QKlUws3NDbNmzVJrn5ubG6ZOnYrevXvDzMwMLi4uWLp0ab4+Q3d3dwCAn58fZDIZAgICpPa9OpR6QEAAhg4dipCQEFhZWcHBwQHLli1DYmIievXqBTMzM3h6emLHjh1q9V+5cgVBQUEwNTWFg4MDunfvjhcvXuTantTUVMTFxan9EREREekSA+NERERERERERET0QRkxYgSOHj2Kv//+G3v27MHhw4dx7tw5af2QIUNw/PhxrF69GpcuXUKHDh3QrFkz3L59W8qTlJSEmTNn4o8//sC///6LR48eYdSoUdL6lStXYvz48ZgyZQquX7+OqVOn4rvvvsOKFSvU2jJmzBgMHz4c169fR2BgIFJSUlC1alVs27YNV65cQf/+/dG9e3ecOnUKQNZQ5bVr10a/fv0QHh6O8PBwlCpVSmMfz549i44dO6Jz5864fPkyJk6ciO+++05jmPNZs2ahWrVqOH/+PAYNGoQvvvgCN2/efO1nmN2evXv3Ijw8HBs3bsw174oVK2Bra4tTp05h6NCh+OKLL9ChQwfUqVMH586dQ9OmTdG9e3ckJSUBAGJiYtCoUSP4+fnhzJkz2LlzJyIiItCxY8dctzFt2jRYWFhIf9o+EyIiIqJ3waHUiYiIiIiIiIiI6IMRHx+PFStWYNWqVWjcuDEAIDQ0FM7OzgCAR48eITQ0FI8ePZLSRo0ahZ07dyI0NBRTp04FkDXs+eLFi+Hh4QEgK5g+efJkaTsTJkzArFmz0LZtWwBZb1hfu3YNS5YsQc+ePaV8ISEhUp5srwbYhw4dil27dmHt2rWoUaMGLCwsYGBgAGNj4zyHTp89ezYaN26M7777DgBQpkwZXLt2DTNmzEBwcLCUr3nz5hg0aBAAYPTo0ZgzZw4OHDiAsmXL5vk52tnZAQBsbGxeO4R7pUqV8O233wIAxo4dix9//BG2trbo168fAGD8+PFYtGgRLl26hFq1auHnn3+Gn5+f9FkDwO+//45SpUrh1q1bKFOmjMY2xo4dixEjRkjLcXFxDI4TERGRTjEwTkRERERERERERB+Me/fuIT09HTVq1JDSLCwspEDw5cuXkZmZqRF8TU1NhY2NjbRsbGwsBcUBwMnJCc+fPwcAJCYm4u7du+jTp48U/AWAjIwMjTm4q1WrpracmZmJqVOnYu3atQgLC0NaWhpSU1NhbGz8Rvt5/fp1tG7dWi2tbt26mDt3LjIzM6FQKAAAFStWlNbLZDI4OjpK+6Err25DoVDAxsYGvr6+UpqDgwMASNu9ePEiDhw4AFNTU4267t69qzUwrlQqoVQqddpuIiIiolcxME5ERERERERERETFRkJCAhQKBc6ePSsFj7O9GqjV19dXWyeTySCEkOoAgGXLlqFmzZpq+XLWaWJiorY8Y8YMzJs3D3PnzoWvry9MTEwQEhKCtLS0d9uxXGjbD5VKVeDbeDVNJpMBgLTdhIQEtGrVCtOnT9eoy8nJSadtIyIiIsovBsaJiIiIiIiIiIjog1G6dGno6+vj9OnTcHFxAQDExsbi1q1baNCgAfz8/JCZmYnnz5+jfv36b7UNBwcHODs74969e+jWrdsblT169Chat26Nzz//HEBWsPjWrVsoX768lMfAwACZmZl51lOuXDkcPXpUo+4yZcpoBOffhoGBAQC8th1vo0qVKtiwYQPc3Nygp8db0ERERFQ0yAu7AVS4hBDYHToHU9rXxLfNyuHXUZ/jxZP7ry13fPP/4ceuDRDSsgZ+GdwWj69fzLX+38f0wphGpXH1yG61dTERYQgd2xvfBZXH922rY/viacjMzNDJfhERERERERERUfFkZmaGnj174quvvsKBAwdw9epV9OnTB3K5HDKZDGXKlEG3bt3Qo0cPbNy4Effv38epU6cwbdo0bNu2Ld/bmTRpEqZNm4b58+fj1q1buHz5MkJDQzF79uw8y3l5eWHPnj04duwYrl+/jgEDBiAiIkItj5ubG06ePIkHDx7gxYsXWt/wHjlyJPbt24fvv/8et27dwooVK/Dzzz+rzV/+Luzt7WFkZISdO3ciIiICsbGxOqkXAAYPHozo6Gh06dIFp0+fxt27d7Fr1y706tWrQALxRERERPnBwPhH7tDqJTi2cTnafPkDBv+yEfqGxvh9dDDS01JzLXPxwFZsXTQVTXoMw+hf/oKThzd+G90TCS9faOQ9sv53yLTUocrMROg3fZCZkY4vFqxHx9EzcHbXBuwJnaPDvSMiIiIiIiIiouJo9uzZqF27Nlq2bIkmTZqgbt26KFeuHAwNDQEAoaGh6NGjB0aOHImyZcuiTZs2am+Y50ffvn3x66+/IjQ0FL6+vvD398fy5cvh7u6eZ7lvv/0WVapUQWBgIAICAuDo6Ig2bdqo5Rk1ahQUCgXKly8POzs7PHr0SKOeKlWqYO3atVi9ejUqVKiA8ePHY/LkyQgODs73PuRFT08P8+fPx5IlS+Ds7Kwxn/m7cHZ2xtGjR5GZmYmmTZvC19cXISEhsLS0hFzOW9JERERUODiOzUdMCIGjG0LR6PMh8Kn7CQCg05iZ+KFdDVw7shuVGrXSWu7Iut9Qo3knVGvWHqYZ8WgT8gNunDiIMzvWIaDrF1K+p3eu4fC63zB08RZMaa8+F9PtM4fx/OEd9J3xB8ys7QDP8vik15fYsWw6mvQcDj19g4LbcSIiIiIiIiIi+qCZmZlh5cqV0nJiYiImTZqE/v37A8iaE3vSpEmYNGmS1vLBwcEaAeY2bdpIc4xn69q1K7p27aq1Djc3N438AGBtbY3Nmzfn2f4yZcrg+PHjr62vXbt2aNeuXa71PHjwQCPtwoULeW77VX379kXfvn3V0pYvX662fPDgwXxtN2fbvby8sHHjxny3hYiIiKig8fG8j1h0+GPER0fCs2pdKc3Q1BylylXGw2vntZbJSE9D2K0ramXkcjk8q9ZVK5OWkozVU0LQevikrMB3Dg+vnYeje1m1dWWqN0BqYgIiHtzWxe4REREREREREVExdf78efz111+4e/cuzp07J80Drsu3nomIiIioeGFg/COWEB0JADC1slVLN7WyldbllBT7EipV5mvLbF34A1x8qkhvomvbtrY6Xm0XERERERERERFRbmbOnIlKlSqhSZMmSExMxOHDh2Fra/v6gh+JqVOnwtTUVOtfUFBQYTePiIiI6L3jUOofkfN7N2PT7G+l5eBpvxXIdq4d3Yu7549h2NKtBVI/ERERERERERF93Pz8/HD27NnCbkaRNnDgQHTs2FHrOiMjo/fcGiIiIqLCx8D4R6R8nSYoVa6ytJyZlgYASHj5AuY29lJ6wssXcPIsr7UOYwsryOUKJLx8oZae8PIFTP83LPrd88cQ/fQRJrWqrJbnz4mD4OZbHQPm/AVTazs8vnFRow4AUj1ERERERERERET0dqytrWFtbV3YzSAiIiIqMhgY/4gojU2hNDaVloUQMLO2w51zx+D8v0B4SmI8Hl+/gFqfdtNah56+AUqUqYA7545Jw6SrVCrcOXcMddp0BwAEdP0C1Vt0Uis3t08QWg76FuVqNwYAuJb3w4GVv2QF1P83hPrts0egNDGFg6unbneciIiIiIiIiIiIiIiIiD5qDIx/xGQyGeq264X9f/4M2xJusHYqid2hc2Bu64Dy9ZpK+ZaN7AafeoGo81kPAEC9Dn2w7sdRKFmmAsp6eWL35rVIS0lC1WbtAQBm1nYw0/LWt6W9M6ydSgEAvKrVh72rJ9ZMG4mgAWOQEB2J3b/PRu3W3aFnoHwPe09EREREREREREREREREHwsGxj9y/p0HIC0lGRtnf4OUhDi4+VZDrx9Dof9KcDrq6SMkxkZLy5UatkRiTDT2LJ+LTS8j4eRRHr2nL9caDM+NXKFA8JTfsHnut1g0pB0MDI1RpWlbfNLrS53uHxERERERERERERERERERA+MfOZlMhqa9vkTTPALSY/46rJFW57MeqNOmO0wz4pGgZwbIZHlu58f99zTSrBxLoNePoW/eaCIiIiIiIiIiIiIiIiKiNyAv7AYQEREREREREREREREREREVJAbGiYiIiIiIiIiIiIiIiIioWONQ6kRERERERERERERUJB06BJibF3YriIiIqDjgG+NERERERERERERERERERFSsMTBORERERERERERERERERETFGgPjRERERERERERERERERERUrDEwTkRERERERERERERERERExRoD40REREREREREREREREREVKwxME5ERERERERERERERERERMUaA+NERERERERERERERERERFSs6RV2A4iIiIiIiIiIiIiItPH3BxSKwm4FERFR8XHmTGG3oPDwjXEiIiIiIiIiIiIiIiIiIirWGBgnIiIiIiIiIiIiIiIiIqJijYFxIiIiIiIiIiIiIiIiIiIq1hgYJyIiIiIiIiIiIiIiIiKiYo2BcSIiIiIiIiIiIiIiIiIiKtYYGCciIiIiIiIiIiIiIiIiomKNgXEiIiIiIiIiIiIiIiIiIirWGBgnIiIiIiIiIiIiIiIiIqJijYFxIiIiIiIiIiIiIiIiIiIq1vQKuwH0eqMbuhd2E7RSqVR4/vw57O3tIZfzGQsiIiIiIiIiIiIiIiIiKpoYzSQiIiIiIiIiIiIiIiIiomKNgXEiIiIiIiIiIiIiIiIiIirWGBgnIiIiIiIiIiIiKgKEEOjfvz+sra0hk8lw4cIFrWkBAQEICQnJV50HDx6ETCZDTExMgbadiIiIqKjjHONERERERERERERERcDOnTuxfPlyHDx4EKVLl4atra3WtI0bN0JfXz9fddapUwfh4eGwsLAo4NYTERERFW0MjBMREREREREREREVAXfv3oWTkxPq1KmTZ5q1tXW+6zQwMICjo6NO20lERET0IeJQ6kRERERERERERFTsxcfHo1u3bjAxMYGTkxPmzJmjNiS5m5sbvv/+e3Tp0gUmJiYoUaIEfvnlF6n8gwcPpKHMs8XExEAmk+HgwYP5asOVK1cQFBQEU1NTODg4oHv37njx4gUAIDg4GEOHDsWjR48gk8ng5uamNQ2AxlDqqampGD16NEqVKgWlUglPT0/89ttvALQPpX7kyBHUr18fRkZGKFWqFIYNG4bExERpvZubG6ZOnYrevXvDzMwMLi4uWLp0qdq+PHnyBF26dIG1tTVMTExQrVo1nDx5Eg8ePIBcLseZM2fU8s+dOxeurq5QqVT5+qyIiIiIdI2BcSIiIiIiIiIiIir2RowYgaNHj+Lvv//Gnj17cPjwYZw7d04tz4wZM1CpUiWcP38eY8aMwfDhw7Fnzx6dbD8mJgaNGjWCn58fzpw5g507dyIiIgIdO3YEAMybNw+TJ09GyZIlER4ejtOnT2tN06ZHjx7466+/MH/+fFy/fh1LliyBqamp1rx3795Fs2bN0K5dO1y6dAlr1qzBkSNHMGTIELV8s2bNQrVq1XD+/HkMGjQIX3zxBW7evAkASEhIgL+/P8LCwvD333/j4sWL+Prrr6FSqeDm5oYmTZogNDRUrb7Q0FAEBwdDLtd+Szo1NRVxcXFqf0RERES6xKHUiYiIiIiIiIiIqFiLj4/HihUrsGrVKjRu3BhAVqDW2dlZLV/dunUxZswYAECZMmVw9OhRzJkzB5988sk7t+Hnn3+Gn58fpk6dKqX9/vvvKFWqFG7duoUyZcrAzMwMCoVCbehzbWmvunXrFtauXYs9e/agSZMmAIDSpUvn2o5p06ahW7du0hvnXl5emD9/Pvz9/bFo0SIYGhoCAJo3b45BgwYBAEaPHo05c+bgwIEDKFu2LFatWoXIyEicPn1aGtbd09NT2kbfvn0xcOBAzJ49G0qlEufOncPly5exZcuWPNs1adKkvD5CIiIionfCN8aJiIiIiIiIiIioWLt37x7S09NRo0YNKc3CwgJly5ZVy1e7dm2N5evXr+ukDRcvXsSBAwdgamoq/Xl7ewPIeov7bV24cAEKhQL+/v75bsfy5cvV2hEYGAiVSoX79+9L+SpWrCj9v0wmg6OjI54/fy5t08/PL9e5ztu0aQOFQoFNmzYBAJYvX46GDRtKQ8FrM3bsWMTGxkp/jx8/ztf+EBEREeUX3xgnIiIiIiIiIiIieo3sIcCFEFJaenp6vssnJCSgVatWmD59usY6Jyent26XkZHRG+VPSEjAgAEDMGzYMI11Li4u0v/r6+urrZPJZNL84K/bpoGBAXr06IHQ0FC0bdsWq1atwrx58/Iso1QqoVQq87sbRERERG+MgXEiIiIiIiIiIiIq1kqXLg19fX2cPn1aCv7Gxsbi1q1baNCggZTvxIkTauVOnDiBcuXKAQDs7OwAAOHh4fDz8wOQ9eZ0flWpUgUbNmyAm5sb9PR0d1vW19cXKpUKhw4dkoZSf107rl27pjb0+ZuqWLEifv31V0RHR+f61njfvn1RoUIFLFy4EBkZGWjbtu1bb4+IiIhIFziUOhERERERERERERVrZmZm6NmzJ7766iscOHAAV69eRZ8+fSCXyyGTyaR8R48exU8//YRbt27hl19+wbp16zB8+HAAWW9J16pVCz/++COuX7+OQ4cO4dtvv813GwYPHozo6Gh06dIFp0+fxt27d7Fr1y706tULmZmZb71vbm5u6NmzJ3r37o3Nmzfj/v37OHjwINauXas1/+jRo3Hs2DEMGTIEFy5cwO3bt7FlyxYMGTIk39vs0qULHB0d0aZNGxw9ehT37t3Dhg0bcPz4cSlPuXLlUKtWLYwePRpdunR54zfbiYiIiHSNgXEiIiIiIiIiIiIq9mbPno3atWujZcuWaNKkCerWrYty5crB0NBQyjNy5EicOXMGfn5++OGHHzB79mwEBgZK63///XdkZGSgatWqCAkJwQ8//JDv7Ts7O+Po0aPIzMxE06ZN4evri5CQEFhaWkrDtL+tRYsWoX379hg0aBC8vb3Rr18/JCYmas1bsWJFHDp0CLdu3UL9+vXh5+eH8ePHw9nZOd/bMzAwwO7du2Fvb4/mzZvD19cXP/74IxQKhVq+Pn36IC0tDb17936n/SMiIiLSBQ6lTkRERERERERERMWemZkZVq5cKS0nJiZi0qRJ6N+/v5Rmbm6e65vWQNZb0MeOHVNLe3XO8dfx8vLCxo0bc10fEhKCkJCQ16YdPHhQbdnQ0BCzZ8/G7NmzNeoMCAjQaGP16tWxe/fuXNvx4MEDjbScw8a7urpi/fr1udYBAGFhYfD19UX16tXzzEdERET0PjAwTkRERERERERERMXe+fPncePGDdSoUQOxsbGYPHkyAKB169aF3LLiJyEhAQ8ePMDPP//8Rm/VExERERWkD2Yo9ejoaHTr1g3m5uawtLREnz59kJCQkGeZlJQUDB48GDY2NjA1NUW7du0QERGhlkcmk2n8rV69uiB3hYiIiIiIiIiIiArBzJkzUalSJTRp0gSJiYk4fPgwbG1tdVL3wIEDYWpqqvVv4MCBOtnGh2LIkCGoWrUqAgICOIw6ERERFRkfzBvj3bp1Q3h4OPbs2YP09HT06tUL/fv3x6pVq3It8+WXX2Lbtm1Yt24dLCwsMGTIELRt2xZHjx5VyxcaGopmzZpJy5aWlgW1G0RERERERERERFQI/Pz8cPbs2VzXaxs+/E1MnjwZo0aN0rrO3Nz8ner+0CxfvhzLly8v7GYQERERqfkgAuPXr1/Hzp07cfr0aVSrVg0AsGDBAjRv3hwzZ86Es7OzRpnY2Fj89ttvWLVqFRo1agQgKwBerlw5nDhxArVq1ZLyWlpawtHRMd/tSU1NRWpqqrQcFxcHAFCpVFCpVG+1jx8ilUoFIcRHsc8y5H+uqPcpq12iyLZP19+Norqfsv8dg6LaPl0eB5nOatIt2St/RZHOfwtFdEdlsv8dhyLavoI6X30M50EiIiIiIno9e3t72NvbF3YziIiIiCgXH0Rg/Pjx47C0tJSC4gDQpEkTyOVynDx5Ep999plGmbNnzyI9PR1NmjSR0ry9veHi4oLjx4+rBcYHDx6Mvn37onTp0hg4cCB69eoFWR539adNm4ZJkyZppEdGRiIlJeVtd/ODo1KpEBsbCyEE5PIPZlT+t2InTy7sJuRCwEKe9r//L3qRqOfPn+u0vpLG6TqtT1dkELBVZgLIekyhqNHlcShtrbOqdEoGwNE06/+L4uMJuv4tlHYy1Wl9uiID4GhtCODjOA7Z4uPjC6Re+rBFR0dj6NCh+OeffyCXy9GuXTvMmzcPpqa5/35TUlIwcuRIrF69GqmpqQgMDMTChQvh4OAg5dHWR/3rr7/QuXPnAtkPIiIiIiIiIiKi4uKDCIw/e/ZM42lLPT09WFtb49mzZ7mWMTAw0BgW3cHBQa3M5MmT0ahRIxgbG2P37t0YNGgQEhISMGzYsFzbM3bsWIwYMUJajouLQ6lSpWBnZ/dRDYukUqkgk8lgZ2dX7APjkaqI12cqBNlvKL9QGRXJgKyun5J+knRbp/XpSvZxeJKkX+yPw71onVWlU9mf+r3oohmQ1fVv4V54gk7r05XseN29ZwkQRfBAFNSbG4aGhgVSL33YOA0QERERERERERFR0VKogfExY8Zg+vTpeea5fv16gbbhu+++k/7fz88PiYmJmDFjRp6BcaVSCaVSqZEul8uLfYA4J5lM9lHsd1EMdv7nv4G8ixpdfy+K4j5mEx/JcSiCsU6JeOWvqNH5b6Eo7uT/CGS1ryi2saDOVcX9HEhvrqhNA0RERERERERERESFHBgfOXIkgoOD88xTunRpODo6agx/mpGRgejo6FxvCjo6OiItLQ0xMTFqb9FERETkeSOxZs2a+P7775Gamqo1+E1ERERElJeiNA1QamoqUlNTpeW4uDgAWSP/qFSqd95XrYrggzFF+ukpQOfHQlZE91P2v2NQVNuny+MgK4IPSwJZ7ZKh6LZP57+FIrqfH9NxyGuausIkk2UdhaLavgI7Rxdw3URERERERV2hBsbt7OxgZ2f32ny1a9dGTEwMzp49i6pVqwIA9u/fD5VKhZo1a2otU7VqVejr62Pfvn1o164dAODmzZt49OgRateuneu2Lly4ACsrKwbF6b0RQuDM+oW4sX8jUhPj4Vi2Mur3HgcLJ9c8y13ZvRoX/1mO5Ngo2LiUQd3gMbD39FXL8+zWRZxeswDP716GTK6AjWtZtBi7CHoGWcP+Rt6/jpOr5iLy3lXI5HK412iCOt1HQd/QuMD2l4iIqLgrStMATZs2DZMmTdJIj4yMREpKyhvuWf4YJRsVSL3vRADKNIOs/y+CMZCcDwG/K7tMC53WpysyAZirjCEDIIr5cSipZ6uzunRJBhlsFObIGnWq6D2hoOvfgqeJ5ggdRYEMgJOhDYCi+byOLo+Dp62LzurSJZkMcDK3BWSiSI50pOvfwqvi4+MLrG4iIiIioqLug5hjvFy5cmjWrBn69euHxYsXIz09HUOGDEHnzp2loSjDwsLQuHFj/N///R9q1KgBCwsL9OnTByNGjIC1tTXMzc0xdOhQ1K5dW3rj5p9//kFERARq1aoFQ0ND7NmzB1OnTsWoUaMKc3fpI3Pxn1Bc2fkXGn7xPczsSuD0ul+w7ccv0HHGJugZaH9A487xnTj+x0w06DMO3mXK4NC29dj24xfoPGsLjCyybrA8u3URO34chMqte6Nu8BjIFXqIengTMlnWkL+J0c+xbUp/eNQORL1eY5GWnIBj/zcDBxZ9h6Zfznpv+09ERPSh+BCnARo7dixGjBghLcfFxaFUqVKws7ODubl5gbQxOTy5QOp9J/8LeiQbJRfJwHjOByneVaQiVqf16YpMZB2KF4rYIhkY1+VxeJLxQmd16VLWG8oCTzKiimRgXNe/hTuJT3Van65kvyl+JzG82B+HOy8e6awuXZLJZICQ4U7UY4giGBnX9W/hVYaGhgVWNxERERFRUfdBBMYBYOXKlRgyZAgaN24MuVyOdu3aYf78+dL69PR03Lx5E0lJSVLanDlzpLypqakIDAzEwoULpfX6+vr45Zdf8OWXX0IIAU9PT8yePRv9+vV7r/tGHy8hBC7vWIkqn/WDW7WGAICGg37AHwMb4cGZ/fCsE6S13OVtf6Bco7bwDmgDO3kyGvT5Fg/PH8aNg5vh17oPAOD4HzNQoVkXaRkALJ3dpP9/eP5fyBV6qNfrG8j+Nz9u/T7fYv3o9oh99ggWjkXzyX4iIqLC8iFOA6RUKrWmy+VyyP93/te5IhjwBID/jVtcJNun62NRFIPOkqxYVJFsoy6PQ1EMdmbLGtFeFMk26vy3UAT3MdvHchyKYtA5m4CAEKJItrHAztEFXDdRQTl0CCigZzqJiIjoI/PBBMatra2xatWqXNe7ublpXMwYGhril19+wS+//KK1TLNmzdCsWTOdtpPoTcQ/D0NSzAuUqPDflABKYzPYe/gi4vYlrYHxzIx0RN6/jsqvBLxlcjlKVqiFiNuXAADJsVF4fucyvOo2x+bxPRAX8RiWzu6o3mkInLyrAABU6WmQ6+lLQXEA0hvqz26eZ2CciIgoB04DRERERERERERE9OHiY6JEhSgpNmuIxezhz7MZWdggKUb78IspcS8hVJlayyT/r0zc8zAAwJkNi+HdqC2aj1kIW/dy2DqlP2LDHwIAnH1qIDk2Chf+WY7MjHSkJsTh5F/zstr1smgO/UhERPQheHUaoFOnTuHo0aNapwHy9vbGqVOnAEBtGqADBw7g7Nmz6NWrl8Y0QL/++iuuXLmCO3fuYNGiRZg6dSqGDh1aaPtKRERERERERET0ofhg3hgnKg5uH9mGf3/9XloO+vrnAtmOECoAQLnG7eEd0AYAYOteDmFXTuLGwc2o2WU4rEt5IuCL73H8j5k4tXo+ZHI5KjTrCiMLG8jkRXBsSyIiog8IpwEiIiIiIiIiIiIqWhgYJ3qPXKsGoL2nr7ScmZ4GIGvocxOr/4ZmTY6Ngo1bWa11GJpbQSZXIDk2Si09OTYKRpa2AADj//3XqkRptTyWJdyREPVMWvaq2xxedZsjKSYK+oZGALLmLzezL/m2u0hERETgNEBERERERERERERFDYdSJ3qPDIxMYOHoIv1ZlfSAsaUtwq6clPKkJSXg+d3LcPCqqLUOhZ4+7P739nc2oVIh7OpJqYyZXQkYW9khNvyBWtnY8IcwtXXSqNPY0gb6hsa4e3wXFAYGKOlbSwd7S0RERERERERERERERFQ08I1xokIkk8ngG9QN5zYvg4WjK8zsS+DMul9gbGUHt2qNpHz//NAP7tUboUJgFwCAb4vuOLjoO9iXLg94eeHf7euRnpqMsv5tpHortQzG2fWLYONaFjauZXHr378R8/QBPvlyllTvlV1/waFMZegbGuHJ5RM4uXIOanQZBqWJ+Xv9HIiIiIiIiIiIiIiIiIgKEgPjRIWsUqteSE9Nxr+/TkZaUjwcy/qh+ZiF0DNQSnniIp4gJT5GWvas3QwpcS9xev0i/BvzAjauZdF8zEIYW9pIeSo2/xyZ6ak49n8zkJoYCxuXsmjxzWJYOJSS8jy/ewVn1i9CekoSLJ3dUb/vtyhTv9V72W8iIiIiIiIiIiIiIiKi94WBcaJCJpPJUL3DYFTvMDjXPN0W7NBIqxDYBb6BnWEnT0akyggCMo08fq37wK91n1zrbTRoyts1moiIiIiIiIiIiIiIiOgDwsA4ERERERERERERERVJ/v6AQlHYrSAiIiqazpwp7BZ8WOSF3QAiIiIiIiIiIiIiIiIiIqKCxMA4EREREREREREREREREREVawyMExERERERERERERERERFRscbAOBERERERERERERERERERFWsMjBMRERERERERERERERERUbHGwDgRERERERERERERERERERVrDIwTEREREREREREREREREVGxxsA4EREREREREREREREREREVawyMExERERERERERERERERFRscbAOBERERERERERERERERERFWsMjBMRERERERERERERERERUbGmV9gNICIiIiIieh0hBHYu2oHjm44jJT4ZbpXc0eGbDrBztc+z3JE1h7F/xX7ER8XBuUwJtB3dDq4VXAEA0U+j8H2LyVrL9fwpGJU/8QMAPLr6EFvn/4PH155AJgNcKrii1fBPUaJsCd3uJBERERERERERFRgGxomIiIiIqMjbv3wf/v3rX3Sd3A02JayxY+F2LB68GGM2jIW+Ul9rmfO7zmHzrE3o8E1HlPEqi90bdmHJoEUYu3kczKzNYOlghUl7vlcrc3zDMRz4v/0oV7c8ACA1KRVLBi9GBf8KaD+2AzIzVdi5aAeWDF6ECTsmQaGvKPB9LyqEEDi74hCu7ziPtIQUOPqUQr1hQbAoaZNnuatbTuPiuuNIjk6AQ2ln1Bz8CezKZT1UEP8sBn91X6C1XJNv26G0f9ZxCDt3H2dWHET0/efQM9RHmU8qonrvRpArOAgaEREVLiEEBgwYgPXr1+Ply5ewsLBAcHAw5s6dCwBwc3NDSEgIQkJCCmT7EydOxObNm3HhwoUCqT+ngwcPomHDhnj58iUsLS3fyzaJiIiIdIV3EYiIiIiIqEgTQuDQqkNo2q8pfBv6wrlMCXT9/nPERcbi8oHLuZY7+OdB1G5bBzVb14KzuzM6jOsIA0MDnNx8AgAgV8hhbmuu9nf5wCVU/qQylMZKAEDE/QgkxSah2RfNYe/mACcPJwQOaIb4qHhEh0e/l/0vKi6uOYYrm0+h/vDmaLOgN/QM9bF97CpkpGXkWubuwas4vmQPqn7eAO0W9oODuzO2fbMKyS8TAQAmdub4fM2Xan9Ve/hD38gApWp4AgCi7j7Djm//QslqHmi7qB8aj2uHh8dv4dSv+97LfhMREeVl586dWL58ObZu3Yrw8HDcunUL33///esLfqDq1KmD8PBwWFhYAACWL1/OADkRERF9MBgYJyIiIiKiIi0qLArxL+JQpmYZKc3IzAiuFVzx4NJ9rWUy0jPw5PpjtTJyuRxeNcvg4aUHWss8vvYYYTfDULNNbSnN3s0eJpYmOLn5BDLSM5CWkoaTm0/Awd0B1s7WutnBD4AQApc3nYJft/pwq1MWNqUd0HB0ayRFxePB0Ru5lru04QS8g/xQtlllWLnaofnQdtBT6uPmrgsAsh5OMLY2Vft7cPQGSvuXh76RAQDg7sFrsHG3R9XuDWBRwhrOlVxRs18TXP37DNKSUt/H7hMREeXq7t27cHJyQp06deDo6Ah7e3uYmZkVdrMKjIGBARwdHSGTyQq7KURERERvjIFxIiIiIiIq0uJfxAMATK3VbzKb2pghPipea5nEl4lQZapglqOMmY0Z4nIpc3LzcTi4O8C9sruUZmhiiMHLhuDs9jP4utYojKn7NW4cu47+Pw+EQu/jGUY9/lkMkqMTUMLvv8/GwMQQ9t4l8PxamNYymemZeHErHCWr/FdGJpejpJ87Iq490Vom8lY4ou5GoGyzymr1KAzUZwFTKPWQmZaBF7fD32GviIiI3k1wcDCGDh2KR48eQSaTwc3NDQEBAXkOmx4TE4O+ffvCzs4O5ubmaNSoES5evJjvbf74449wcHCAmZkZ+vTpg5SUFI08v/76K8qVKwdDQ0N4e3tj4cKF0roHDx5AJpNh48aNaNiwIYyNjVGpUiUcP35cyvPw4UO0atUKVlZWMDExgY+PD7Zv3w4gayh1mUyGmJgYHDx4EL169UJsbCxkMhlkMhkmTpyIyZMno0KFChrtqly5Mr777rtc9y01NRVxcXFqf0RERES6xMA4EREREREVKWe3n8HoOl9Jf5kZmQW+zbSUNJzdcQ4129TSSF89aTXcKrkj5P++xLDQEDh6OGHZsCVIS0kr8HYVFUnRCQAAYysTtXQjKxMkvUzQWiYlNglCJWBkZZrvMjd3noeliy0cfUpJaaWqlUbEtSe4s/8KVJkqJL6Iw7k/D2e1K0p7PURERO/DvHnzMHnyZJQsWRLh4eE4ffr0a8t06NABz58/x44dO3D27FlUqVIFjRs3RnT066doWbt2LSZOnIipU6fizJkzcHJyUgt6A8DKlSsxfvx4TJkyBdevX8fUqVPx3XffYcWKFWr5xo0bh1GjRuHChQsoU6YMunTpgoyMrOlRBg8ejNTUVPz777+4fPkypk+fDlNT9fM5kDWs+ty5c2Fubo7w8HCEh4dj1KhR6N27N65fv672eZw/fx6XLl1Cr169ct2/adOmwcLCQvorVapUrnmJiIiI3obe67MQERERERG9Pz7+FTCqgqu0nJGedZM2IToeFnYWUnpCVDycy5bQWoeJlQnkCjnio9XfDo+Pioe5jebwphf3XkR6Shqqt6yhln5ux1lEP43C8BUhkMuznivuPq0HxjUYiysHr6BKsypvt5NF3O19l3F47jZpudkPXQp8mxmp6biz/wqqdKuvll6ymgdq9muCw/O248D0zVAY6KFKt/p4dvkRZHIO40pERIXHwsICZmZmUCgUcHR0fG3+I0eO4NSpU3j+/DmUSiUAYObMmdi8eTPWr1+P/v3751l+7ty56NOnD/r06QMA+OGHH7B37161t8YnTJiAWbNmoW3btgAAd3d3XLt2DUuWLEHPnj2lfKNGjUKLFi0AAJMmTYKPjw/u3LkDb29vPHr0CO3atYOvry8AoHTp0lrbY2BgAAsLC8hkMrX9NzU1RWBgIEJDQ1G9enUAQGhoKPz9/XOtCwDGjh2LESNGSMtxcXEMjhMREZFOMTBORERERERFiqGJIQxNDKVlIQTMbM1x6+QtlChbEgCQkpCCh1ceok6Helrr0NPXQ8lypXDr5C34BlQEAKhUKtw+dQv1OtXXyH9y8wn4+FeAqbX621BpKemQyeVq82jKZDJABgiheud9Lapca5eBvfd/Dx1k/u/hhKSXiTB+5cGC5JeJsPHQHggwtDCGTC5Dco63w5NfJsLYSvOts3v/XkdGajq8Pqmosa5i+1rwbVcTSVEJUJoZIv5ZDE79th9mTlZvtX9ERESF4eLFi0hISICNjY1aenJyMu7evfva8tevX8fAgQPV0mrXro0DBw4AABITE3H37l306dMH/fr1k/JkZGTAwsJCrVzFiv+db52cnAAAz58/h7e3N4YNG4YvvvgCu3fvRpMmTdCuXTu1/PnRr18/9O7dG7Nnz4ZcLseqVaswZ86cPMsolUrpgQEiIiKigsDAOFE+LO78Zp3/90WlUuH58+ewt7eX3mAiIiIiKm5kMhn8u/pjz6+7YediB+sSNtixcDvM7Szg29BXyrdwwM/wbVgR9Ts3AAAEfB6AVeNXolR5F5TxLIPdG3YhLTkNNVvXVKs/8lEk7p27i34LBmhsu2ytsvhn7hZsmLYO9Ts3gEoI7AvdC7lCAc9qXgW744XIwFgJA+P/bkwLIWBkbYqn5+/D1jMrEJ6WmIrnN8JQrlVVrXUo9BWwLeOEsPMP4FbXO6selQphF+7Dp3V1jfw3d16Aa+0yMLI00VgHZH0PTGyzgvJ3D1yFiZ251JaPiRACNzedxsOD15GelAprL0dU7NkApo6WeZa7v/cK7uy4gLTYJJiVsoHv5/Vg5eEgrU+JScK1NccRefUxMpLTYepkCa9WVeBc3UPKc3LOdsQ9ikJqfDL0jZWw8ymJ8h1rwdBK+zEjIiJ1CQkJcHJywsGDBzXWWVpa6qR+AFi2bBlq1lTv7ygUCrVlfX196f+zHwBUqbIe+uvbty8CAwOxbds27N69G9OmTcOsWbMwdOjQfLelVatWUCqV2LRpEwwMDJCeno727du/1X4RERER6QoD40REREREVOQ1Cm6MtOQ0rP1hDZLjk+FeuTQG/DIQ+sr/buq+eByFxJhEadkvsAoSXiZg56LtWBe1Bs5lS2DALwNhZmOuVvepLSdg4WCBsrXLamzXwd0Bfef1w64lOzG351zI5TKU8M6q59Vh3Ys7mUwG389q4NyqIzAvYQ1zJ0ucXn4QxjZmUtAbALZ+9Qfc6nqjQpuswHfFdrVw8KctsCvjBPuyzji1YQ/SU9JRJrCSWv2xYdEIv/wQQVO0D9l+ce0xlKruAchkeHDkBi6sOYom37aDXPHxPRx6Z/sF3NtzGX79GsHY1hw3N57CiZlb0XBqZygMtF/ih528g6t/HUXFnv4oV8Ybx7YfwomZW9FoehcozY0BAOeX7kN6UhpqDA+CgZkRwo7fxplf9sB/kjksXO0AALblSsCrVRUYWpog5WUirq4+htM/70L979q+t/0nIvqQValSBc+ePYOenh7c3NzeuHy5cuVw8uRJ9OjRQ0o7ceKE9P8ODg5wdnbGvXv30K1bt3dqa6lSpTBw4EAMHDgQY8eOxbJly7QGxg0MDJCZmamRrqenh549eyI0NBQGBgbo3LkzjIyM3qlNRERERO+KgXEiIiIiIiryZDIZggY1R9Cg5rnmGb99gkZa/c4NUL9TAxglGyHZKBnQMiV1i6Gt0GJoq1zrLVvLG2Vreee6/mNRqVMdZKSk4/DcbUhLSIFjBRcETesKvVeCsXHhL5ESlyQtewT4IDkmCWdWHELSywQ4lnZG8yldNYZSv7nzAkxszVGyqge0eXz6Ls6vOoLM9EzYlHZA00md4FLDs2B2tAgTQuDerkso06oqnKq4AwD8+jfCrmEr8OzcfZSopX0Ug7s7L8LFvzxcG5SDtZ4tKgX7I+LiQzz69wa8WlYBAETfeYaKPRtIb5GXaV0Vd3ddRMz9SCkw7tHsvwcajG3N4NXCD6fm74QqIxNyPYXmhomISE2TJk1Qu3ZttGnTBj/99BPKlCmDp0+fYtu2bfjss89QrVq1PMsPHz4cwcHBqFatGurWrYuVK1fi6tWravN2T5o0CcOGDYOFhQWaNWuG1NRUnDlzBi9fvlSbvzsvISEhCAoKQpkyZfDy5UscOHAA5cqV05rXzc0NCQkJ2LdvHypVqgRjY2MYG2c9dNW3b1+p3NGjR/O1bSIiIqKCxMA4ERERERERvZZMJkO14ABUCw7INU/XP4dppFVoUx0V2lSHTAB2mRaIVMRC5MhTo08j1OjTKNd6W87o/patLl6SIuORGpsEO5+SUpq+sRJWpe0RfSdCa2BclZGJ2AeRUgAcAGRyGWx9SuDlnQgpzdrTEU9P3oVDJVfoGyvx9NQdqNIzYVOuhEadAJCWkIInx2/D2tORQXEionySyWTYvn07xo0bh169eiEyMhKOjo5o0KABHBwcXlu+U6dOuHv3Lr7++mukpKSgXbt2+OKLL7Br1y4pT9++fWFsbIwZM2bgq6++gomJCXx9fRESEpLvdmZmZmLw4MF48uQJzM3N0axZs1znB69Tpw4GDhyITp06ISoqChMmTMDEiRMBAF5eXqhTpw6io6M1hnYnIiIiKgwMjBMRERERERF9AFJjs97GV1qoD0WrNDeW1uWUFp8CoRKaZSyMkRAeIy1XG9wUZxbuwc7BoZAp5FAY6KH6sGYwdVCfMuDamuO4v/cKMtMyYOXhgJojch/FgYjoYxASEqIWdM45f/iDBw/Uls3MzDB//nzMnz//rbb3zTff4JtvvlFLmz59utpy165d0bVrV63l3dzcIIT6I2qWlpZqaQsWLMh1+wEBARrlFy1ahEWLFmnkFULg6dOnGDRoUK71EREREb1PDIwTERERERERFUFPjt3CxeWHpOWaI1oU2LZubDyF9KRU1P66FQzMDPHs7H2cWbgb9b5pA/NSNlI+j+aV4eJfDkkv4nFr8xmcW7oPNb9sDplMyzwFRET00YqMjMTq1avx7Nkz9OrVq7CbQ0RERASAgXEiIiIiIiKiIsnRzw2WHv8NratKzwQApMYmw9DSREpPjUuCuYut1joMzAwhk8uQGpuslp4amwRDi6w5YBMjYnF/7xUETOkE85LWAAALF1tE3QrH/X1XUCnYXyqnNDOC0swIpo6WMHO2wp4v/8DLuxGw9nTUzU5/AIQQCN9zFZGn7iEzOR2mbjZw+awqDG3N8iz3/NhtRPx7E+nxKbhXwh72rSrApJS1tD49PhlPtl1C3O0IqFLTobQzg1Oj8rDy/W/o/Ms/bkXaS/XRAUo084VjQ+1z/xLRh8XHxwcPHz7Uum7JkiXo1q3be27R27O3t4etrS2WLl0KKyurwm4OEREREQAGxomIiIiIiIiKJD0jA5gaGUjLQggoLYwRee0JLFyzAuHpyWl4ee853Br5aK1DrqeAhZsdXlx7AueqpbPqUQm8uBYG9yYVAACZaRkAsuYef5VMLgdUOWeE/0/2ULrZAfuPRcShG3h+9DbcOtaAgbUJnu6+gtu//QufEc0g19c+33r0xUd4svUiXD6rClMXGySfeILbvx2Cz6gg6JsaAgDurzmFzOR0eAbXhZ6xEtEXHuHeyuMoN7QJjEv8F1Ry/sQHtjVLS8typX7B7jARvTfbt29Henq61nX5mYO8KMk53DoRERFRUcDAOBEREREREdEHQCaToXRgRdz++yxMHSxgbGeOGxtPwdDSGI5V3KV8x6b/Dacq7nD/xBcA4NGsEs4v2w9Ld3sYe5XFxe2HkJmajlL1vQEApk6WMHGwwMXQQ/DpXBsGpoYIP3cfkVcfo+aXWXOIv7wbgZh7z2Fdxgn6JkokPo/FjQ2nYWxvDquP7G3xiCO34dioHCx9SgAA3DvWwMUf/kbM1TBYV3bRWi7i8C3Y1igN2+rukEGGCp298fjKXUSdvi+97Z34MAoun1WByf+GrndqXB4RR24hKeylWmBcrtSHvpmR1u0Q0YfN1dW1sJtAREREVKwxME5ERERERET0gfBsXhmZqem4uPwQ0pPSYO3liFqjWkJh8N/lfeLzOKQmpEjLJWp6Ii0uGTc2nsLF2EMwd7FBrVEtpaHU5XoK1BzRHNfXncDJuTuQmZIOEwcL+PVrBIdKWUEahYEews/ew41Np5GZlgFDC2PY+ZZCmU8/gSKXt6SLo7ToRGTEp8Dc6783NxVGBjApZYPER1FaA+OqjEwkhb2E0yvDncvkMph7OiDhUZSUZuJqg5cXH8PC2wkKQwO8vPQYIj0TpqXt1Op7dvAGwvdfg4GlMawru8ChXhnIFPIC2FsiIiIiIqLihYFxIiIiIiIiog+ETCaDd9sa8G5bI9c8n8z6XCPN/RNflP6kIkrq2eJJxgsIqA9xa+poiepDm+Vap3kpG9QZ0/rtG15MpMdnPXCQPfx5Nn1TpbQup4ykNEAloGeqVEvXMzNEcmSctFy6W23cX3kcFydtAeQyyPX14NGjrtrc5fZ1vGBcwgoKYwMkPnyBsJ2XkR6XglKtKutoD4mIiIiIiIovBsaJiIiIiIiIiLSIOv8QjzaelZY9e9UrsG093X0FGSnp8OrnDz1jJWKuhuHeyuMoO7AhjJwsAQAODcpK+Y2dLCFTyPFw41mUCPKFXO/jeXOfiIiIiIjobTAwTkRERERERESkhWV5Z5iUspaWRYYKAJCekAJ98//m+U5PSIWxs6XWOvSMDQC5DBkJqWrpGfEp0DfLevM8NSoBkcfuoPyXgTBytAAAGDtbIuFBJJ4fvwPXttW01m1SygZQCaS9TIShnflb7ycREREREdHHgJNQERERERERERFpoVDqw9DW7L8/B3PomRki/s5zKU9mSjoSH0fBxMVGax1yPQWMS1gh7k6ElCZUAnF3ImD6vzKqtIysFTKZWlmZTIYco96rSQqPAWQy6JkY5p6JiIiIiIiIADAwTkRERERERESULzKZDA71vBC+/xpiroUhOTwG99echL65ESx9Skj5bi09iOfHbkvLDvXL4MWpe4g6+wDJEXE4s2YfVOkZsKnmDgAwtDeH0sYUjzadQeLjKKRGJSDi35uIuxMh1Zvw8AUiDt9C0tMYpEYlIOr8Qzz55wKs/Vyy3konIiIiIiKiPHEodSL66AkhcHPXb3h08h+kJyfA2t0Xvm1HwtSuVJ7l7h/diLsH/0JqfDRsS5ZG2U9DYOniI61PfBGGa1t/QfT9S1BlpMOubE34fhYCpdl/QzGe+n0MYp/eRlpCDPSNTGHrVQ3lW3wBQwvbAttfIiIiIiJ6ew7+3lClZeLhhrPITEmDqZstvHo3gFz/vzm+U6MTkJH439Dp1pVckJGYiqe7ryA9PgVWJe3h1dtfGkpdppDDs3d9hO24hDvLj0CVmgGlrSncOtaAhbcTgKw3z19efITwvVehylBBaW0C+/pl4FC/zPv9AIiI3rNDhwBzzhZBREREOsDAOBF99O4eWIX7RzbAr/M3MLZ2wo1dv+HkspEI+OoPKPSVWsuEXdiHa3//DN92I2HtUh4Rx9fgxLJRaPj1KijNrJCRmowTy0bA3MkTtQfOAwDc2PkrTv0+BvWGLoZMnjVgh42nH7wad4fSzAYpcZG49s9CnPm/71Bv6KL3tv9ERERERJR/MpkMzk0rwLlphVzz+I5pqZFmX8cL9nW8IIMMnibOuJP4FOKVcdINbc3g0b1urnUal7CC95Am79Z4IiIiIiKijxiHUieij5oQAvcOr0WZJj3gWKE+zJ094dd5HFLiovDsyuFcy907tAYuNVvBpUYLmDm6wb9LCBT6hnh0ehsAIPrBZSRFP0Plzt/A3MkD5k4e8Os8DjFPbuDFnXNSPR4NOsHK1QfG1o6wdvOFZ6NuePnoKlSZGQW+70RERERERERERERERB8LBsaJ6KOWFB2eNRS6VzUpTd/IFJYu5fDy4VWtZVQZ6YgNuwXbMlWlNJlcDluvqlIZVUY6ZDIZ5Hr6Uh65vgFkMjmi71/SWm9aUhzCzu2BlWsFyBUc0IOIiIiIiIiIiIiIiEhXGHkhoo9aanwUAEBpZqWWrjS1Rmp8tNYyaYmxEKpMKE2t1cuYWSPh+SMAgJVreSgMDHF922J4B/UHhMD17YshVJlI+d82s13buggPjm5EZnoKrFx9UKP3dF3tHhEREREREREREREREYGBcSL6yDw5txuX1s+Ulmv0KZggtNLUClW7T8bljbNw/8h6yGRyOFduDIsSZSCTydTyejTsApeaLZD8MgI3d4fi/F8/oEafnzTyERERERERERERERER0dthYJyIPiqO5evBakR5aVmVkQ4ASI1/CUNzWyk9NSEaFs5eWuswMLGATK5AaoL6G+Wp8dFQmttIy/Zla6Dx2DVITYyBXK6AvpEZdk9qDWNrZ7VyShNLKE0sYWrnAlN7V+z9oR1ePrwKa7cK77y/RERERERERERERERExDnGiegjo2doDBPbktKfqYMblGbWeHH7rJQnPSURMY+uw8rVR2sdcj19WJQoo1ZGqFR4ceec1jJKE0voG5nhxe2zSE14CUeferm2TwgB4L+APREREREREREREREREb07vjFORB81mUyG0vU74va+FTCxKwljayfc2PkrDM1t4FihvpTv+OLhcKzQAO712gEASvt3woXVU2FZ0htWLt44dHwNMtOS4VK9uVTm0altMHNwg4GJJV4+vIIrW+ajdP2OMLV3AQC8fHgVMY9vwNq9IvSNzJAUFYYbu36FsU0JWLlpD8oTEREREREREX1M/P0BhaKwW0FERAXtzJnCbgF9DBgYJ6KPnkfDrshIS8al9TOQnpwAa3df1Ow3Ewp9pZQnMeop0hJjpeUSlRsjLSEGN3f9htT4aNiW8kCtvjOhNLP+r0zkY9zYsRRpSXEwtnKEV+PuKN2gk7ReYWCI8Mv/4ubu35GZlgKlmQ3svWvAq3tPKPQM3s/OExER6VhI5WGF3QQNKpUKz58/h729PeRyDppFRERERERERPQxYmCciD56MpkM3s36wrtZ31zzNBm3TiPNvV47uNdrBxkEShqn40mSPsQr68u1GIhyLQbmWqe5kwfqfDHvXZpOREREpGFJk8mF3QSt+IACERERERERERUm3o0gIiIiIiIiIiIiIiIiIqJijYFxIiIiIiIiIiIiIiIiIiIq1hgYJyIiIiIiIiIiIiIiIiKiYo2BcSIiIiIiIiIiIiIiIiIiKtYYGCciIiIiIiIiIiIiIiIiomKNgXEiIiIiIiIiIiIiIiIiIirW9Aq7AURERERERETFyZYeCwu7CVqpVCo8f/4c9vb2kMv5nDwRERERERF9XBgYJyKiIkEIgcfH/kLE5b3ITE2EmbM3SjcZACMr51zLxD65iqenNyMh4i6OJr6E96djYO1V843qTYl9jicn1iL20WWkJ8VA38QKduX8UbJWe8gV+gW6z0RERERERERERERE9H7wEXEiIioSwk5vQvj5bfBoMgC+XadDrq/EtQ2TocpIy7WMKj0FJnZu8Gjc/63rTY5+AiEEPD75ApV7zoN7QG9EXNqFR4dX6nwfiYiIiIiIiIiIiIiocDAwTkREhU4IgfBzW1GyZgdYe9aEiZ0bvIKGIy0hGtF3TuZazsq9KlzqdYONV623rtfKvQq8mg2FpVtlGFo6wtqzBpyrtUbUnRMFsq9ERERERERERERERPT+MTBORESFLjU2AumJL2HpWklK01OawMzJC/FPb773ejNTk6BnaPrW2yUiIiIiIqKPg/h/9u48Lsqq///4e9jXEVEQMZQQF3DJLdEsNaEkzNxutywitzYz18y7zK1Sy6z0rttWbHFrNSvzp+WNeruippmRqamYQrgEiAvbzO8Pb+cbsQg64wzwej4e84jrus51rs85Z7DDfOZcl9mskSNHyt/fXwaDQX5+fhozZozleGhoqF599VWbx7Fo0SL5+fnZ/DqSlJCQoN69e5d6fNq0aWrVqtV1iQUAAKAieMY4AMDu8s5lSpJcvWoU2e/q5Wc5dr3qvfBnmtJ+WKXQLg9c9XUBAABgfzueXG7vEEpkMpmUkZGhwMBAOTmxXgGo7FavXq1FixYpKSlJYWFhcnJykqen53WPY+DAgYqLi7vu1wUAAKhMSIwDAK67kynrdWjtQst2RJ+n7RjN/8k9e1opn89Qrca3qE7LO+0dDgAAAADAwR06dEh169bVLbfcYtc4PD097ZKQBwAAqEz4ajIA4Lrzb9heN90/z/Jy9TRKkvLPZxUpl38+U27efld9ncvnlqfevJwz2vfJFPkGN1XDOx+56msCAAAAAKqHhIQEPf7440pNTZXBYFBoaKi6du1a5Fbqf5eZmanhw4crICBARqNR3bp10549e8p1vT179uj222+Xr6+vjEaj2rZtqx07dkgqfiv10NBQGQyGYq/Ljh07pgEDBsjPz0/+/v7q1auXjhw5cjXdoOTkZAUEBGjOnDlF9r/55psKCQmRl5eXBgwYoKysrFJqAAAAuD5IjAMArjtnN0951qz7f69aIXL1rqnM1B8tZQpyz+ts2gH5Bje56uu416hTrnpzz57WTx8/I5/AhgrvPkoGA/97BAAAAACU7bXXXtOMGTN0ww03KC0tTcnJyVc8p3///srIyNC3336rnTt3qk2bNoqOjtaZM2eueO6QIUN0ww03KDk5WTt37tRTTz0lV1fXEssmJycrLS1NaWlp+v3339WhQwfddtttkqT8/Hx1795dvr6+2rhxozZt2iQfHx/FxsYqLy+vQn2wbt063XHHHXr++ec1adIky/6DBw/q448/1ldffaXVq1frhx9+0KOPPlpmXbm5ucrOzi7yAgAAsCZupQ4AsDuDwaC6be7W71s/kadfXbnXqKNjm5bIzcdf/uFRlnL7PnlW/uEdVLf1peemFeZd0MXMdMvxi9l/6FzGYbl4+MjdGFCuenPPnta+j6fI3RigBl0SlH/h//7wdvOueZ16AAAAAABQ2dSoUUO+vr5ydnZWUFDQFcv/97//1fbt25WRkSF3d3dJ0ty5c7VixQp9+umnGjlyZJnnp6amauLEiWratKkkqVGjRqWWDQgIsPz8xBNPFEncL1++XCaTSe+8845lFXliYqL8/PyUlJSkO+8s36PFvvjiC8XHx+udd97RwIEDixy7ePGiPvjgA9WrV0+StGDBAvXo0UMvv/xyqX01a9YsTZ8+vVzXBgAAuBokxgEADqHezX1kyr+oQ2v/rYLcczLWi1Bk3ylycnGzlLmYmV4kcZ3zxyHt+3iKZftIUqIkKaDZ7WoUO7pc9WYd3aOLmWm6mJmmnW8NLxLTLeO/sFl7AQAAAADVy549e5STk6NatWoV2X/hwgUdOnToiuePGzdOw4cP14cffqiYmBj1799fDRs2LPOct956S++++642b95sSZbv2bNHBw8elK+vb5GyFy9eLFcckrRt2zZ9/fXX+vTTT9W7d+9ix+vXr29JiktSx44dZTKZtH///lIT45MnT9a4ceMs29nZ2QoJCSlXPAAAAOVBYhwA4BAMBoPqd7pX9TvdW2qZtiPeKrJdI6S5bhn/hQySwvyl385I5grWG9i8mwKbd7vG6AEAAAAAKFtOTo7q1q2rpKSkYsf++nzw0kybNk333nuvvvnmG3377beaOnWqli1bpj59+pRY/j//+Y8ef/xxLV26VC1btiwSR9u2bbV48eJi5/x1pXlZGjZsqFq1aum9995Tjx49Sr2le0W4u7tbVtIDAADYAolxAAAAAAAAALCxNm3aKD09XS4uLgoNDb2qOho3bqzGjRtr7NixGjx4sBITE0tMjB88eFD/+Mc/9M9//lN9+/YtFsfy5csVGBgoo9F4VXHUrl1bn3/+ubp27aoBAwbo448/LpIcT01N1YkTJxQcHCxJ2rp1q5ycnNSkSZOruh4AAIA1ONk7AAAAAAAAAACo6mJiYtSxY0f17t1ba9as0ZEjR7R582Y9/fTT2rFjR5nnXrhwQaNGjVJSUpKOHj2qTZs2KTk5WRERESWW7dmzp1q3bq2RI0cqPT3d8pKkIUOGqHbt2urVq5c2btyow4cPKykpSaNHj9bvv/9e7vYEBgZq3bp1+uWXXzR48GAVFBRYjnl4eOiBBx7Qnj17tHHjRo0ePVoDBgwo17PYAQAAbIUV4wAqjZXjb7V3CCUymUzKyMhQYGCgnJz4vhEAAAAAACjOYDBo1apVevrpp/Xggw/q5MmTCgoKUufOnVWnTp0yz3V2dtbp06cVHx+vP/74Q7Vr11bfvn01ffr0YmX/+OMP/fLLL/rll18sK7YvM5vN8vLy0oYNGzRp0iT17dtXZ8+eVb169RQdHV3hFeRBQUFat26dunbtqiFDhmjJkiWSpPDwcPXt21dxcXE6c+aM7r77br3xxhsVqhsAAMDaDGaz+e+PY0UFZWdnq0aNGsrKyrrq2w9VRiQD7Y8xcAzVaRw6TVhh7xBKVNYzxh3Bprm9rVpfp3vnWLU+azEYpLC6PvotLUeOOLvYtGSSTeqtrvMAVE7V9f1anf5f7cgYB/tjDBxDdRqHdo/G2TuEEhkMBoXXrq+Dp1LliB+L7Xhjlc3qrq5zAVROl9+vrVplydmZ9ysAVHVXuHkKqhlbzVur9l9gAAAAAAAAAAAAAIBqj8Q4AAAAAAAAANhZs2bN5OPjU+Jr8eLF1y2O0mLw8fHRxo0br1scAAAA1sYzxgEAAAAAAADAzlatWqX8/PwSj13pGeTWtHv37lKP1atX77rFAQAAYG0kxgEAAAAAAADAzho0aGDvECRJ4eHh9g4BAADAJriVOgAAAAAAAAAAAACgSiMxDgAAAAAAAAAAAACo0kiMAwAAAAAAAAAAAACqtEqTGD9z5oyGDBkio9EoPz8/DRs2TDk5OWWe89Zbb6lr164yGo0yGAzKzMy0Sr0AAAAAAAAAAAAAgMqj0iTGhwwZon379mnt2rX6+uuvtWHDBo0cObLMc86fP6/Y2Fj985//tGq9AAAAAAAAAAAAAIDKw8XeAZRHSkqKVq9ereTkZLVr106StGDBAsXFxWnu3LkKDg4u8bwxY8ZIkpKSkqxaLwAAAAAAAAAAAACg8qgUifEtW7bIz8/PkryWpJiYGDk5OWnbtm3q06fPda03NzdXubm5lu3s7GxJkslkkslkuqpYKiOTySSz2Vyt2uxoGAPHUJ3GwWDvAEph+MvLEVn7vWFw0IYaDP8bBweNz1a/o9Xhdx8AAAAA7GX9eslotHcUAACgKqgUifH09HQFBgYW2efi4iJ/f3+lp6df93pnzZql6dOnF9t/8uRJXbx48arjqWxMJpOysrJkNpvl5FRp7spfpTAGjqE6jUOYv70jKJlBUpDPpZ/Ndo2kZBkZGVatL6yuj1XrsxaDpCB/D0nVYxwuO3v2rE3qBQAAAAAAAABYj10T40899ZTmzJlTZpmUlJTrFE35TZ48WePGjbNsZ2dnKyQkRAEBATJWo68vmkwmGQwGBQQEVPlkoKNiDBxDdRqH387YO4KSXV6g/NsZx0zI/v1LWNfqt7Qcq9ZnLZdXiv+WniOzAw6EtcfhMg8PD5vUCwAAAAAAAACwHrsmxsePH6+EhIQyy4SFhSkoKKjYKq+CggKdOXNGQUFBV339q63X3d1d7u7uxfY7OTlV+aTY3xkMhmrZbkfCGDiG6jIODpjrtDD/5eVorP2+cMSk82VmXYrPEWO01e9nVf+9BwAAAAAAAICqwK6f5AYEBKhp06Zlvtzc3NSxY0dlZmZq586dlnPXrVsnk8mkqKioq76+reoFAABA9XbmzBkNGTJERqNRfn5+GjZsmHJyyr7bw1tvvaWuXbvKaDTKYDAoMzPTKvUCAAAAAAAAqCTPGI+IiFBsbKxGjBihhQsXKj8/X6NGjdKgQYMUHBwsSTp+/Liio6P1wQcfqH379pIuPUM8PT1dBw8elCTt3btXvr6+ql+/vvz9/ctVLwDg/2ya29veIZTIZDIpIyNDgYGBrN4F4BCGDBmitLQ0rV27Vvn5+XrwwQc1cuRILVmypNRzzp8/r9jYWMXGxmry5MlWqxcAAAAAAABAJUmMS9LixYs1atQoRUdHy8nJSf369dP8+fMtx/Pz87V//36dP3/esm/hwoWaPn26Zbtz586SpMTERMst3K9ULwAAAFARKSkpWr16tZKTk9WuXTtJ0oIFCxQXF6e5c+eW+gXMMWPGSJKSkpKsWi8AAAAAAACASpQY9/f3L3MlTGhoqMx/e6DptGnTNG3atGuqFwAAAKiILVu2yM/Pz5K8lqSYmBg5OTlp27Zt6tOnz3WrNzc3V7m5uZbt7OxsSZfutGEyma4qjsrIZDLJbDZXqzY7IsbB/hgDx1CdxsFgMNg7hBIZDAYZZHDY+Gz53qgO7zsAAACgNJUmMQ4AAABUBunp6QoMDCyyz8XFRf7+/kpPT7+u9c6aNavIHZQuO3nypC5evHjVsVQ2JpNJWVlZMpvNPHLDjhgH+2MMHEN1Gofw2vXtHUKJDAaprrG2ZDDrb2ssHEJGRobN6j579qzN6gYAAAAcHYlxAAAAoByeeuopzZkzp8wyKSkp1yma8pk8ebLGjRtn2c7OzlZISIgCAgJkNBrtGNn1ZTKZZDAYFBAQUOWTUI6McbA/xsAxVKdxOHgq1d4hlMhgMEhmgw6ePlbs7oOO4O9fhLMmDw8Pm9UN2EqXLpKzs72jAACUZMcOe0cAVAyJcQAAAKAcxo8fr4SEhDLLhIWFKSgoqNhKr4KCAp05c0ZBQUFXff2rqdfd3V3u7u7F9js5OVX5ZMzfGQyGatluR8M42B9j4Biqyzg4YtL5MrPMMpvNDhmjLd8XVf09BwAAAJSFxDgAAABQDgEBAQoICLhiuY4dOyozM1M7d+5U27ZtJUnr1q2TyWRSVFTUVV/fVvUCAAAAAAAA1QFfEwUAAACsKCIiQrGxsRoxYoS2b9+uTZs2adSoURo0aJCCg4MlScePH1fTpk21fft2y3np6enavXu3Dh48KEnau3evdu/erTNnzpS7XgAAAAAAAAAlIzEOAAAAWNnixYvVtGlTRUdHKy4uTrfeeqveeusty/H8/Hzt379f58+ft+xbuHChWrdurREjRkiSOnfurNatW2vlypXlrhcAAAAAAABAybiVOgAAAGBl/v7+WrJkSanHQ0NDiz3TdNq0aZo2bdo11QsAAAAAAACgZKwYBwAAAAAAAAAAAABUaSTGAQAAAAAAAAAAAABVGolxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFClkRgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFXaVSXGDx06pGeeeUaDBw9WRkaGJOnbb7/Vvn37rBocAAAAcC2YtwIAAAAAAACQriIxvn79erVo0ULbtm3T559/rpycHEnSnj17NHXqVKsHCAAAAFwN5q0AAAAAAAAALqtwYvypp57Sc889p7Vr18rNzc2yv1u3btq6datVgwMAAACuFvNWAAAAAAAAAJdVODG+d+9e9enTp9j+wMBAnTp1yipBAQAAANeKeSsAAAAAAACAyyqcGPfz81NaWlqx/T/88IPq1atnlaAAAACAa8W8FQAAANfb2bNnNWTIEHl7e6tu3bp65ZVX1LVrV40ZM0aSFBoaqpkzZ2rw4MHy9vZWvXr19Prrr1vOP3LkiAwGg3bv3m3Zl5mZKYPBoKSkpCtef9GiRfLz8yuyb8WKFTIYDJbtPXv26Pbbb5evr6+MRqPatm2rHTt2SJJOnz6twYMHq169evLy8lKLFi20dOnSCrVRknJzczVhwgTVq1dP3t7eioqKumL8ubm5ys7OLvICAACwpgonxgcNGqRJkyYpPT1dBoNBJpNJmzZt0oQJExQfH2+LGAEAAIAKY94KAACA623cuHHatGmTVq5cqbVr12rjxo3atWtXkTIvvfSSbrrpJv3www966qmn9MQTT2jt2rXXLcYhQ4bohhtuUHJysnbu3KmnnnpKrq6ukqSLFy+qbdu2+uabb/TTTz9p5MiRuv/++7V9+/YKtXHUqFHasmWLli1bph9//FH9+/dXbGysDhw4UGpcs2bNUo0aNSyvkJAQ23QAAACotlwqesILL7ygxx57TCEhISosLFRkZKQKCwt177336plnnrFFjAAAAECFMW8FAADA9XT27Fm9//77WrJkiaKjoyVJiYmJCg4OLlKuU6dOeuqppyRJjRs31qZNm/TKK6/ojjvuuC5xpqamauLEiWratKkkqVGjRpZj9erV04QJEyzbjz/+uP7f//t/+vjjj9W+fftytTE1NVWJiYlKTU217J8wYYJWr16txMREvfDCCyXGNXnyZI0bN86ynZ2dTXIcAABYVYUS42azWenp6Zo/f76effZZ7d27Vzk5OWrdunWRCRQAAABgT8xbAQAAcL399ttvys/PV/v27S37atSooSZNmhQp17Fjx2Lbr7766vUIUdKlFd/Dhw/Xhx9+qJiYGPXv318NGzaUJBUWFuqFF17Qxx9/rOPHjysvL0+5ubny8vKSVL427t27V4WFhWrcuHGR6+bm5qpWrVqlxuXu7i53d3drNhUAAKCICifGw8PDtW/fPjVq1Ihv7AEAAMAhMW8FAABAZeTkdOnJl2az2bIvPz+/Quf/9dySzp82bZruvfdeffPNN/r22281depULVu2TH369NFLL72k1157Ta+++qpatGghb29vjRkzRnl5eeWOIScnR87Oztq5c6ecnZ2LHPPx8Sl3PQAAANZWoWeMOzk5qVGjRjp9+rSt4gEAAACuGfNWAAAAXG9hYWFydXVVcnKyZV9WVpZ+/fXXIuW2bt1abDsiIkKSFBAQIElKS0uzHN+9e3e5YwgICNDZs2d17ty5Ms9v3Lixxo4dqzVr1qhv375KTEyUJG3atEm9evXSfffdp5tuuklhYWFF4i9PG1u3bq3CwkJlZGQoPDy8yCsoKKjcbQEAALC2CiXGJWn27NmaOHGifvrpJ1vEAwAAAFgF81YAAABcT76+vnrggQc0ceJE/ec//9G+ffs0bNgwOTk5yWAwWMpt2rRJL774on799Ve9/vrr+uSTT/TEE09Ikjw9PdWhQwfNnj1bKSkpWr9+vZ555plyxxAVFSUvLy/985//1KFDh7RkyRItWrTIcvzChQsaNWqUkpKSdPToUW3atEnJycmWxHyjRo20du1abd68WSkpKXrooYf0xx9/VKiNjRs31pAhQxQfH6/PP/9chw8f1vbt2zVr1ix9880319LFAAAA16TCifH4+Hht375dN910kzw9PeXv71/kBQAAADgC5q0AAAC43ubNm6eOHTvq7rvvVkxMjDp16qSIiAh5eHhYyowfP147duxQ69at9dxzz2nevHnq3r275fh7772ngoICtW3bVmPGjNFzzz1X7uv7+/vro48+0qpVq9SiRQstXbpU06ZNsxx3dnbW6dOnFR8fr8aNG2vAgAG66667NH36dEnSM888ozZt2qh79+7q2rWrgoKC1Lt37wq3MTExUfHx8Ro/fryaNGmi3r17Kzk5WfXr169gjwIAAFhPhZ4xLkmvvvqqDcIAAAAArIt5KwAAAK43X19fLV682LJ97tw5TZ8+XSNHjrTsMxqN+vjjj0utIyIiQps3by6y7+/PDS9L7969iyWzR4wYIUlyc3PT0qVLSz3X399fK1asKLP+8rTR1dVV06dPtyTcAQAAHEGFE+MPPPCALeIAAAAArIp5KwAAAK63H374Qb/88ovat2+vrKwszZgxQ5LUq1cvO0dmPdWhjQAAoGqqcGJckgoLC7VixQqlpKRIkpo1a6Z77rlHzs7OVg0OAAAAuBbMWwEAAHC9zZ07V/v375ebm5vatm2rjRs3qnbt2lap++GHH9ZHH31U4rH77rtPCxcutMp1rsSWbQQAALCVCifGDx48qLi4OB0/flxNmjSRJM2aNUshISH65ptv1LBhQ6sHCQAAAFQU81YAAABcb61bt9bOnTtLPX7kyJFrqn/GjBmaMGFCiceMRuM11V1eV2ojAACAo6pwYnz06NFq2LChtm7dKn9/f0nS6dOndd9992n06NH65ptvrB4kAAAAUFHMWwEAAFDVBAYGKjAw0N5hAAAAVEoVToyvX7++yIeLklSrVi3Nnj1bnTp1smpwAAAAwNVi3goAAAAAAADgMqeKnuDu7q6zZ88W25+TkyM3NzerBAUAAABcK+atAAAAAAAAAC6rcGL87rvv1siRI7Vt2zaZzWaZzWZt3bpVDz/8sO655x5bxAgAAABUGPNWAAAAAAAAAJdVODE+f/58NWzYUB07dpSHh4c8PDzUqVMnhYeH67XXXrNFjAAAAECFMW8FAAAAAAAAcFmFnzHu5+enL7/8UgcPHlRKSookKSIiQuHh4VYPDgAAALhazFsBAAAAAAAAXFbhxPhl4eHhfKgIAAAAh8e8FQAAAAAAAECFE+P9+vVT+/btNWnSpCL7X3zxRSUnJ+uTTz6xWnAAAADA1WLeCgAAAFR+69dLRqO9owAAAFVBhZ8xvmHDBsXFxRXbf9ddd2nDhg1WCQoAAAC4VsxbAQAAAAAAAFxW4cR4Tk6O3Nzciu13dXVVdna2VYICAAAArhXzVgAAAAAAAACXVTgx3qJFCy1fvrzY/mXLlikyMtIqQQEAAADXinkrAAAAAAAAgMsq/IzxKVOmqG/fvjp06JC6desmSfr++++1dOlSntMIAAAAh8G8FQAAAAAAAMBlFU6M9+zZUytWrNALL7ygTz/9VJ6enmrZsqW+++47denSxRYxAgAAABXGvBUAAAAAAADAZRVOjEtSjx491KNHD2vHAgAAAFgV81YAAAAAAAAA0lUmxi+7ePGili9frnPnzumOO+5Qo0aNrBUXAAAAYDXMWwEAAAAAAIDqrdyJ8XHjxik/P18LFiyQJOXl5alDhw76+eef5eXlpSeffFJr165Vx44dbRYsAAAAcCXMWwEAAICqo0sXydnZ3lEAAP5qxw57RwBcHafyFlyzZo3uuOMOy/bixYuVmpqqAwcO6M8//1T//v313HPP2SRIAAAAoLyYtwIAAAAAAAD4u3InxlNTUxUZGWnZXrNmjf7xj3+oQYMGMhgMeuKJJ/TDDz/YJEgAAACgvJi3AgAAAAAAAPi7cifGnZycZDabLdtbt25Vhw4dLNt+fn76888/rRsdAAAAUEHMWwEAAAAAAAD8XbkT4xEREfrqq68kSfv27VNqaqpuv/12y/GjR4+qTp061o8QAAAAqADmrQAAAAAAAAD+zqW8BZ988kkNGjRI33zzjfbt26e4uDjdeOONluOrVq1S+/btbRIkAAAAUF7MWwEAAAAAAAD8XblXjPfp00erVq1Sy5YtNXbsWC1fvrzIcS8vLz366KNWDxAAAACoCOatAAAAAAAAAP6u3CvGJSk6OlrR0dElHps6dapVAgIAAACuFfNWAAAAAAAAAH9V7hXjAAAAAAAAAAAAAABURiTGAQAAAAAAAAAAAABVGolxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFCllTsxnp+fr/3791u2t2zZYpOAAAAAgGvBvBUAAAAAAADA35U7Mf7AAw+oZ8+e+uc//ylJGj9+vM2CAgAAAK4W81YAAIDKIzQ0VK+++qq9wwAAAEA1UO7E+E8//aRff/1Vrq6uev31120ZEwAAAHDVmLcCAABcfwkJCerdu7e9wwAAAABKVe7EeN26dSVJ06dP16ZNm3T48GGbBQUAAABcLeatAAAAcBR5eXn2DuG6KiwslMlksncYAAAAJSp3YrxTp04qKCiQJC1cuFBRUVE2CwoAAAC4WsxbAQAAbOfTTz9VixYt5OnpqVq1aikmJkYTJ07U+++/ry+//FIGg0EGg0FJSUnq1q2bRo0aVeT8kydPys3NTd9//32J9WdmZmr48OEKCAiQ0WhUt27dtGfPnnLFdujQIfXq1Ut16tSRj4+Pbr75Zn333XdFyuTm5mrSpEkKCQmRu7u7wsPD9e6771qO79u3T3fffbeMRqN8fX1122236dChQ5Kkrl27asyYMUXq6927txISEizboaGhmjlzpuLj42U0GjVy5EhJ0qRJk9S4cWN5eXkpLCxMU6ZMUX5+fpG6vvrqK918883y8PBQ7dq11adPH0nSjBkz1Lx582LtbdWqlaZMmXLFfklKSlL79u3l7e0tPz8/derUSUePHr3idSXpzz//VHx8vGrWrCkvLy/dddddOnDggOX4okWL5Ofnp5UrVyoyMlLu7u5KTU1Vbm6uJkyYoHr16snb21tRUVFKSkq6YqwAAAC2VO7E+LPPPisXFxdJktFo1IoVK4qVuXDhgtUCAwAAAK4G81YAAADbSEtL0+DBgzV06FClpKQoKSlJffv21dSpUzVgwADFxsYqLS1NaWlpuuWWWzR8+HAtWbJEubm5ljo++ugj1atXT926dSvxGv3791dGRoa+/fZb7dy5U23atFF0dLTOnDlzxfhycnIUFxen77//Xj/88INiY2PVs2dPpaamWsrEx8dr6dKlmj9/vlJSUvTmm2/Kx8dHknT8+HF17txZ7u7uWrdunXbu3KmhQ4davnRZXnPnztVNN92kH374wZK49vX11aJFi/Tzzz/rtdde09tvv61XXnnFcs4333yjPn36KC4uTj/88IO+//57tW/fXpIs/Z2cnGwp/8MPP+jHH3/Ugw8+WGYsBQUF6t27t7p06aIff/xRW7Zs0ciRI2UwGK54XenSLfJ37NihlStXasuWLTKbzYqLiyuS1D9//rzmzJmjd955R/v27VNgYKBGjRqlLVu2aNmyZfrxxx/Vv39/xcbGFkmq/11ubq6ys7OLvAAAAKzJxRqV5Obm6l//+pdeeuklpaenW6NKAAAAwOqYtwIAAFy9tLQ0FRQUqG/fvmrQoIEkqUWLFpIkT09P5ebmKigoyFK+b9++GjVqlL788ksNGDBA0qUVxgkJCZbE7F/997//1fbt25WRkSF3d3dJl5LMK1as0KeffmpZfV2am266STfddJNle+bMmfriiy+0cuVKjRo1Sr/++qs+/vhjrV27VjExMZKksLAwS/nXX39dNWrU0LJly+Tq6ipJaty4cYX7qVu3bho/fnyRfc8884zl59DQUE2YMEHLli3Tk08+KUl6/vnnNWjQIE2fPr1IeyTphhtuUPfu3ZWYmKibb75ZkpSYmKguXboUib8k2dnZysrK0t13362GDRtKkiIiIizHy7rugQMHtHLlSm3atEm33HKLJGnx4sUKCQnRihUr1L9/f0lSfn6+3njjDct5qampSkxMVGpqqoKDgyVJEyZM0OrVq5WYmKgXXnihxFhnzZpVJA4AAABrK/eK8dzcXE2ePFnt2rXTLbfcYll5k5iYqBtvvFGvvvqqxo4da6s4AQAAgHJh3goAAGAbN910k6Kjo9WiRQv1799fb7/9tv78889Sy3t4eOj+++/Xe++9J0natWuXfvrppyK3Hv+rPXv2KCcnR7Vq1ZKPj4/ldfjwYcvtzMuSk5OjCRMmKCIiQn5+fvLx8VFKSoplxfju3bvl7OysLl26lHj+7t27ddttt1mS4lerXbt2xfYtX75cnTp1UlBQkHx8fPTMM88UWcm+e/duRUdHl1rniBEjtHTpUl28eFF5eXlasmSJhg4desVY/P39lZCQoO7du6tnz5567bXXlJaWVq7rpqSkyMXFpcijiWrVqqUmTZooJSXFss/NzU0tW7a0bO/du1eFhYVq3LhxkXFcv359meM4efJkZWVlWV7Hjh27YvsAAAAqotwrxp999lm9+eabiomJ0ebNm9W/f389+OCD2rp1q+bNm6f+/fvL2dnZlrECAAAAV8S8FQAAwDacnZ21du1abd68WWvWrNGCBQv09NNPa9u2baWeM3z4cLVq1Uq///67EhMT1a1bN8tq87/LyclR3bp1S3wWtZ+f3xXjmzBhgtauXau5c+cqPDxcnp6e+sc//qG8vDxJl1a1l+VKx52cnGQ2m4vs+/tzwiXJ29u7yPaWLVs0ZMgQTZ8+Xd27d7esSn/55ZfLfe2ePXvK3d1dX3zxhdzc3JSfn69//OMfZZ5zWWJiokaPHq3Vq1dr+fLleuaZZ7R27Vp16NDhitctD09PzyJ3AMjJyZGzs7N27txZbN59+bb1JXF3d7fcKQAAAMAWyp0Y/+STT/TBBx/onnvu0U8//aSWLVuqoKBAe/bsKfHWRwAAAIA9MG8FAACwHYPBoE6dOqlTp0569tln1aBBA0uytrCwsFj5Fi1aqF27dnr77be1ZMkS/etf/yq17jZt2ig9PV0uLi4KDQ2tcGybNm1SQkKC+vTpI+lSgvbIkSNFYjGZTFq/fr3lVup/1bJlS73//vvKz88vcdV4QEBAkdXWhYWF+umnn3T77beXGdfmzZvVoEEDPf3005Z9R48eLXbt77//vtRnhru4uOiBBx5QYmKi3NzcNGjQoAoltVu3bq3WrVtr8uTJ6tixo5YsWaIOHTqUed2IiAgVFBRo27Ztllupnz59Wvv371dkZGSZ1yosLFRGRoZuu+22cscIAABga+W+lfrvv/+utm3bSpKaN28ud3d3jR07lg8XAQAA4FCYtwIAANjGtm3b9MILL2jHjh1KTU3V559/rpMnTyoiIkKhoaH68ccftX//fp06darISurhw4dr9uzZMpvNlqR1SWJiYtSxY0f17t1ba9as0ZEjR7R582Y9/fTT2rFjxxXja9SokT7//HPt3r1be/bs0b333iuTyWQ5HhoaqgceeEBDhw7VihUrdPjwYSUlJenjjz+WJI0aNUrZ2dkaNGiQduzYoQMHDujDDz/U/v37JV16dvg333yjb775Rr/88oseeeQRZWZmliuu1NRULVu2TIcOHdL8+fP1xRdfFCkzdepULV26VFOnTlVKSor27t2rOXPmFCkzfPhwrVu3TqtXry7XbdQl6fDhw5o8ebK2bNmio0ePas2aNTpw4IDlOeNlXbdRo0bq1auXRowYof/+97/as2eP7rvvPtWrV0+9evUq9ZqNGzfWkCFDFB8fr88//1yHDx/W9u3bNWvWLH3zzTflihsAAMAWyp0YLywslJubm2XbxcWlzFvfAAAAAPbAvBUAAMA2jEajNmzYoLi4ODVu3FjPPPOMXn75Zd11110aMWKEmjRponbt2ikgIECbNm2ynDd48GC5uLho8ODB8vDwKLV+g8GgVatWqXPnznrwwQfVuHFjDRo0SEePHlWdOnWuGN+8efNUs2ZN3XLLLerZs6e6d++uNm3aFCnz73//W//4xz/06KOPqmnTphoxYoTOnTsn6dLzs9etW6ecnBx16dJFbdu21dtvv21ZPT506FA98MADio+PV5cuXRQWFnbF1eKSdM8992js2LEaNWqUWrVqpc2bN2vKlClFynTt2lWffPKJVq5cqVatWqlbt27avn17kTKNGjXSLbfcoqZNmxZ57ndZvLy89Msvv6hfv35q3LixRo4cqccee0wPPfRQua6bmJiotm3b6u6771bHjh1lNpu1atWqKz6HPTExUfHx8Ro/fryaNGmi3r17Kzk5WfXr1y9X3AAAALZgMP/9wTilcHJy0l133WV5zstXX32lbt26FXtmzueff279KB1cdna2atSooaysLBmNRnuHc92YTCZlZGQoMDBQTk7l/o4FrIgxcAyMg/1VtzHodO+cKxeyA4NBCqvro9/SclS+2cX1tWnJJJvUW13nAY6MeWvpquv7tbr9f8JRMQ72xxg4huo0Du0ejbN3CCUyGAwKr11fB0+lFntetCPY8cYqm9Vtr7nAkSNH1LBhQyUnJxdLVKP8zGazGjVqpEcffVTjxo2zdzg2d/n92qpVlpydq8/cFQAqg3LcyAW4Jraat5b7GeMPPPBAke377rvPakEAAAAA1sK8FQAAwDHk5+fr9OnTeuaZZ9ShQweS4tfg5MmTWrZsmdLT00t9DjkAAADKVu7EeGJioi3jAAAAAKyCeSsAAIBj2LRpk26//XY1btxYn3766TXX16xZMx09erTEY2+++aaGDBlyzddwVIGBgapdu7beeust1axZs8ixsh4b9O233+q2226zdXgAAACVQrkT4wAAAAAAAABQXl27drXq7epXrVql/Pz8Eo+V5xnklVlZ/bh79+5Sj9WrV88G0QAAAFROJMYBAAAAAAAAOLwGDRrYOwSHFB4ebu8QAAAAKgUnewcAAAAAAAAAAAAAAIAtkRgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGku9g4AAAAAAAAAAICSrF8vGY32jgIAAFQFrBgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVWaRLjZ86c0ZAhQ2Q0GuXn56dhw4YpJyenzHPeeustde3aVUajUQaDQZmZmcXKhIaGymAwFHnNnj3bRq0AAAAAAAAAAAAAAFxvlSYxPmTIEO3bt09r167V119/rQ0bNmjkyJFlnnP+/HnFxsbqn//8Z5nlZsyYobS0NMvr8ccft2boAAAAAAAAAAAAAAA7crF3AOWRkpKi1atXKzk5We3atZMkLViwQHFxcZo7d66Cg4NLPG/MmDGSpKSkpDLr9/X1VVBQkDVDBgAAAAAAAAAAAAA4iEqRGN+yZYv8/PwsSXFJiomJkZOTk7Zt26Y+ffpcU/2zZ8/WzJkzVb9+fd17770aO3asXFxK75rc3Fzl5uZatrOzsyVJJpNJJpPpmmKpTEwmk8xmc7Vqs6NhDBwD42B/1W0MDAZ7R1Ayg0EyyHHjs9X7o7q87wAAAAAAAACgMqsUifH09HQFBgYW2efi4iJ/f3+lp6dfU92jR49WmzZt5O/vr82bN2vy5MlKS0vTvHnzSj1n1qxZmj59erH9J0+e1MWLF68pnsrEZDIpKytLZrNZTk6V5q78VQpj4BgYB/urbmMQVtfH3iGUyCApyN9DkmS2byglysjIsEm9Z8+etUm9AAAAAAAAAADrsWti/KmnntKcOXPKLJOSkmLTGMaNG2f5uWXLlnJzc9NDDz2kWbNmyd3dvcRzJk+eXOS87OxshYSEKCAgQEaj0abxOhKTySSDwaCAgIBqkYhyRIyBY2Ac7K+6jcFvaTn2DqFEl1eK/5aeI7MDZsb//iU7a/Hw8LBJvQAAAAAAqUsXydnZ3lGgqtmxw94RAADswa6J8fHjxyshIaHMMmFhYQoKCiq2yqugoEBnzpyx+rPBo6KiVFBQoCNHjqhJkyYllnF3dy8xae7k5FQtEjJ/ZTAYqmW7HQlj4BgYB/urTmPgiEnny8y6FJ8jxmir90Z1eM8BAAAAAAAAQGVn18R4QECAAgICrliuY8eOyszM1M6dO9W2bVtJ0rp162QymRQVFWXVmHbv3i0nJyebrSoDAAAAAAAAAAAAAFxfleIZ4xEREYqNjdWIESO0cOFC5efna9SoURo0aJCCg4MlScePH1d0dLQ++OADtW/fXtKlZ5Onp6fr4MGDkqS9e/fK19dX9evXl7+/v7Zs2aJt27bp9ttvl6+vr7Zs2aKxY8fqvvvuU82aNe3WXgAAAAAAAAAAAACA9VSae38uXrxYTZs2VXR0tOLi4nTrrbfqrbfeshzPz8/X/v37df78ecu+hQsXqnXr1hoxYoQkqXPnzmrdurVWrlwp6dIt0ZctW6YuXbqoWbNmev755zV27Ngi9QIAAAAAAAAAAAAAKrdKsWJckvz9/bVkyZJSj4eGhsr8tweaTps2TdOmTSv1nDZt2mjr1q3WChEAAAAAAAAAAAAA4IAqzYpxAAAAoLI4c+aMhgwZIqPRKD8/Pw0bNkw5OTllnvPWW2+pa9euMhqNMhgMyszMLFYmNDRUBoOhyGv27Nk2agUAAAAAAABQdZAYBwAAAKxsyJAh2rdvn9auXauvv/5aGzZs0MiRI8s85/z584qNjdU///nPMsvNmDFDaWlpltfjjz9uzdABAAAAAACAKqnS3EodAAAAqAxSUlK0evVqJScnq127dpKkBQsWKC4uTnPnzlVwcHCJ540ZM0aSlJSUVGb9vr6+CgoKKlcsubm5ys3NtWxnZ2dLkkwmk0wmU7nqqApMJpPMZnO1arMjYhzsjzFwDNVpHAwGg71DKJHBYJBBBoeNz5bvjerwvgMAAABKQ2IcAAAAsKItW7bIz8/PkhSXpJiYGDk5OWnbtm3q06fPNdU/e/ZszZw5U/Xr19e9996rsWPHysWl5Gn9rFmzNH369GL7T548qYsXL15THJWJyWRSVlaWzGaznJy4aZa9MA72xxg4huo0DuG169s7hBIZDFJdY23JYJbZbO9oisvIyLBZ3WfPnrVZ3QAAAICjIzEOAAAAWFF6eroCAwOL7HNxcZG/v7/S09Ovqe7Ro0erTZs28vf31+bNmzV58mSlpaVp3rx5JZafPHmyxo0bZ9nOzs5WSEiIAgICZDQarymWysRkMslgMCggIKDKJ6EcGeNgf4yBY6hO43DwVKq9QyiRwWCQzAYdPH1MZgfMjP99HmFNHh4eNqsbAAAAcHQkxgEAAIByeOqppzRnzpwyy6SkpNg0hr8muVu2bCk3Nzc99NBDmjVrltzd3YuVd3d3L3G/k5NTlU/G/J3BYKiW7XY0jIP9MQaOobqMgyMmnS8zyyyz2eyQMdryfVHV33MAAABAWUiMAwAAAOUwfvx4JSQklFkmLCxMQUFBxW6BWlBQoDNnzpT72eDlFRUVpYKCAh05ckRNmjSxat0AAAAAAABAVUJiHAAAACiHgIAABQQEXLFcx44dlZmZqZ07d6pt27aSpHXr1slkMikqKsqqMe3evVtOTk42veUqAAAAHFfXrl3VqlUrvfrqq3aNIzQ0VGPGjNGYMWPsGgcAAEBZSIwDAAAAVhQREaHY2FiNGDFCCxcuVH5+vkaNGqVBgwYpODhYknT8+HFFR0frgw8+UPv27SVdejZ5enq6Dh48KEnau3evfH19Vb9+ffn7+2vLli3atm2bbr/9dvn6+mrLli0aO3as7rvvPtWsWdNu7QUAAACSk5Pl7e1t7zAAAADKxIOFAAAAACtbvHixmjZtqujoaMXFxenWW2/VW2+9ZTmen5+v/fv36/z585Z9CxcuVOvWrTVixAhJUufOndW6dWutXLlS0qXnhS9btkxdunRRs2bN9Pzzz2vs2LFF6gUAAADsISAgQF5eXvYOAwAAoEwkxgEAAAAr8/f315IlS3T27FllZWXpvffek4+Pj+V4aGiozGazunbtatk3bdo0mc3mYq/LzzVv06aNtm7dqszMTF24cEE///yzJk+eLHd39+vcOgAAANjDuXPnFB8fLx8fH9WtW1cvv/xykeMffvih2rVrJ19fXwUFBenee+9VRkaGJMlsNis8PFxz584tcs7u3btlMBgsdy0qjdls1rRp01S/fn25u7srODhYo0ePthwPDQ0tcjt3g8Ggd955R3369JGXl5caNWpk+cJnaXJzc5WdnV3kBQAAYE0kxgEAAAAAAADAwU2cOFHr16/Xl19+qTVr1igpKUm7du2yHM/Pz9fMmTO1Z88erVixQkeOHLF8ydJgMGjo0KFKTEwsUmdiYqI6d+6s8PDwMq/92Wef6ZVXXtGbb76pAwcOaMWKFWrRokWZ50yfPl0DBgzQjz/+qLi4OA0ZMkRnzpwptfysWbNUo0YNyyskJOQKPQIAAFAxJMYBAAAAAAAAwIHl5OTo3Xff1dy5cxUdHa0WLVro/fffV0FBgaXM0KFDdddddyksLEwdOnTQ/Pnz9e233yonJ0eSlJCQoP3792v79u2SLiXSlyxZoqFDh17x+qmpqQoKClJMTIzq16+v9u3bWx4BVJqEhAQNHjxY4eHheuGFF5STk2O5dkkmT56srKwsy+vYsWPl6RoAAIByIzEOAAAAAAAAAA7s0KFDysvLU1RUlGWfv7+/mjRpYtneuXOnevbsqfr168vX11ddunSRdCmpLUnBwcHq0aOH3nvvPUnSV199pdzcXPXv3/+K1+/fv78uXLigsLAwjRgxQl988UWRpHxJWrZsafnZ29tbRqPRcmv3kri7u8toNBZ5AQAAWBOJcQAAAAAAAACoxM6dO6fu3bvLaDRq8eLFSk5O1hdffCFJysvLs5QbPny4li1bpgsXLigxMVEDBw6Ul5fXFesPCQnR/v379cYbb8jT01OPPvqoOnfurPz8/FLPcXV1LbJtMBhkMpmusoUAAADXjsQ4AAAAAAAAADiwhg0bytXVVdu2bbPs+/PPP/Xrr79Kkn755RedPn1as2fP1m233aamTZuWuDo7Li5O3t7e+ve//63Vq1eX6zbql3l6eqpnz56aP3++kpKStGXLFu3du/faGwcAAHCduNg7AAAAAAAAAABA6Xx8fDRs2DBNnDhRtWrVUmBgoJ5++mk5OV1a91S/fn25ublpwYIFevjhh/XTTz9p5syZxepxdnZWQkKCJk+erEaNGqljx47luv6iRYtUWFioqKgoeXl56aOPPpKnp6caNGhg1XYCAADYEivGAQAAAAAAAMDBvfTSS7rtttvUs2dPxcTE6NZbb1Xbtm0lSQEBAVq0aJE++eQTRUZGavbs2Zo7d26J9QwbNkx5eXl68MEHy31tPz8/vf322+rUqZNatmyp7777Tl999ZVq1apllbYBAABcD6wYBwAAAAAAAAAH5+Pjow8//FAffvihZd/EiRMtPw8ePFiDBw8uco7ZbC5Wz/Hjx+Xq6qr4+PhyX7t3797q3bt3qcePHDlyxetmZmaW+3oAAAC2QGIcAAAAAAAAAKq43NxcnTx5UtOmTVP//v1Vp04de4cEAABwXXErdQAAAAAAAACo4pYuXaoGDRooMzNTL774YpFjixcvlo+PT4mvZs2a2SliAAAA62LFOAAAAAAAAABUcQkJCUpISCjx2D333KOoqKgSj7m6utowKgAAgOuHxDgAAAAAAAAAVGO+vr7y9fW1dxgAAAA2xa3UAQAAAAAAAAAAAABVGolxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFClkRgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJXmYu8AAAAAAAAAAAAoyfr1ktFo7ygAAEBVwIpxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFClkRgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGkkxgEAAAAAAAAAAAAAVZqLvQMAAAAAAAAAAKAkXbpIzs72jgLWsGOHvSMAAFR3rBgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGkkxgEAAAAAAAAAAAAAVRqJcQAAAAAAAAAAAABAlUZiHAAAAAAAAAAAAABQpZEYBwAAAAAAAAAAAABUaSTGAQAAAAAAAAAAAABVGolxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFClkRgHAAAAAAAAgCvo2rWrxowZY+8wLN566y2FhITIyclJr776qr3DKeLIkSMyGAzavXu3vUMBAACwcLF3AAAAAAAAAACA8svOztaoUaM0b9489evXTzVq1LB3SAAAAA6PxDgAAAAAAAAAVCKpqanKz89Xjx49VLduXXuHAwAAUClwK3UAAAAAAAAA+Itz584pPj5ePj4+qlu3rl5++eUixz/88EO1a9dOvr6+CgoK0r333quMjAxJktlsVnh4uObOnVvknN27d8tgMOjgwYNXvH5qaqp69eolHx8fGY1GDRgwQH/88YckadGiRWrRooUkKSwsTAaDQUeOHCm1rqysLDk7O2vHjh2SJJPJJH9/f3Xo0MFS5qOPPlJISIhl+9ixYxowYID8/Pzk7++vXr16FbvGO++8o4iICHl4eKhp06Z64403So2hsLBQQ4cOVdOmTZWamlpimdzcXGVnZxd5AQAAWBOJcQAAAAAAAAD4i4kTJ2r9+vX68ssvtWbNGiUlJWnXrl2W4/n5+Zo5c6b27NmjFStW6MiRI0pISJAkGQwGDR06VImJiUXqTExMVOfOnRUeHl7mtU0mk3r16qUzZ85o/fr1Wrt2rX777TcNHDhQkjRw4EB99913kqTt27crLS2tSFL772rUqKFWrVopKSlJkrR3714ZDAb98MMPysnJkSStX79eXbp0sbSte/fu8vX11caNG7Vp0yb5+PgoNjZWeXl5kqTFixfr2Wef1fPPP6+UlBS98MILmjJlit5///1i18/NzVX//v21e/dubdy4UfXr1y8xzlmzZqlGjRqWV1ltAgAAuBokxgEAAAAAAADgf3JycvTuu+9q7ty5io6OVosWLfT++++roKDAUmbo0KG66667FBYWpg4dOmj+/Pn69ttvLYnmhIQE7d+/X9u3b5d0Kdm8ZMkSDR069IrX//7777V3714tWbJEbdu2VVRUlD744AOtX79eycnJ8vT0VK1atSRJAQEBCgoKkrOzc5l1du3a1ZIYT0pK0h133KGIiAj997//tey7nBhfvny5TCaT3nnnHbVo0UIRERFKTExUamqqpY6pU6fq5ZdfVt++fXXjjTeqb9++Gjt2rN58881ifdmjRw+dPHlS//nPfxQQEFBqjJMnT1ZWVpbldezYsSv2FQAAQEWQGAcAAAAAAACA/zl06JDy8vIUFRVl2efv768mTZpYtnfu3KmePXuqfv368vX1tSSVL98mPDg4WD169NB7770nSfrqq68sK6evJCUlRSEhIUVWTEdGRsrPz08pKSlX1aYuXbrov//9rwoLC7V+/Xp17drVkiw/ceKEDh48qK5du0qS9uzZo4MHD8rX11c+Pj7y8fGRv7+/Ll68qEOHDuncuXM6dOiQhg0bZjnu4+Oj5557TocOHSpy3cGDB+vcuXNas2aNatSoUWaM7u7uMhqNRV4AAADW5GLvAAAAAAAAAACgsjh37py6d++u7t27a/HixQoICFBqaqq6d+9uudW4JA0fPlz333+/XnnlFSUmJmrgwIHy8vKyS8ydO3fW2bNntWvXLm3YsEEvvPCCgoKCNHv2bN10000KDg5Wo0aNJF1a5d22bVstXry4WD0BAQGWVfFvv/12kS8PSCq2cj0uLk4fffSRtmzZom7dutmodQAAAOVDYhwAAAAAAAAA/qdhw4ZydXXVtm3bLM/D/vPPP/Xrr7+qS5cu+uWXX3T69GnNnj3bsqp7x44dxeqJi4uTt7e3/v3vf2v16tXasGFDua4fERGhY8eO6dixY5b6f/75Z2VmZioyMvKq2uTn56eWLVvqX//6l1xdXdW0aVMFBgZq4MCB+vrrry0r3iWpTZs2Wr58uQIDA0tctV2jRg0FBwfrt99+05AhQ8q87iOPPKLmzZvrnnvu0TfffFPkOgAAANcbt1IHAAAAAAAAgP/x8fHRsGHDNHHiRK1bt04//fSTEhIS5OR06aPU+vXry83NTQsWLNBvv/2mlStXaubMmcXqcXZ2VkJCgiZPnqxGjRqpY8eO5bp+TEyMWrRooSFDhmjXrl3avn274uPj1aVLF7Vr1+6q29W1a1ctXrzYkpz29/dXRESEli9fXiRhPWTIENWuXVu9evXSxo0bdfjwYSUlJWn06NH6/fffJUnTp0/XrFmzNH/+fP3666/au3evEhMTNW/evGLXffzxx/Xcc8/p7rvvtjzTHAAAwB5IjAMAAAAAAADAX7z00ku67bbb1LNnT8XExOjWW29V27ZtJV26nfiiRYv0ySefKDIyUrNnz9bcuXNLrGfYsGHKy8vTgw8+WO5rGwwGffnll6pZs6Y6d+6smJgYhYWFafny5dfUpi5duqiwsNDyLHHpUrL87/u8vLy0YcMG1a9fX3379lVERISGDRumixcvWlaQDx8+XO+8844SExPVokULdenSRYsWLdKNN95Y4rXHjBmj6dOnKy4uTps3b76mdgAAAFwtg9lsNts7iMouOztbNWrUUFZWVom3F6qqTCaTMjIyFBgYaPnGLK4vxsAxMA72V93GoNO9c+wdQokMBimsro9+S8uRI84uNi2ZZJN6q+s8AJVTdX2/Vrf/TzgqxsH+GAPHUJ3God2jcfYOoUQGg0Hhtevr4KlUOeLHYjveWGWzuqvrXMCeNm7cqOjoaB07dkx16tSxdziVyuX3a6tWWXJ25v1aFZTwxAEAAEpkq3krzxgHAAAAAAAAACvKzc3VyZMnNW3aNPXv35+kOAAAgAOo2l9NBgAAAAAAAIDrbOnSpWrQoIEyMzP14osvFjm2ePFi+fj4lPhq1qzZVV2vWbNmpda5ePFiazQJAACg0mPFOAAAAAAAAABYUUJCghISEko8ds899ygqKqrEY66urld1vVWrVik/P7/EY6xWBwAAuITEOAAAAAAAAABcJ76+vvL19bVqnQ0aNLBqfQAAAFURt1IHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGku9g4AAAAAAAAAAICSrF8vGY32jgIAAFQFrBgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGkkxgEAAAAAAAAAAAAAVRqJcQAAAAAAAAAAAABAlUZiHAAAAAAAAAAAAABQpbnYOwAAAAAAAAAAAErSpYvk7GzvKKqOHTvsHQEAAPbDinEAAAAAAAAAAAAAQJVWaRLjZ86c0ZAhQ2Q0GuXn56dhw4YpJyenzPKPP/64mjRpIk9PT9WvX1+jR49WVlZWkXKpqanq0aOHvLy8FBgYqIkTJ6qgoMDWzQEAAAAAAAAAAAAAXCeV5lbqQ4YMUVpamtauXav8/Hw9+OCDGjlypJYsWVJi+RMnTujEiROaO3euIiMjdfToUT388MM6ceKEPv30U0lSYWGhevTooaCgIG3evFlpaWmKj4+Xq6urXnjhhevZPAAAAAAAAAAAAACAjVSKxHhKSopWr16t5ORktWvXTpK0YMECxcXFae7cuQoODi52TvPmzfXZZ59Zths2bKjnn39e9913nwoKCuTi4qI1a9bo559/1nfffac6deqoVatWmjlzpiZNmqRp06bJzc2txHhyc3OVm5tr2c7OzpYkmUwmmUwmazbdoZlMJpnN5mrVZkfDGDgGxsH+qtsYGAz2jqBkBoNkkOPGZ6v3R3V53wEAAAAAAABAZVYpEuNbtmyRn5+fJSkuSTExMXJyctK2bdvUp0+fctWTlZUlo9EoFxcXS70tWrRQnTp1LGW6d++uRx55RPv27VPr1q1LrGfWrFmaPn16sf0nT57UxYsXK9K0Ss1kMikrK0tms1lOTpXmrvxVCmPgGBgH+6tuYxBW18feIZTIICnI30OSZLZvKCXKyMiwSb1nz561Sb0AAAAAAAAAAOupFInx9PR0BQYGFtnn4uIif39/paenl6uOU6dOaebMmRo5cmSRev+aFJdk2S6r3smTJ2vcuHGW7ezsbIWEhCggIEBGo7Fc8VQFJpNJBoNBAQEB1SIR5YgYA8fAONhfdRuD39Jy7B1CiS6vFP8tPUdmB8yM/30uYS0eHh42qRcAAAAAAAAAYD12TYw/9dRTmjNnTpllUlJSrvk62dnZ6tGjhyIjIzVt2rRrrs/d3V3u7u7F9js5OVWLhMxfGQyGatluR8IYOAbGwf6q0xg4YtL5MrMuxeeIMdrqvVEd3nMAAAAAAAAAUNnZNTE+fvx4JSQklFkmLCxMQUFBxW5/WlBQoDNnzigoKKjM88+ePavY2Fj5+vrqiy++kKurq+VYUFCQtm/fXqT8H3/8YTkGAAAAAAAAAAAAAKj87JoYDwgIUEBAwBXLdezYUZmZmdq5c6fatm0rSVq3bp1MJpOioqJKPS87O1vdu3eXu7u7Vq5cWexWpx07dtTzzz+vjIwMy+1V165dK6PRqMjIyGtoGQAAAAAAAAAAAADAUVSKe39GREQoNjZWI0aM0Pbt27Vp0yaNGjVKgwYNUnBwsCTp+PHjatq0qWUFeHZ2tu68806dO3dO7777rrKzs5Wenq709HQVFhZKku68805FRkbq/vvv1549e/T//t//0zPPPKPHHnusxFulAwAAAAAAAAAAAAAqH7uuGK+IxYsXa9SoUYqOjpaTk5P69eun+fPnW47n5+dr//79On/+vCRp165d2rZtmyQpPDy8SF2HDx9WaGionJ2d9fXXX+uRRx5Rx44d5e3trQceeEAzZsy4fg0DAAAAAAAAAAAAANhUpUmM+/v7a8mSJaUeDw0Nldlstmx37dq1yHZpGjRooFWrVlklRgAAAAAAAAAAAACA46kUt1IHAAAAAAAAAFxaEDRmzBh7hwEAAFDpkBgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAADAys6cOaMhQ4bIaDTKz89Pw4YNU05OTpnlH3/8cTVp0kSenp6qX7++Ro8eraysrCLlUlNT1aNHD3l5eSkwMFATJ05UQUGBrZsDAAAAOzl37pzi4+Pl4+OjunXr6uWXXy5y/MMPP1S7du3k6+uroKAg3XvvvcrIyJAkmc1mhYeHa+7cuUXO2b17twwGgw4ePHjF62dmZuqhhx5SnTp15OHhoebNm+vrr7+2HP/ss8/UrFkzubu7KzQ0tFh8b7zxhho1aiQPDw/VqVNH//jHP662KwAAAK4ZiXEAAADAyoYMGaJ9+/Zp7dq1+vrrr7VhwwaNHDmy1PInTpzQiRMnNHfuXP30009atGiRVq9erWHDhlnKFBYWqkePHsrLy9PmzZv1/vvva9GiRXr22WevR5MAAABgBxMnTtT69ev15Zdfas2aNUpKStKuXbssx/Pz8zVz5kzt2bNHK1as0JEjR5SQkCBJMhgMGjp0qBITE4vUmZiYqM6dOys8PLzMa5tMJt11113atGmTPvroI/3888+aPXu2nJ2dJUk7d+7UgAEDNGjQIO3du1fTpk3TlClTtGjRIknSjh07NHr0aM2YMUP79+/X6tWr1blz51Kvl5ubq+zs7CIvAAAAa3KxdwAAAABAVZKSkqLVq1crOTlZ7dq1kyQtWLBAcXFxmjt3roKDg4ud07x5c3322WeW7YYNG+r555/Xfffdp4KCArm4uGjNmjX6+eef9d1336lOnTpq1aqVZs6cqUmTJmnatGlyc3O7bm0EAACA7eXk5Ojdd9/VRx99pOjoaEnS+++/rxtuuMFSZujQoZafw8LCNH/+fN18883KycmRj4+PEhIS9Oyzz2r79u1q37698vPztWTJkmKryEvy3Xffafv27UpJSVHjxo0t17hs3rx5io6O1pQpUyRJjRs31s8//6yXXnpJCQkJSk1Nlbe3t+6++275+vqqQYMGat26danXmzVrlqZPn16xTgIAAKgAEuMAAACAFW3ZskV+fn6WpLgkxcTEyMnJSdu2bVOfPn3KVU9WVpaMRqNcXFws9bZo0UJ16tSxlOnevbseeeQR7du3r8QPGXNzc5Wbm2vZvrzqxmQyyWQyXVX7KiOTySSz2Vyt2uyIGAf7YwwcQ3UaB4PBYO8QSmQwGGSQwWHjs+V7ozq876qSQ4cOKS8vT1FRUZZ9/v7+atKkiWV7586dmjZtmvbs2aM///zTMsapqamKjIxUcHCwevTooffee0/t27fXV199pdzcXPXv3/+K19+9e7duuOEGS1L871JSUtSrV68i+zp16qRXX31VhYWFuuOOO9SgQQOFhYUpNjZWsbGx6tOnj7y8vEqsb/LkyRo3bpxlOzs7WyEhIVeMEwAAoLxIjAMAAABWlJ6ersDAwCL7XFxc5O/vr/T09HLVcerUKc2cObPI7dfT09OLJMUlWbZLq7e0VTcnT57UxYsXyxVLVWAymZSVlSWz2SwnJ54mZS+Mg/0xBo6hOo1DeO369g6hRAaDVNdYWzKYZTbbO5riLj8f2hbOnj1rs7px/Z07d07du3dX9+7dtXjxYgUEBCg1NVXdu3dXXl6epdzw4cN1//3365VXXlFiYqIGDhxYanL6rzw9Pa8pPl9fX+3atUtJSUlas2aNnn32WU2bNk3Jycny8/MrVt7d3V3u7u7XdE0AAICykBgHAAAAyuGpp57SnDlzyiyTkpJyzdfJzs5Wjx49FBkZqWnTpl1TXaWtugkICJDRaLzGSCsPk8kkg8GggICAKp+EcmSMg/0xBo6hOo3DwVOp9g6hRAaDQTIbdPD0MZkdMDP+9y/YWZOHh4fN6ob1NWzYUK6urtq2bZvq17/0RZM///xTv/76q7p06aJffvlFp0+f1uzZsy0rq3fs2FGsnri4OHl7e+vf//63Vq9erQ0bNpTr+i1bttTvv/+uX3/9tcRV4xEREdq0aVORfZs2bVLjxo0tzyF3cXFRTEyMYmJiNHXqVPn5+WndunXq27dvhfoCAADAGkiMAwAAAOUwfvx4JSQklFkmLCxMQUFBxVZ6FRQU6MyZMwoKCirz/LNnzyo2Nla+vr764osv5OrqajkWFBSk7du3Fyn/xx9/WI6VpLRVN05OTlU+GfN3BoOhWrbb0TAO9scYOIbqMg6OmHS+zCyzzGazQ8Zoy/dFVX/PVTU+Pj4aNmyYJk6cqFq1aikwMFBPP/20ZRzr168vNzc3LViwQA8//LB++uknzZw5s1g9zs7OSkhI0OTJk9WoUSN17NixXNfv0qWLOnfurH79+mnevHkKDw/XL7/8IoPBoNjYWI0fP14333yzZs6cqYEDB2rLli3617/+pTfeeEOS9PXXX+u3335T586dVbNmTa1atUomk6nIreABAACuJ2bDAAAAQDkEBASoadOmZb7c3NzUsWNHZWZmaufOnZZz161bJ5PJVOT5kH+XnZ2tO++8U25ublq5cmWxFV0dO3bU3r17iyTd165dK6PRqMjISOs3GAAAAHb30ksv6bbbblPPnj0VExOjW2+9VW3btpV0aX66aNEiffLJJ4qMjNTs2bM1d+7cEusZNmyY8vLy9OCDD1bo+p999pluvvlmDR48WJGRkXryySdVWFgoSWrTpo0+/vhjLVu2TM2bN9ezzz6rGTNmWL5M6ufnp88//1zdunVTRESEFi5cqKVLl6pZs2ZX3yEAAADXgBXjAAAAgBVFREQoNjZWI0aM0MKFC5Wfn69Ro0Zp0KBBCg4OliQdP35c0dHR+uCDD9S+fXtLUvz8+fP66KOPlJ2drezsbEmXPvB0dnbWnXfeqcjISN1///168cUXlZ6ermeeeUaPPfYYz2IEAACoonx8fPThhx/qww8/tOybOHGi5efBgwdr8ODBRc4p6U4Ix48fl6urq+Lj4yt0fX9/f7333nulHu/Xr5/69etX4rFbb71VSUlJFboeAACALZEYBwAAAKxs8eLFGjVqlKKjo+Xk5KR+/fpp/vz5luP5+fnav3+/zp8/L0natWuXtm3bJkkKDw8vUtfhw4cVGhoqZ2dnff3113rkkUfUsWNHeXt764EHHtCMGTOuX8MAAABQqeTm5urkyZOaNm2a+vfvrzp16tg7JAAAALshMQ4AAABYmb+/v5YsWVLq8dDQ0CIrebp27VquZ5w2aNBAq1atskqMAAAAqPqWLl2qYcOGqVWrVvrggw+KHFu8eLEeeuihEs9r0KCB9u3bdz1CBAAAuG5IjAMAAAAAAABAFZSQkGB55vff3XPPPYqKiirxmKurqw2jAgAAsA8S4wAAAAAAAABQzfj6+srX19feYQAAAFw3TvYOAAAAAAAAAAAAAAAAWyIxDgAAAAAAAAAAAACo0kiMAwAAAAAAAAAAAACqNBLjAAAAAAAAAAAAAIAqjcQ4AAAAAAAAAAAAAKBKIzEOAAAAAAAAAAAAAKjSXOwdAAAAAAAAAAAAJVm/XjIa7R0FAACoClgxDgAAAAAAAAAAAACo0kiMAwAAAAAAAAAAAACqNBLjAAAAAAAAAAAAAIAqjcQ4AAAAAAAAAAAAAKBKIzEOAAAAAAAAAAAAAKjSSIwDAAAAAAAAAAAAAKo0EuMAAAAAAAAAAAAAgCqNxDgAAAAAAAAAAAAAoEpzsXcAAAAAAAAAAACUpEsXydnZ3lFcXzt22DsCAACqJlaMAwAAAAAAAAAAAACqNFaMAwAAAAAAoFIxm81KSz6gkym/qzA3Xz5BNVW/czN5+HmXek7arkPK/O0PXczM0V5XV3nWqaF6UY3lUdPHUubo+p+U/fsp5Z/LlbOrs7yDauqGDk2KlMk7e0FHN+zT2ROn5eziolpN6qleh8YyOLH+BAAAAHBkJMYBAICkSx8uHtu7Vn8cSlZh/gX51g5V2M295elbu9Rzft/3H53+fZ8uZGfI2dlVR29oqICIO+TpG2Apc2j758r846DyL2TLycVdvrXrq0Gru+RlDLSUOXv6mFL3rFbOmeOSJN9aIWrQ6i551wy2XYMBAABQaf2x+zdl7D2q0G4t5Wb01IntB3Tg62Q1G3SbnFxKvudyzokzCmheXz51/HSDsY62rl6vA18nK3LQbXJ2vfQRmVeAUf6NguXm46HC3HydSD6oX79OVoshXWVwMshsMuvAqh1y9XJX0z4dlX8uV0fW7ZHByaB6HZpczy4AAAAAUEF8lRUAAEiSjqesV9qvm9Xw5t5qccdjcnJx1c//eU+mwvxSz8nOOKy6jTqo5Z2PqVm3YTKbCvXzundVWJBnKePtX0/hUf9Qq7hxiuw6VJL083/eldlkkiQV5ucqJSlRbl5+annnY2pxxyNycnXXz0nvyWQqtG2jAQAAUOmYzWb98eNRBbVtKL8b68irllE3dmup/PO5yjz8R6nnNbr7ZtVueoM8/X1VM6i2QqNbKi/nos6fzLaUCYisL99gf7kbveQVUEPBUY2Un3NReWfPS5Kyj53SxT9zdGP0TfKqbVSNBgEKbt9YGftSZSo02bztAAAAAK4eiXEAAHDpVpT7N+mGZt3kf0Mzedesq0YdBirvQrbO/P5zqedF3j5UgWHt5FWjjrxrBuuW2PuUez5TOWd+t5QJCo9SjcAwefj4y8e/nuq3uFN557OUe+5PSdKF7JMqyDuv+i3ukKcxQF416iikeYzyL+ZYygAAAACX5Z29oILzuTLe8H93NnJ2d5V3YA2d+yOz3PUU5hVIklzcXUs+nl+g078cl5uvp1x9PCVJ5/74U57+vnL1creUM4bUlimvQBfPnL2K1gAAAAC4XriVOgAAUO65M8q/eFZ+QeGWfS5uHvKtFaKzp46qdoObylVPXu7F/53rVeLxwoI8ZRzeIXdvf7l51ZAkeRoD5OLmpT9+S9YNkbfLbDYr41CyPI2B8vCueY0tAwAAQFWTfz5XkuTq6VZkv6uXu+XYlZjNZh3778/yDqopz1q+RY5l/HRUx7fsl6mgUO5+3mrc82Y5OTv979p5RZLil+JwtxwDAAAA4LhIjAMAAOVdyJEkuXr4FNnv6uGjvIs55arDbDZpR9Kn8g1oIG+/oCLH0g5s0dHd38pUkCdP3wA1u32YnJwvTUOcXd3VLHqk9m/8UL/vWydJ8vSprYjbh8rgVPLzIQEAAFB9nP71uFLX77Nsh/doe8117ly1URfO5KhJ76hix2o1CpbxhtrKP5+rP3Yf1m9rdqtJnw6lPrscAAAAQOVAYhwAgGro5JEfdCj5C8t2RJeEa67zt+QvdfZUmiK6PVTsWECD1vILaqS8C9k68ctG7d+0RC3ueFhOzq4qLMjXoe2fybd2AzW6ZZBkNuv4LxuUsn6RWt45Ss4uJd/aEgAAANWDX2gdedfxs2yb//cs7/wLeXL19rDszz+fK6/axivWd3TDPuWknlKTXlFy+98t0v/K2d1Vzu6u8vDzlncdP+157ztlHv5D/o2C5erlpnMZmUXK51/43wp2L7didQEAAABwHCTGAQCohvzrRcqnVohl22wqlCTlX8yRm+f/fZiYfzFH3jXrXrG+33Z8qTMnflHcvWN18ryHzOaix13cPOTi5iFP39ryrVVf2z+brtPH9ikgtJVOHd2t3Jw/1eKOR2QwXLpFZeOOg7T9s+n68/jP5b6NOwAAAKomZzcXObv930dYZrNZLl7uOvv7aUsivDAvX+cyshTQrH6p9Vy+fXrm4T90Z0If/WHOlvnvE9fiZ8kss0z/S8Z716mptF2HlH8+13JL9ezfT8nJzUUe/j5lVQQAAADAzkiMAwBQDTm7usvT9f+ejWg2m+Xq4avM9IPyrhksSSrIv6izp48pqFGHUusxm806vHOlzvy+T82jR8q3Rm2dPF/OW6+bCiRJpsI8yWCQZLAcMxgMksFQjg8qAQAAUN0YDAbVadlAaTsPyr2Gl9yNXjq+/Ve5ernL78Y6lnK/rtwuvxvrKLBFA0nSsY0/68yBEwq/q61c3N2UfyZXZrNZzm4ucnJxVm72eZ05mCZjSG25ergp79xFpe/6TU7OzqpRP0CSZAypLY+aPjqy7kfV69BE+edzdWLbAQU2qy8nZ261DgAAADgyEuMAAEAGg0F1m3TS7/vWydO3ttx9/HXsxzVy8zTK/4ZIS7l9696W/w3NVLfxLZIurRQ/dXS3mnaOl7Oruy6cy1behXNycvGQs4urLuac1qmjP8qvbiO5uvso93yWjqckycnZVX7BTSVJNYIa6cgP3+q3HV/+r16zjv+cJIPBSTXqhNmjOwAAAODg6rQKkym/UEfX/6TCvAL5BNVUo7tvLvIc8Nzs8yq4mGfZPrkvVZK0/8tt2q9tlv0Nbm+h2k1vkMHZSTlpfyrjxyMqzM2Xi6e7fINrqmmfDpbV4QYng8Lj2il1wz798sUWObs4q1aTGxTcvtF1ajkAAACAq0ViHAAASJLqRXSRqSBPh5I/V0HeRRkDQhXZ9UE5Of/fM74v5pxWfu45y/YfB7dKkvZ9/5YkKfl/+8Oj/qHAsHZycnJV9skjStu/SQX5F+Tq4SNjwI1qcccjcvO4dKtJL2OgIjo/oGM/fae9a9+QwWCQd81gRXYdWuS27gAAAMBlBoNBwe0bK7h941LLtLiva5Htto/cZTk3vHZ9HTyVWuQORW7eHmrUo90Vr+3u61mucgAAAAAcC4lxAAAg6dIHhPVb3qn6Le8stUzbe54qsn3L4Nl/OV8Kq+uj39JyLM8Yd/MyKrLrg1e8tl/dRvKryyobAAAAoLoIDQ3VmDFjNGbMmGuq5/z587r//vu1du1anT17Vn/++af8/PysEiMAAACqFid7BwAAAAAAAAAAZVm0aFGJCe/3339fGzdu1ObNm5WWlqYaNWpc/+BKkZSUJIPBoMzMTKvUN23aNLVq1coqdQEAAFRHrBgHAAAAAAAAUCkdOnRIERERat68+VXXUVhYKIPBICcn1hBdlpeXJzc3N3uHAQAAYFXM9gAAAAAAAABYVdeuXTVq1CiNGjVKNWrUUO3atTVlypQiz3X/q3nz5qlFixby9vZWSEiIHn30UeXk5Ei6tPL6wQcfVFZWlgwGgwwGg6ZNm6auXbvq5Zdf1oYNG2QwGNS1a1dJ0p9//qn4+HjVrFlTXl5euuuuu3TgwAHLtS6vPl+5cqUiIyPl7u6u1NRUhYaG6rnnnlN8fLx8fHzUoEEDrVy5UidPnlSvXr3k4+Ojli1baseOHVfVJ5ev+//+3/9TRESEfHx8FBsbq7S0NEuZpKQktW/fXt7e3vLz81OnTp109OhRLVq0SNOnT9eePXssfbBo0aIr9t1lb7/9tkJCQuTl5aU+ffpo3rx5RVbgX16N/s477+jGG2+Uh4eHJGn16tW69dZb5efnp1q1aunuu+/WoUOHLOcdOXJEBoNBH3/8sW677TZ5enrq5ptv1q+//qrk5GS1a9dOPj4+uuuuu3Ty5Mky+yc3N1fZ2dlFXgAAANZEYhwAAAAAAACA1b3//vtycXHR9u3b9dprr2nevHl65513Sizr5OSk+fPna9++fXr//fe1bt06Pfnkk5KkW265Ra+++qqMRqPS0tKUlpamCRMm6PPPP9eIESPUsWNHpaWl6fPPP5ckJSQkaMeOHVq5cqW2bNkis9msuLg45efnW653/vx5zZkzR++884727dunwMBASdIrr7yiTp066YcfflCPHj10//33Kz4+Xvfdd5927dqlhg0bKj4+vtQE/5WcP39ec+fO1YcffqgNGzYoNTVVEyZMkCQVFBSod+/e6tKli3788Udt2bJFI0eOlMFg0MCBAzV+/Hg1a9bM0gcDBw68Yt9J0qZNm/Twww/riSee0O7du3XHHXfo+eefLxbbwYMH9dlnn+nzzz/X7t27JUnnzp3TuHHjtGPHDn3//fdycnJSnz59ZDKZipw7depUPfPMM9q1a5dcXFx077336sknn9Rrr72mjRs36uDBg3r22WfL7JtZs2apRo0alldISMhV9TEAAEBpuJU6AAAAAAAAAKsLCQnRK6+8IoPBoCZNmmjv3r165ZVXNGLEiGJlx4wZY/n58srthx9+WG+88Ybc3NxUo0YNGQwGBQUFFTnPy8tLbm5ulv0HDhzQypUrtWnTJt1yyy2SpMWLFyskJEQrVqxQ//79JUn5+fl64403dNNNNxWpLy4uTg899JAk6dlnn9W///1v3XzzzZbzJk2apI4dO+qPP/4oFkt55Ofna+HChWrYsKEkadSoUZoxY4YkKTs7W1lZWbr77rstxyMiIizn+vj4yMXFpdh1y+o7SVqwYIHuuusuSwK+cePG2rx5s77++usi9eTl5emDDz5QQECAZV+/fv2KlHnvvfcUEBCgn3/+ucjt6ydMmKDu3btLkp544gkNHjxY33//vTp16iRJGjZsmGWFe2kmT56scePGWbazs7NJjgMAAKtixTgAAAAAAAAAq+vQoYMMBoNlu2PHjjpw4IAKCwuLlf3uu+8UHR2tevXqydfXV/fff79Onz6t8+fPV+iaKSkpcnFxUVRUlGVfrVq11KRJE6WkpFj2ubm5qWXLlsXO/+u+OnXqSJJatGhRbF9GRkaF4rrMy8vLkvSWpLp161rq8vf3V0JCgrp3766ePXvqtddeK3Kb9dJcqe/279+v9u3bFznn79uS1KBBgyJJcenSFw0GDx6ssLAwGY1GhYaGSpJSU1OLlCtPv12pz9zd3WU0Gou8AAAArInEOAAAAAAAAAC7OXLkiO6++261bNlSn332mXbu3KnXX39d0qVVzLbg6elZJGl/maurq+Xny8dL2vf3W4mX11/rulzfX2/LnpiYqC1btuiWW27R8uXL1bhxY23durXU+qzZd97e3sX29ezZU2fOnNHbb7+tbdu2adu2bSXWXZ5+u9o+AwAAsBYS4wAAAAAAAACs7nIS9bKtW7eqUaNGcnZ2LrJ/586dMplMevnll9WhQwc1btxYJ06cKFLGzc2txJXmfxcREaGCgoIi1z59+rT279+vyMjIa2jN9dO6dWtNnjxZmzdvVvPmzbVkyRJJJfdBefquSZMmSk5OLrLv79sludxvzzzzjKKjoxUREaE///zzGlsHAABgPyTGAQAAAAAAAFhdamqqxo0bp/3792vp0qVasGCBnnjiiWLlwsPDlZ+frwULFui3337Thx9+qIULFxYpExoaqpycHH3//fc6depUqbdYb9SokXr16qURI0bov//9r/bs2aP77rtP9erVU69evWzSTms5fPiwJk+erC1btujo0aNas2aNDhw4YHnOeGhoqA4fPqzdu3fr1KlTys3NLVffPf7441q1apXmzZunAwcO6M0339S3335b4or5v6pZs6Zq1aqlt956SwcPHtS6deuKPAMcAACgsiExDgAAAAAAAMDq4uPjdeHCBbVv316PPfaYnnjiCY0cObJYuZtuuknz5s3TnDlz1Lx5cy1evFizZs0qUuaWW27Rww8/rIEDByogIEAvvvhiqddNTExU27Ztdffdd6tjx44ym81atWpVsduYOxovLy/98ssv6tevnxo3bqyRI0fqscce00MPPSRJ6tevn2JjY3X77bcrICBAS5cuLVffderUSQsXLtS8efN00003afXq1Ro7dqw8PDzKjMfJyUnLli3Tzp071bx5c40dO1YvvfSSzdoPAABgawbzXx9ig6uSnZ2tGjVqKCsrS0aj0d7hXDcmk0kZGRkKDAyUkxPfsbAHxsAxMA72V93GoNO9c+wdQokMBimsro9+S8uRI84uNi2ZZJN6q+s8AJVTdX2/Vrf/TzgqxsH+GAPHUJ3God2jcfYOoUQGg0Hhtevr4KlUOeLHYjveWGWzuq/nXKBr165q1aqVXn31VZteB1dnxIgR+uWXX7Rx40Z7h1Kqy+/XVq2y5OxcfeaukrRjh70jAADAvmw1b3WxWk0AAAAAAAAAAIczd+5c3XHHHfL29ta3336r999/X2+88Ya9wwIAALiuqvZXkwEAAAAAAADABu666y75+PiU+HrhhRfsHV4R27dv1x133KEWLVpo4cKFmj9/voYPH27vsAAAAK4rVowDAAAAAAAAsKqkpCR7h2Bz77zzji5cuFDiMX9//+scTdk+/vhje4cAAABgdyTGAQAAAAAAAKCC6tWrZ+8QAAAAUAHcSh0AAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGkkxgEAAAAAAAAAAAAAVRqJcQAAAAAAAAAAAABAleZi7wAAAEDFbFoyyd4hlMhkMikjI0OBgYFycuK7dwAAANXdjjdW2TuEEjFvBQAAAKonEuMAAAAAAAAAAIe0fr1kNNo7CgAAUBXwtVgAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGkkxgEAAAAAAAAAAAAAVRqJcQAAAAAAAAAAAABAlUZiHAAAAAAAAAAAAABQpZEYBwAAAAAAAAAAAABUaSTGAQAAAAAAAAAAAABVGolxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFClkRgHAAAAAAAAAAAAAFRpJMYBAAAAAAAAAAAAAFUaiXEAAAAAAAAAAAAAQJVGYhwAAAAAAAAAAAAAUKWRGAcAAAAAAAAAAAAAVGkkxgEAAAAAAAAAAAAAVRqJcQAAAAAAAAAAAABAlVZpEuNnzpzRkCFDZDQa5efnp2HDhiknJ6fM8o8//riaNGkiT09P1a9fX6NHj1ZWVlaRcgaDodhr2bJltm4OAAAAAAAAAAAAAOA6cbF3AOU1ZMgQpaWlae3atcrPz9eDDz6okSNHasmSJSWWP3HihE6cOKG5c+cqMjJSR48e1cMPP6wTJ07o008/LVI2MTFRsbGxlm0/Pz9bNgUAAAAAAAAAAAAAcB1VisR4SkqKVq9ereTkZLVr106StGDBAsXFxWnu3LkKDg4udk7z5s312WefWbYbNmyo559/Xvfdd58KCgrk4vJ/Tffz81NQUFC548nNzVVubq5lOzs7W5JkMplkMpkq3L7KymQyyWw2V6s2OxrGwDEwDvbHGDiG6joO1a29AAAAAAAAAFAZVYrE+JYtW+Tn52dJiktSTEyMnJyctG3bNvXp06dc9WRlZcloNBZJikvSY489puHDhyssLEwPP/ywHnzwQRkMhlLrmTVrlqZPn15s/+HDh+Xj41POVlV+JpNJ2dnZys7OlpNTpbkrf5XCGDgGxsH+GAPHUF3H4fKjXcxms50jAa7s8vv08hc7qwuTyaSzZ8/Kw8OjWv375GgYB/tjDBwD42B/1XkMLs8BmLuiMqiuc1cAAGC7eWulSIynp6crMDCwyD4XFxf5+/srPT29XHWcOnVKM2fO1MiRI4vsnzFjhrp16yYvLy+tWbNGjz76qHJycjR69OhS65o8ebLGjRtn2T5+/LgiIyPVpk2bCrQKAABUJWfPnlWNGjXsHQZQprNnz0qSQkJC7BwJAACwJ+auqAxOnz4tibkrAADVmbXnrXZNjD/11FOaM2dOmWVSUlKu+TrZ2dnq0aOHIiMjNW3atCLHpkyZYvm5devWOnfunF566aUyE+Pu7u5yd3e3bPv4+OjYsWPy9fUtc6V5VZOdna2QkBAdO3ZMRqPR3uFUS4yBY2Ac7I8xcAzVdRzMZrPOnj1b4qNdAEcTHBzMvLUa/fvkaBgH+2MMHAPjYH/VeQyYu6Iy8ff3lySlpqZW2y9yVOd/r/6KfqAPLqMfLqEf6IPLqnI/2GreatfE+Pjx45WQkFBmmbCwMAUFBSkjI6PI/oKCAp05c+aKzwY/e/asYmNj5evrqy+++EKurq5llo+KitLMmTOVm5tbJPldFicnJ91www3lKlsVGY3GKvcLV9kwBo6BcbA/xsAxVMdxqK4f0qDyYd5a/f59ckSMg/0xBo6BcbC/6joGzF1RWVx+1EGNGjWq5e/qX1XXf6/+jn6gDy6jHy6hH+iDy6pqP9hi3mrXxHhAQIACAgKuWK5jx47KzMzUzp071bZtW0nSunXrZDKZFBUVVep52dnZ6t69u9zd3bVy5Up5eHhc8Vq7d+9WzZo1y50UBwAAAAAAAAAAAAA4tkrxjPGIiAjFxsZqxIgRWrhwofLz8zVq1CgNGjTIsoT++PHjio6O1gcffKD27dsrOztbd955p86fP6+PPvpI2dnZlge1BwQEyNnZWV999ZX++OMPdejQQR4eHlq7dq1eeOEFTZgwwZ7NBQAAAAAAAAAAAABYUaVIjEvS4sWLNWrUKEVHR8vJyUn9+vXT/PnzLcfz8/O1f/9+nT9/XpK0a9cubdu2TZIUHh5epK7Dhw8rNDRUrq6uev311zV27FiZzWaFh4dr3rx5GjFixPVrWCXm7u6uqVOnsrrejhgDx8A42B9j4BgYBwCOin+fHAPjYH+MgWNgHOyPMQAqB35X6YPL6Af64DL64RL6gT64jH6oOIPZbDbbOwgAAAAAAAAAAAAAAGzFyd4BAAAAAAAAAAAAAABgSyTGAQAAAAAAAAAAAABVGolxAAAAAAAAAAAAAECVRmIcAAAAAAAAAAAAAFClkRgHAAAAAAAAAAAAAFRpJMYhSTKZTMX2nT171g6RAAAcSUn/fwAAAPbH33BAUcxbAcf3+uuvKzQ0VB4eHoqKitL27dvLLP/JJ5+oadOm8vDwUIsWLbRq1aoix81ms5599lnVrVtXnp6eiomJ0YEDB2zZBKuwZj/k5+dr0qRJatGihby9vRUcHKz4+HidOHHC1s24JtZ+L/zVww8/LIPBoFdffdXKUVufLfohJSVF99xzj2rUqCFvb2/dfPPNSk1NtVUTrMLa/ZCTk6NRo0bphhtukKenpyIjI7Vw4UJbNuGaVaQP9u3bp379+ik0NLTM93pF+9URWLsfZs2apZtvvlm+vr4KDAxU7969tX//fhu24NrZ4r1w2ezZs2UwGDRmzBjrBl3JkBiHJMnJyUlHjx61/OJ88sknio+PV1ZWln0Dq4b4Y94xmM1me4dQ7TEGjsHJ6dJUYevWrQ7/hzWA6oU5k2Pg/9f2w99wjoXfBftj3go4tuXLl2vcuHGaOnWqdu3apZtuukndu3dXRkZGieU3b96swYMHa9iwYfrhhx/Uu3dv9e7dWz/99JOlzIsvvqj58+dr4cKF2rZtm7y9vdW9e3ddvHjxejWrwqzdD+fPn9euXbs0ZcoU7dq1S59//rn279+ve+6553o2q0Js8V647IsvvtDWrVsVHBxs62ZcM1v0w6FDh3TrrbeqadOmSkpK0o8//qgpU6bIw8PjejWrwmzRD+PGjdPq1av10UcfKSUlRWPGjNGoUaO0cuXK69WsCqloH5w/f15hYWGaPXu2goKCrFKnI7BFP6xfv16PPfaYtm7dqrVr1yo/P1933nmnzp07Z8umXDVb9MFlycnJevPNN9WyZUtbhF65mAGz2Zyfn2+eNGmSuWXLlub4+HizwWAwJyYm2jusaqewsNDy85o1a8wrV64079mzx44RVU9/HYdz586Zc3Jy7BhN9fTXMcjPzzfn5eWZzWaz2WQy2SukauevY/D999+ba9asaZ41a5Y5IyPDjlEBwCXMmRwDcyb74m84x8Hc1b6YtwKVQ/v27c2PPfaYZbuwsNAcHBxsnjVrVonlBwwYYO7Ro0eRfVFRUeaHHnrIbDZf+jc2KCjI/NJLL1mOZ2Zmmt3d3c1Lly61QQusw9r9UJLt27ebJZmPHj1qnaCtzFZ98Pvvv5vr1atn/umnn8wNGjQwv/LKK1aP3Zps0Q8DBw4033fffbYJ2EZs0Q/NmjUzz5gxo0iZNm3amJ9++mkrRm49Fe2DvyrtvX4tddqLLfrh7zIyMsySzOvXr7+WUG3GVn1w9uxZc6NGjcxr1641d+nSxfzEE09YKeLKiRXjkCS5uLho6tSpatCggT788EMNGDBACQkJkqTCwkL7BldNmM1myzfcx48frwceeEDx8fEaPny4pk6daufoqpfL4zBz5kx1795dd955p9544w07R1W9XB6D2bNna+DAgerevbs2btwog8Fg58iqh7/+e7RgwQLt2LFDubm5evHFF/Xuu+/q5MmTdo4QQHXGnMlxMGeyL/6GcxzMXe2HeStQOeTl5Wnnzp2KiYmx7HNyclJMTIy2bNlS4jlbtmwpUl6Sunfvbil/+PBhpaenFylTo0YNRUVFlVqnvdmiH0qSlZUlg8EgPz8/q8RtTbbqA5PJpPvvv18TJ05Us2bNbBO8FdmiH0wmk7755hs1btxY3bt3V2BgoKKiorRixQqbteNa2er9cMstt2jlypU6fvy4zGaz/vOf/+jXX3/VnXfeaZuGXIOr6QN71Glr1yvmy3fX8vf3t1qd1mLLPnjsscfUo0ePYr871RWJcVhu+ebm5iY/Pz/dcccd+v333zVr1ixJkrOzMx+s2JjZbLZ8aLJr1y5t3bpVX331lTZv3qyYmBitWrVK48ePt3OUVd9fb8k6b948/etf/1JMTIyaN2+uUaNGadKkSXaMrnr46xjMmjVL8+bNU0hIiNzc3BQTE6N3331X+fn5doywerj879GMGTM0ZcoUNW7cWMuWLdOAAQP04osv6r333tOpU6fsHCWA6og5k2NgzmR//A3nGJi72h/zVqByOHXqlAoLC1WnTp0i++vUqaP09PQSz0lPTy+z/OX/VqROe7NFP/zdxYsXNWnSJA0ePFhGo9E6gVuRrfpgzpw5cnFx0ejRo60ftA3Yoh8yMjKUk5Oj2bNnKzY2VmvWrFGfPn3Ut29frV+/3jYNuUa2ej8sWLBAkZGRuuGGG+Tm5qbY2Fi9/vrr6ty5s/UbcY2upg/sUaetXY+YTSaTxowZo06dOql58+ZWqdOabNUHy5Yt065duyx/K0JysXcAsK/LHy7u3LlTAQEBev/995WVlaUpU6boyy+/lCRNnjxZzs7Oki79ctauXdueIVdJl/+YX758uT755BPddNNNatu2rSTpySeflJeXl1asWKHx48fr5ZdftmeoVdrllQa7d++Wl5eXEhMTFRcXJ7PZrNtvv10JCQkym8168cUX7Rxp1XV5DFJTU5WZmalPPvlEXbp0kSRNnTpVDz/8sEwmkxL+P3v3HRbV0bYB/F56FRABC6LYsfeKojH23rAjdo3EbrAiamyIDbFhw4IiihUklij2gooRe41GxQ4C0nfn+8OP87KCiWVhV7x/18WlnHP27HPO7C7PzOzMuLpCV1dXnaHmee/evcPevXsxbdo0dOzYEQDQrl07mJmZYebMmRBCYMCAAbC2tlZvoET0Q2HOpBmYM6kX63Cag7mrZmDeSkT0QVpaGpydnSGEwMqVK9UdTq65dOkSli5disuXL//Qs7VkfGGvQ4cOGDNmDACgatWqOHPmDFatWiXlKD+CZcuW4dy5c9i3bx+KFSuGEydOYMSIEShcuDBHzP7ARowYgWvXruHUqVPqDiXX/PPPPxg1ahQOHz4MAwMDdYejMThi/AeW0aCye/dutG7dGsuWLcObN29gbm6OKVOmoFatWti3bx/mzJkDAPDw8MDw4cORkpKi5sjzpvj4eISGhuLUqVO4ffu2tN3c3Bxubm7o2LEjTp06hUGDBqkxyrzv3LlzqF69OiZMmCCNspHJZOjRowf8/f3h4+PDUVA5LCQkBMWLF8fWrVuVKjQzZszAlClTMGLECGzcuBGpqalqjDJvy5iSUi6XSw2+ycnJAD58C9vJyQm+vr7YvHkzYmNj1RgpEf2ImDNpBuZM6sE6nOZh7qpezFuJvg8FChSAtrY2Xrx4obT9xYsXKFiwYLaPKViw4L8en/Hvl5xT3XLiPmTI6BR/9OgRDh8+rJGjxYGcuQcnT57Ey5cvYWdnBx0dHejo6ODRo0cYN24cihcvniPX8a1y4j4UKFAAOjo6KF++vNIxDg4OePz4sQqjV52cuA9JSUmYPHkyFi1ahHbt2qFy5cpwc3ND9+7d4e3tnTMX8g2+5h6o45w5LadjdnNzQ0hICI4dOwZbW9tvPl9OyIl7cOnSJbx8+RLVq1eXPh+PHz8OHx8f6Ojo/LCzjLFj/Acmk8kQFhaG3r17Y+7cuXB3d5dGEhQsWBDTpk2Do6Mj1q9fj/Lly2P58uUYP3489PX11Rx53pAx/WHGv6amppgzZw66d++O27dvY968edKxGQ29Tk5OEEJIjyHVq1ixIpYuXQqFQoHLly8r7evRowc2bdqEBQsWYPny5WqKMO9r3bo1Ro0ahadPn+LBgwcA/vc+8fT0xNSpUzFkyBD88ccf6gwzT8k8DSjw4e+DqakpypYtizVr1gAADAwMpKlAixUrBisrK3h7e+PkyZMAwM8lIsoxzJk0E3Mm9WAdTvMwd81dzFuJvk96enqoUaMG/vzzT2mbQqHAn3/+iXr16mX7mHr16ikdDwCHDx+Wjre3t0fBggWVjomLi8P58+c/eU51y4n7APyvU/zu3bs4cuQILC0tc+YCVCAn7kHfvn1x9epVXLlyRfopXLgwJkyYgIMHD+bcxXyDnLgPenp6qFWrltKXhwHgzp07KFasmIqvQDVy4j6kpaUhLS1N+sJcBm1t7Sx5hCb4mnugjnPmtJyKWQgBNzc37N69G0ePHoW9vb0qws0ROXEPmjZtiqioKKXPx5o1a6J37964cuWKNMvYD0fQDyslJUX069dPTJgwQQghREJCgrhx44aYPHmyWLNmjXj27JmIj48Xhw4dEsuWLRN3795Vc8R5h1wul/7/+PFj8eLFC/HmzRshhBBPnz4Vv/zyi6hTp45YsGCB0uPi4+OFQqHIcg76Op+6hykpKcLLy0vIZDKxdOnSLPuPHDki0tLScjq8H8K/vY4HDhwojI2NRVhYWJZ9a9euZRmoSOYyOHfunIiMjBQPHz4UQnz4fCpdurRwdHQUycnJIj09XQghRLdu3URERITo3r27qFChgjrCJqIfBHMmzcCcSXOwDqdezF3Vi3kr0fctMDBQ6OvrC39/f3Hjxg0xZMgQYW5uLp4/fy6EEKJv375i4sSJ0vGnT58WOjo6wtvbW9y8eVNMnz5d6OrqiqioKOmYefPmCXNzc7F3715x9epV0aFDB2Fvby+SkpJy/fo+l6rvQ2pqqmjfvr2wtbUVV65cEdHR0dJPSkqKWq7xv+TEa+FjxYoVE4sXL87pS/kmOXEfdu3aJXR1dYWfn5+4e/euWLZsmdDW1hYnT57M9ev7XDlxH5ycnESFChXEsWPHxIMHD8SGDRuEgYGBWLFiRa5f3+f40nuQkpIiIiMjRWRkpChUqJAYP368iIyMVMr9/+ucmign7sPw4cOFmZmZCA8PV/p8TExMzPXr+xw5cQ8+5uTkJEaNGpXTl6LR2DH+A0tNTRVOTk6iW7du4vnz52Lw4MGicePGokyZMsLGxuaHf3PklIxGWiGE8PDwEJUrVxYlSpQQ5cqVE8HBwUIIIaKjo8Uvv/wi6tatKxYuXPiv56Cvk7lRxd/fX3h6ego3Nzdx5swZERcXJ4T4UMGSyWTCx8cn23OwcevbZC6DnTt3Cm9vb+Hr6ysuXLggbe/Xr58wMTHJtoFRCJbBt8r8WTJ+/HhRtGhRYWpqKlq2bCk2bdokhPhQ4XBwcBCFCxcWzZs3F5UqVRIlS5YUQgixZMkSUaNGDXY6EVGOYM6kGZgzaRbW4dSHuat6MW8lyhuWLVsm7OzshJ6enqhdu7Y4d+6ctM/JyUn069dP6figoCBRpkwZoaenJypUqCBCQ0OV9isUCjFt2jRhY2Mj9PX1RdOmTcXt27dz41K+iSrvw8OHDwWAbH+OHTuWS1f05VT9WvjY99AxLkTO3Id169aJUqVKCQMDA1GlShWxZ8+enL6Mb6bq+xAdHS1cXV1F4cKFhYGBgShbtqxYuHChRtcPv+QefOp97+Tk9Nnn1FSqvg+f+nzcsGFD7l3UF8qJ10Jm7Bhnx/gPJbsP/pCQEGFubi5MTExE586dxdatW4UQQsydO1fUqVNHo79h+b37/fffhaWlpdi5c6fYtm2b+PXXX4WWlpaUtD1+/Fi4ubmJEiVKSOVCqjdu3DhhaWkpunbtKsqUKSPKlCkjxo4dK169eiWEEMLLy0vo6uqK2bNnqznSvGv8+PHC0tJSNG3aVFhZWYnq1auLadOmSfv79+8vzM3Nxe7du9UXZB4jl8uV/iacPHlSlCtXTpw+fVrs3btX9OvXT1SrVk2sXbtWCCFEYmKi8PT0FOPHjxdTp04VqampQogPZdOuXTuRnJys0ZULIvq+MWfSDMyZ1IN1OM3D3DV3MW8lIiIiIiJV0smlGdtJzYQQkMlkOH36NE6ePIlXr17h559/Rps2bXD9+nU8ePAAjo6O0lpb0dHRsLOzU3PUecfz589RsGBB6feEhAQcPHgQ06dPR5cuXQB8WIvRzs4OY8eORY0aNdCwYUOMHz8exYsXh7Ozs7pCz9MOHjyI7du349ChQ6hevToAYPbs2fjjjz/g4+ODadOmwc3NDe/fv8eBAwcwadIkyGQyNUf9/VMoFNI6P/v27UNAQABCQ0NRp04dvH79GkuXLkVYWBiMjIwwceJErF+/HnFxcVi+fDk6duyo3uDziMzrLAUHB+PAgQNwdnZG/fr1AQBly5bF0qVL4evri7S0NAwbNgzTp0+XHvPixQvMmTMHe/fuxYkTJ7huKRGpDHMmzcScST1Yh9MMzF3Vi3krERERERGpktZ/H0J5gUwmw65du9ChQ/dx4NkAAQAASURBVAecOXMGsbGxaNOmDSZNmgRLS0s4OjoCAKKiojB58mRs3LgRU6dOhYGBgZoj//41bdoUCxcuVNqWmJiIe/fuwdTUFACQnp4OIQTGjx+P1q1bw8/PD2lpaShWrBjGjRsHbW1tyOVydYSfZ4wdOxaRkZFK22JiYqCnp4ciRYpIDYqTJ09GgwYNsH37dqSmpsLQ0BCTJ0/GyZMnIZPJpOPoy40ZMwZv375Vatx6+PAhbGxspEb2AgUKYMSIEahVqxYOHTqExMREAMDOnTtx8OBBtcSdl7i6umLq1KkAPjTy/vPPP/Dz88Pu3bvx7Nkz6biyZcti1KhRqFevHtatW4cFCxZI+54+fYqgoCCcOXMGf/75JypUqJDr10FEeRNzJs3AnElzsA6nXsxd1Yt5KxERERER5QR2jP8gbt++jbFjx2LOnDnYt28ffHx8oKPzYcKAjG9M//XXX1i4cCH279+P48ePo3LlyuoMOc9Yvnw5fv/9dwBAXFwcAMDa2hqOjo7w8/PDmzdvoKOjIzXi5s+fH0II6OrqKp1HW1s7dwPPQ86ePYuUlBRUqlQpy7709HQkJydDJpMhLS0NMpkMEydOxKNHj3D06FEAgJ6entTAy9FPX+fo0aOIjY1Fvnz5lLabm5sjPT1datwSQqBgwYLo378/wsPDce3aNelYLS0tKBSKXI07L0lOTkbr1q2lETRaWlooWrQoPD090bhxYxw6dAg7d+6Uji9btixGjx6N0qVL48aNG1IHR5EiRdC1a1ccPHgQVatWVcelEFEexZxJ/ZgzaRbW4dSHuat6MW8lIiIiIqKcwo7xH8S7d+9QrFgxDBkyBPfv30fZsmXRv39/zJ07FwDwzz//oEqVKvj111/xxx9/oEqVKmqOOG9QKBQoV64c9PX1MW/ePDg7O+PBgwcAABcXF2hpaWHcuHGIj4+XGnqfPHkCKysrNUeet9SrVw++vr7Q0dHB1q1bpcbbjh07QgiBX3/9FQqFQmpYf/XqFUqWLAlra2ul87CB9+v99NNPWL9+vVQGz58/BwBUrVoVf//9N1asWIGkpCTpHhsaGqJSpUowNjZWOk/mETv0+YQQMDAwgLOzM3R1dbF69Wp06NABQgjUq1cPv/32G2rVqoXly5dj9+7d0uPKlCmD+fPnY926dZDJZFLjbqFChZA/f351XQ4R5UHMmTQDcybNwjqc+jB3VR/mrURERERElJNYS8ujMr4hfejQIVy4cAFyuRz//PMPzp8/j2bNmqFNmzZYsWIFAOD48eMYPnw4nj59ipo1a6JIkSLqDD3PEEIoNYQ0btwYR48exaRJk/D8+XO0bdsWLi4uuHXrFhwcHNC1a1fUqVMHL168UJr+jb5N5lEad+/eha+vL+bMmYPjx4/DwMAAwcHBuHDhAn7++WcEBwfj8OHDGD16NIyNjVGzZk01Rp53ZJSBTCbDjRs3MHfuXPTu3RvPnz9HlSpVsGbNGnh7e2PChAkICQnB1atXMX78eBgZGcHBwUHN0ecNH09nm5aWhgcPHqB///4QQqBu3boYPXo0LC0tsXTpUuzZs0c6tmjRotKIJzbuElFOYM6kGZgzqR/rcJqBuat6MW8lIiIiIqKcJBNc/C3POnXqFFq2bImVK1eiVatW6N+/P44ePYoOHTpg69at0hSHkyZNwvnz5xEUFIQCBQqoO+w8IXNF/OLFi7Czs4O1tTUiIyPh6OiIli1bYtWqVbCyskJUVBSCg4Px6tUr2NjYYPLkydDR0UF6ero0VSJ9newaREJCQrBq1Sqkp6dj6tSpcHR0xJ07d+Di4oLXr19DR0cHdnZ2CA0Nha6uLuRyOadk/QYfl4EQAkFBQVi1ahV0dXWxadMmFCxYEHv27MHkyZMRGxsLMzMzWFtb48iRI9DV1WXD1jc6c+YMihYtiqJFi2Ls2LEoW7Ys+vXrB39/f/j5+aFChQrYtGkTZDIZTp8+jaVLl+L69etYuXIlGjVqpO7wiSiPY86kGZgzaQ7W4dSLuat6MW8lIiIiIqKcxo7xPOrRo0dYvXo1TExMMHnyZACAn58fli5dilq1amHChAlISkpCUFAQ1qxZgxMnTmS7liB9ucwNIVOnTsXx48cxdOhQdO7cGUZGRkoNvT4+PtmO7mDD4rfLXA6LFi1CXFwcPDw8oKWlhbCwMPj4+EChUGDKlClo1KiRNCWrEAJ2dnbQ0tJiQ/s3ylwGy5cvh5GREfr27QttbW3s2LEDvr6+MDAwwMaNG1GoUCE8ffoUiYmJSExMRKVKlVgG30ihUCAmJgZWVlbo1q0bTE1NsXPnTpw4cQKVK1dGYmIiNm7ciDVr1ig1Mh49ehRHjx7FjBkz+DlERDmKOZNmYM6kOViHUy/mrurDvJWIiIiIiHILO8bzoFu3bmHAgAF49uwZ3N3dMXz4cGnfwoULERISIjWiaGtrY926dahatar6As6jpkyZAj8/P2zbtg01atSAhYWFNMLj4sWLaNy4Mdq2bYvff/8dpUqVUne4edZvv/2GrVu3YtSoUejRoweKFi0KAAgNDcWyZcsAAJMmTYKTk5PS4zjSQ3Xc3d2xadMmTJw4ET179oS1tTWEENixYwd8fHxgbGyMTZs2wcbGRulxLAPVePz4McqVKwchBHbv3o2WLVtKn0UZjYxr165FpUqVsGHDBqV1YdnhRES5gTmTZmDOpF6sw2kO5q7qw7yViIiIiIhynKA8adSoUcLCwkJ06NBBxMbGKu2Li4sT586dE48ePRKvX79WU4R5W2RkpChXrpw4deqUEEKImJgYcePGDbF06VIREREhhBDi4sWLQiaTiSlTpqgz1Dxtw4YNwsrKSkRGRkrbkpOTRVpamhBCiPDwcNG6dWtRo0YNceXKFTVFmbctX75cWFlZib/++kvalpKSIv1/7969omHDhqJGjRoiJiZGDRHmTXK5XAghRFpamoiKihLm5ubCwMBA9OrVSzx48EDp2ISEBLFy5UpRsGBBMXPmTCGEEAqFItdjJqIfE3MmzcCcSTOwDqd+zF1zH/NWIiIi9evXr5/o0KGDusPI1sOHDwUApboKEdG34BxfeYD4/29QZ7ZkyRLo6+sjJCQES5cuxciRI2Fubg4AMDU1RZ06ddQQad71cRkYGxsjOTkZb9++xdWrV7Fq1Sr8+eefEEJg9OjROHv2LOrUqYPbt2/D3t5ejZHnXQqFAvfu3UP79u1RtWpVXL9+HcePH8eKFSugr6+PX375BQMHDsTbt29x+vRpTkOZA4QQuH37Nvr27YvKlSvj3r17OH36NHx8fFC8eHF0794dzs7OiImJwYULF5AvXz51h5wnZB6tdPXqVVSvXh0xMTG4ffs2qlevjrS0NHh5eaF48eIAPnxeDRs2DLa2tmjVqhUAZPmbQkSkKsyZNA9zJvVgHU7zMHfNfcxbiYiI6N+kpqaqOwQiyoM4z9d3LqNB5fz581i0aBF8fX0RGhoKAJg/fz5atmyJvXv3YtmyZYiNjZUeQ6qjUCikynhUVBTevHkDCwsL1KhRAxMnTkSdOnUgk8kwZ84cXLx4EdWqVcPx48chhEDp0qWho6OD9PR0NV/F90+hUCj9rqWlBUNDQ6xfvx5z5sxBz549ceTIEfTu3Rtly5bF7NmzERcXh06dOsHb2xtaWlpZzkFf5uP7J5PJ8ObNGwQFBWHZsmVwcXHBjh07UL9+fcTHx2PVqlWQy+VwcXHB8uXLWQYq8PF6vW5ubggICMD79+9RtmxZnDp1CqGhoZg0aRLu3bsHAOjQoQM2btyItm3bQltbG3K5XJ2XQER5GHMmzcCcSf1Yh9MMzF3Vi3krERGRZmrcuDF+/fVXjB49GhYWFrCxscGaNWvw/v179O/fH6ampihVqhTCwsKkx4SHh0MmkyE0NBSVK1eGgYEB6tati2vXrimdOzg4GBUqVIC+vj6KFy+OhQsXKu0vXrw4Zs2aBRcXF+TLlw9DhgyRviBdrVo1yGQyNG7cGAAQERGBZs2aoUCBAjAzM4OTkxMuX76sdD6ZTIa1a9eiU6dOMDIyQunSpbFv3z6lY65fv462bdsiX758MDU1RcOGDXH//n1p/9q1a+Hg4AADAwOUK1cOK1as+OZ7TERqpo5h6qQaGVOG7dy5U5iamoqGDRuKSpUqCR0dHTFmzBjpuNGjR4s6deoId3f3LFPy0bfJmPZNCCGmTp0qfvrpJxEcHCyEEOLGjRvi0KFD4sSJE9JxycnJolatWmLDhg3qCDfPylwOPj4+wtPTUwghRGpqqhg/fryoWbOmWLJkibhx44YQQogrV66I2rVri4cPH6oj3DwpcxksX75cbN68WQjxYerJtm3biipVqoj58+dL0x7t2bNH1KtXj1OB5pDJkyeLAgUKiMOHD0vTfGb8zYiIiBBmZmaiTp06onLlyqJcuXIiNTVVjdES0Y+AOZNmYM6kfqzDaQbmrpqDeSsREZH6ZZ5K3cnJSZiamopZs2aJO3fuiFmzZgltbW3RqlUr4efnJ+7cuSOGDx8uLC0txfv374UQQhw7dkwAEA4ODuLQoUPi6tWrom3btqJ48eLS3+6LFy8KLS0tMXPmTHH79m2xYcMGYWhoqFTnK1asmMiXL5/w9vYW9+7dE/fu3RMXLlwQAMSRI0dEdHS0ePPmjRBCiD///FNs3rxZ3Lx5U9y4cUMMHDhQ2NjYiLi4OOl8AIStra3YunWruHv3rhg5cqQwMTGRzvHkyRORP39+0blzZxERESFu374t1q9fL27duiWEEGLLli2iUKFCIjg4WDx48EAEBweL/PnzC39//5wuEiLKQewY/45krrxnuHv3rihUqJBYsWKFEEKIt2/fisDAQGFkZCTGjRsnHTdkyBDRuHFj8erVq1yL90cyefJkYWVlJQ4cOJBtY0liYqK4d++etDZjxnqNpFoTJkwQRYsWFfPnzxePHz+WtmdOiNLS0kTLli1FmzZtuB5dDvjtt99EkSJFxOzZs0V0dLS0/e3bt9L/M8qgW7duLIMc8Dnr9UZFRQkPDw8xc+ZM6fOIn0tElBuYM2kG5ky5h3U4zcbcVb2YtxIREWmGjzvGHR0dpX3p6enC2NhY9O3bV9oWHR0tAIizZ88KIf7XMR4YGCgd8+bNG2FoaCi2b98uhBCiV69eolmzZkrPO2HCBFG+fHnp92LFiomOHTsqHfO5a4zL5XJhamoq9u/fL20DIKZOnSr9npCQIACIsLAwIYQQkyZNEvb29p/84l3JkiXF1q1blbbNmjVL1KtX719jISLNxjXGvxMZ04xFRUXh2bNnaNGiBQDgzZs3MDU1Rbt27QAAFhYW6N69O+RyOQYNGoTWrVvjp59+wurVq/Hy5UsUKFBAnZeRJ128eBHbt2/Hnj17pGn27ty5g/Pnz6NSpUqoWrUqNmzYgNDQUMTFxeHs2bPQ0dGBXC6Htra2usPPM9atW4eNGzfiwIEDqFGjBgBALpdDJpPB1NQU6enp2Lx5MwICAvD69WtERERAJpMpTeFH32bZsmVYv349jhw5gipVqgAA0tPToaOjAwsLC6SlpWHz5s3YuXMnnj59ikuXLkEmk2W7xiZ9PRMTE6SkpHxyvd5z586hdu3aKF++vPTazygnIqKcxJxJMzBnyj2sw2k25q7qx7yViIhIM1WuXFn6v7a2NiwtLVGpUiVpm42NDQDg5cuXSo+rV6+e9P/8+fOjbNmyuHnzJgDg5s2b6NChg9LxDRo0wJIlS5TqfDVr1vysGF+8eIGpU6ciPDwcL1++hFwuR2JiIh4/fvzJazE2Nka+fPmkuK9cuYKGDRtCV1c3y/nfv3+P+/fvY+DAgRg8eLC0PT09HWZmZp8VIxFpJrZsfAcyGlSuXr2KKlWq4MKFC9I+IyMj3L9/H3fu3AHwv7XnGjdujEKFCiE6Olo61traOncD/0EYGhpCT08PiYmJuHLlCiZPnow2bdpg5syZaNCgAa5du4ZmzZrBxcUF4eHh0NXVRXp6Oht4VUgIgaioKHTr1g01atTAjRs34Ofnh1q1aqFGjRrYu3cvXrx4gdevX6N48eK4ePGiVA5s4FWN9PR0XLt2DSNGjECVKlVw584dBAQEwNHRET179sSBAwfw6tUrXLt2DRYWFrh8+bJUBmxY/HrZrWupp6eHatWqwd3d/ZPr9QJQeu2zcZGIcgNzJvVjzpR7WIfTbMxdcx/zViIiou/Hxx3FMplMaVtGPpTd3/dvZWxs/FnH9evXD1euXMHSpUtx5swZXLlyBZaWlkhNTVU6LrtryYjb0NDwk+dPSEgAAKxZswZXrlyRfq5du4Zz5859ySURkYZhjULDZTSoXLlyBfXr18fkyZMxbdo0aX+5cuXQqlUrLF++HObm5qhevToAoECBAsifPz/S0tLUFXqelN1IGUNDQxQoUACTJk1CVFQU+vfvj7lz56JmzZro1KkTzp49i8GDB6N06dIAPozIYWX+22SM0sj4VyaTwcLCAnPnzkWRIkWwc+dO2NraokuXLrh8+TLGjBmDqKgojBw5Enp6epDJZCyHb/TxSBkdHR3ExsYiLCwMJUuWhJ+fH4yNjVGnTh2cOnUKPj4+CA0NxaxZs2BkZMQyUIHMn0dXrlzB27dv4eDgADs7O6xatQqXL1+GkZERGjRoAC0tLaSkpEBbWxtWVlZqjpyIfgTMmTQDcyb1YB1O8zB3VS/mrURERD+Gc+fOwc7ODgAQExODO3fuwMHBAQDg4OCA06dPKx1/+vRplClT5l+/DK2npwfgQ/3w48euWLECrVu3BgD8888/eP369RfFW7lyZWzcuBFpaWlZOtBtbGxQuHBhPHjwAL179/6i8xKRZmOtTsNpaWnh9u3bqFu3Ljw8PDB58mRpX0hICBo3boxBgwZh0aJF8PT0xJAhQ2Bvb49Nmzbh0aNHaNy4sfqCz2MyV+ZPnDiBp0+fonDhwqhRowaCgoJw9uxZmJmZSdOvpKWlQVtbGwYGBkrn4ainb5O5HGJjY6GrqwtDQ0OMGzcOMTEx2LRpEwYPHowWLVqgQoUKOHfuHMaPH4/3799LI26EECyHb5C5DNLS0pCWlgYjIyP4+PhgwIAB8PDwkMqgRo0a2LVrF5YsWYL4+HiYm5sDYBl8KyGEVAYTJ07Etm3bkJiYCF1dXTg5OWHSpEnSdK1JSUl49uwZRo4cCYVCgT59+qgzdCL6ATBn0gzMmdSHdTjNwtxVvZi3EhER/ThmzpwJS0tL2NjYYMqUKShQoAA6duwIABg3bhxq1aqFWbNmoXv37jh79ix8fX2xYsWKfz2ntbU1DA0N8ccff8DW1hYGBgYwMzND6dKlsXnzZtSsWRNxcXGYMGHCv44Az46bmxuWLVuGHj16YNKkSTAzM5OWcilbtixmzJiBkSNHwszMDC1btkRKSgouXryImJgYjB079mtvExGpGTvGNVxycjI8PT1hYmKitEbH7NmzsWrVKhw+fBgdOnSAQqHAtm3b0LFjR5QpUwbp6ek4ePAgihcvrr7g85iMyry7uzt27NgBMzMz6OvrQy6XY9myZejUqROAD2X2/PlzDBs2DDKZDL169VJn2HlK5kYVLy8v/PHHH4iPj4eFhQXWrFmDJUuWICEhASYmJgA+fJPQ09MTlpaWSqMNOP3h18vcsLh48WL8+eefeP36NapWrYqZM2ciNDQUMTExsLCwkI738/ODra2t0vo7LINvk3H/VqxYgXXr1iEwMBAVKlRAaGgodu3ahdGjR8PHxwcVK1bExo0bsX//fq7XS0S5hjmT+jFnUi/W4TQHc1f1Y95KRET045g3bx5GjRqFu3fvomrVqti/f7804rt69eoICgqCh4cHZs2ahUKFCmHmzJlwdXX913Pq6OjAx8cHM2fOhIeHBxo2bIjw8HCsW7cOQ4YMQfXq1VG0aFHMmTMH48eP/6J4LS0tcfToUUyYMAFOTk7Q1tZG1apV0aBBAwDAoEGDYGRkhAULFmDChAkwNjZGpUqVMHr06K+5PUSkIWQiY0Ez0ljHjh2Dr68vYmJiMH/+fJw7dw6enp4ICAhAy5YtpePS0tLw999/Qy6XZ2nUItVYs2YNPDw8EBwcjPr162PWrFmYPXs2goKC0L59e8jlcixZsgSHDh1CQkKCtD4mK/OqNXXqVPj5+WHhwoUoXrw4+vTpAxMTE5w4cQKWlpZITExESEgIVq9ejTdv3iAiIgK6urpZplCkrzd58mRs2LABEyZMQPny5dG6dWu0a9cOGzduhLm5Od6/f4+QkBD4+/vj6dOnuHTpEstAhYQQUCgUcHFxgZWVFZYsWSLtCwsLw5w5c9C4cWPMmjULkZGRuHv3Lrp06QJtbW2kp6dzGlAiynHMmTQDcyb1YR1OszB3VR/mrURERHlfeHg4mjRpgpiYGGnGHSIiTcUaxnegSZMm0NbWxqJFi9CnTx88evQI4eHhqFu3LjK+1yCTyaCjoyOtyUiqkTHCIKNB5PLly3BxcUH9+vWxd+9eLFiwAD4+Pmjfvj0SExOhUCjQrl07WFhYoF+/fqzM54BHjx7h0KFD2LJlC5o3b46QkBDExcVh4sSJsLS0BAC8efMGt27dQrFixXDw4EHo6OiwHFQoKioKe/fuRUBAAH766SccP34choaGaNu2rZT8Pnv2DOfOnYOZmRn279/PMlAxmUwGbW1tyGQyPHv2TKnRtlWrVjh06BCCgoIwffp0VKtWDdWqVQPA9XqJKOcwZ9I8zJnUi3U4zcHcVb2YtxIRERERkSZhLUPDZVQaGzVqBC0tLcybNw/GxsZ4//49gA+VzMwNK6Q6maegjIyMRKVKlQAAZcuWxaFDh9CnTx8sWLAAQ4YMgVwux/bt2yGEwIABA1CmTBkArMyrQubpD1NTU5Geno6HDx/i559/RlhYGHr27Alvb28MHToUCQkJ2LRpE4YOHYqxY8fC2NgYMpmM5fCNMpcB8KEchBD46aefsHfvXvTp0weLFi3C4MGD8e7dOxw/fhzt27fHtGnTYGFhwTJQgY/LIEPp0qWxdu1aREZGonr16tL2GjVqICIiAomJiciXL5+0naMwiSgnMGfSDMyZNAfrcOrF3FW9mLcSEREREZEmy1pbIY2SudHE0dER7u7usLOzw+zZsxEWFpblGFINhUIhNVKNGTMGPXv2RGxsLPLnz49Ro0ahS5cuWLp0KYYNGwYAePfuHQICAhAdHa10Hlbmv11Go8r06dPh5eUFa2tr1KxZE+PHj4ezszMWLVqEoUOHAgAeP36M3bt348yZMzAxMZHeGyyHb5O5DNatW4fChQtDX18fHh4ecHFxkRrZAeDWrVvw8vLCX3/9hfz587MMVCBz42JERAQuXLiAs2fPAvhQJiVKlED37t1x/PhxREdHIy4uDhs2bIC1tbVS4yIRUU5gzqQ5mDNpDtbh1Iu5q/owbyUiIvoxNW7cGEIITqNORN8FfgX6O5BROZfJZGjYsCGEEFi0aBEWL16M1NRUdOjQgSMNVCyjMh8TE4PXr19j5cqVsLKywuzZs3H79m2Eh4fD0dER0dHRSE9Px5AhQxAfHw93d3c1R553ZG5U2bVrFzZt2oSgoCBoa2ujYMGCWLlyJQYOHIjBgwcDAJKSkjBhwgTo6emhQYMG0nn43vh6mcsgODgYGzduxJYtW2BoaIjKlStLI20yGhZTUlLw+++/w9raWhotCLAMvlVGGbi7uyMoKAipqalITk5G8+bNsWrVKhw5cgStWrWCi4sL0tPTYWNjA7lcjj/++AMAuDYmEeUo5kzqx5xJM7EOl/uYu6of81YiIiIiItJ0MsGvqWusjyuFmX8/deoUPDw8YGpqiq1bt8LY2FhdYeZZK1euhIeHB0qVKoWtW7fC3t4eAHD37l0MHDgQN2/ehIGBAQoXLgwtLS2cOHECurq6kMvlHGGgQmFhYfjzzz9haWmJSZMmAQCeP3+Obt26ITU1FRUqVIC9vT2OHDmCmJgYXLp0Cbq6up+cwo++3NGjR7Fjxw6ULl0aY8eOBQCcPn1a6tRo1qwZzMzMEBISghcvXuDy5cssAxVbtmwZZsyYgf3798PQ0BBv375Fz549UbVqVRw8eBAAEBISgjdv3kBHRwc9evTger1ElGuYM2kG5kyagXU49WPuql7MW4mIiIiISJOxY1xDZDSYPHz4EG/fvkXlypWhq6v7yeMA4OzZsyhatChsbW1zO9w86eOGkAsXLmDUqFGIiorCxYsXUa5cOaX7v3fvXqSkpCB//vxo0qQJK/MqknGPFQoFXr9+jcqVK+Ply5cYOHAg1qxZIx337Nkz+Pn54fjx47CwsEDx4sXh5eUFHR0dloOKCCFw7do1dO7cGdHR0Rg/fjw8PT2l/SdPnkRISAiCgoLg4OAAW1tbrFixgmWQAwYMGAAjIyP4+vpK2x48eICqVati0KBBWLRoUZbHsMOJiHIKcybNwJxJ/ViH0yzMXTUD81YiIiIiItJk7BjXILt27cIvv/wCLS0tmJmZYe7cuWjWrFmWkQScXixnRUVFSVPpRUZGok+fPjAyMsLJkydhYGCAtLS0bBu8WJn/dplf2+/fv4exsTFu3ryJ3r17Iy0tDYsXL8bPP//8r+dgOXyb7D5fdu7cienTp0sNXHXq1FHan5iYCCMjI+l3NiyqTnp6OmQyGZo0aQJbW1ts3boVwIepP/X19bFgwQJs374dhw8fRr58+fjaJ6JcxZxJfZgzaQ7W4dSLuavmYN5KRERERETfA84TpgGEEHj27Blmz56NqVOn4o8//kD58uXh7u6OwMBAJCQkKB3PBhXVUigU0v/Pnj2LKlWqIDAwEABQrVo1bNmyBXFxcWjSpAlSUlKkqT8/xor9t1EoFNJrOyAgAB4eHnj58iUcHBywefNmyOVyLF26FKdPn5Yew3JQrcwNi9u2bcOUKVMAAF27doWnpycUCgVWrFiBy5cvS4+Ry+VKDYtCCDYsfoPw8HCsXLkSM2fOhFwuh46ODrS1teHq6orjx49j3759AAB9fX0AgIGBAbS1tWFoaMjXPhHlOOZMmoE5k2ZgHU79mLuqF/NWIiIiIiL6HrFjXI0yBusLIWBhYYGGDRuif//+qFy5MoKDg1GvXj14eXlh+/btWRpWSDWEENJUoD4+Pjh37hwAYPjw4di8eTOADw29gYGBiImJwU8//YTk5GRW5FUs85SsUVFRWL9+Pfbs2QM/Pz+8fv0aFSpUwPbt23H//n3Mnz9fauhlOahO5kb2CxcuYMuWLdi2bRt8fHwAAN26dcO4ceNw48YN+Pj4IDIyEkDWMmCj79dbu3YtevTogW3btmHJkiWoW7eutK9evXpo3LgxvL29sWvXLgDA69evERYWhuLFi0sNjkREOYU5k2ZgzqR+rMNpBuau6sW8lYiIiIiIvlecSl3NQkND4e/vj8ePH8PAwAD79u2DmZmZtL9fv364dOkShg8fDldX1yxT8pFqeHh4YNWqVfD19cXbt29x9uxZbNu2DWvXroWLiwsA4MqVK2jcuDGcnZ3h5+en5ojzpjFjxuDSpUuwtLTE3bt3ER0djV9//RW//PILrK2tERUVhV69esHU1BSrVq1C5cqV1R1ynjNhwgRERUVBJpPhypUrMDQ0xNChQ+Hu7g4A2Lp1K3x8fGBtbQ1vb2+UKVNGzRHnDatXr8aIESOwY8cO/PTTT3j8+DF+/vlnHDx4EFWrVgXwYZripUuXYseOHShUqBD09PSgp6eHiIgI6OrqcopWIsoVzJk0A3Mm9WIdTnMwd819zFuJiIiIiOi7Jkhtzp49K7S1tcXgwYNFvXr1hLm5uZg8ebJ4+/at0nGdOnUStWrVErGxsWqKNG97/fq1qFKlili5cqW0LTU1VUyYMEHo6uqKgIAAafvt27dFenq6OsLM84KDg4WFhYW4fPmySElJEUII4ebmJipVqiQ8PT3Fq1evhBBCXLp0SfTq1UvI5XJ1hpsnbd26VZibm4sLFy6I5ORkER0dLfr16ydq1qwpvLy8pOPWrl0rBgwYwDJQkeDgYCGTycSBAwekbbGxsaJs2bJi7NixolWrVmL9+vUiLi5OJCUliQsXLohly5aJ7du3S59HaWlp6gqfiH4gzJk0A3Mm9WIdTnMwd819zFuJiIiIiOh7x8W01OT27ds4duwYvLy8MHbsWADA2LFjcfjwYRgaGuLXX3+VRh3s2rULz549UxqFQKqTmpqKJ0+ewNTUFMCHafl0dHTg4eGBs2fPYvjw4dDW1kb37t1RqlQpaGlpQS6Xc0pKFYuNjUWBAgVgZ2cHXV1dAMCyZcswYMAALFy4EMCH6VqrV6+OLVu2QCaTKU0nSt/u/v37KFWqFGrUqAEtLS0ULFgQM2fOxIgRI7BkyRLo6upi9OjRGDhwIFxdXaGlpcUy+EZJSUnYt28fSpQogWfPnknb+/fvj3fv3kEulyMhIQHDhg3D06dP8dtvv6FWrVqoVauWdGzGmo5ERDmNOZNmYM6kPqzDaRbmrrmLeSsREREREeUFrBGqwYMHDzB06FD4+Pgora+1aNEiODo6Ys+ePVi+fDliYmKkfYULF1ZHqHmOQqHIsq1QoUJwcnLCihUr8OrVK2hpaUEIARMTE5QuXRqlSpVCnz59cP78eakRhQ2830ZkWsFBLpcD+HBPU1JSkJSUBJlMhtTUVADAzJkzoaenh9DQUGzevBnJycnStHts1FKNjDKwsrJCamoqnj59CuDD+8XOzg6TJk1CQkICAgMDsXTpUgAfyktkWm+Wvo6hoSE8PDzw888/Y926dVi7di26d++OBw8e4PTp01iyZAlOnDiBVq1aYf369UhKSspyDn4eEVFOYM6kGZgzaQ7W4TQHc1f1YN5KRERERER5AWuFamBnZ4effvoJBgYG2Lt3L96/fy/tW7RoEZo0aYJ169Zh3bp1So1h9G0yjw64ceMGIiIicPPmTQCAm5sbhBAYN24c4uLioKWlhdTUVMTGxmLBggVo164dpkyZgqSkJJbJN1IoFErryWXczx49ekBHRwdDhgyBXC6Hnp4eAODt27do2bIlHBwcsGrVKrx9+1YtceclH3d2ZLwvHB0d8eDBAyxduhSJiYnSdiEEmjZtirJly2LPnj148eIFAHBdQBUQQqBEiRJwd3dHhQoVMGvWLBw9ehQHDx5EiRIlkJiYCABo0qQJbGxskJ6eruaIiehHwJxJMzBn0iysw6kPc1fNwLyViIiIiIjyAs5hlQuEEEqVcB0dHUyePBmGhobYtm0b3N3dMWfOHOTLlw8AsGDBAujp6aFLly6svKtI5tEBkydPRlhYGJ49e4aKFSvC1tYWGzduxKBBg7B+/XpUrFgRTk5OuHr1KoQQaNy4MUJDQ3H58mUYGhqq+Uq+b5kb2pcvX47z58/j+fPnaNq0Kdzd3bFjxw60b98eP//8M8aOHQszMzPMnTsXRYsWxYoVK2BiYoJ9+/Zh2LBhar6S71fmMlizZg1u3bqFu3fvYujQoWjTpg22b9+O9u3bIzk5Ge3atUOxYsUwe/ZsVK5cGf369UOFChUQERGBtm3bqvlK8gaZTAYhBOzt7TF16lTIZDJcvnwZu3btwvDhw2FkZIT09HTs378fpUqVQv78+dUdMhHlccyZNANzJvVjHU4zMHfVHMxbiYiIiIgoL5AJfp09R2U0qJw5cwbh4eFIT09HpUqV0KlTJ8jlcnh7e2P37t2oUaMG5s6dKzWsUM7w8vKCl5cXdu/ejapVq2LatGnw8fFBREQEatSogStXriA4OBiPHz+GlZUV5syZAz09PfTv3x/p6elYu3Yt9PT02Nj1jSZOnIjNmzfD1dUVxYoVw7Bhw+Dm5oa5c+ciOjoaLi4uePHiBdLS0mBnZ4fDhw9DoVCgTp06WLBgAVq1aqXuS/ju/fbbbwgICECXLl0AAL6+vpg6dSpmzpyJAwcOYMyYMUhISIC2tjasrKxw6tQpJCYmolGjRli3bh3q1q2r5iv4Pn1qXcuMvxV///03Zs+ejWvXrsHFxQXDhw9Hu3bt8ODBA/z111/Q0dHJ0lBPRJQTmDNpBuZM6sE6nOZh7pr7mLcSEREREVGeJCjH7dy5U5iYmIgmTZqIunXrCplMJoYNGybev38v0tPTxezZs4Wjo6NwcXERcXFx6g43z3r//r3o3Lmz2LRpkxBCiNDQUGFqairWrFkjhBAiLS0ty2NiY2PF2LFjhYWFhbh+/XquxptXnT17VpQsWVKcOnVKCCHEqVOnhI6Ojli3bp10jEKhEHfu3BF3794VCoVCCCHE1KlThb29vXj06JFa4s5LDh48KOzs7MTly5eFEEJcunRJyGQysXXrVumY6Ohocf36dXH+/HmpDNzd3UXJkiXF06dP1RJ3XpLdZ33GfX7w4IEYPHiwaNCggShSpIgoU6aMSE1NFUJk/zlFRKRqzJk0A3Mm9WIdTnMwd1Uv5q1ERERERJSXcI3xHPbw4UOMHTsWCxYswNGjR3H69GkcOHAAmzZtwoQJE6CtrY0JEyagcePGiI6OVlqrjlRLV1cXz549g6WlJUJDQ9G9e3d4eXlh0KBBSEtLg5+fH0JCQqTjnzx5Ai8vLxw/fhxHjx5F+fLl1Rj990/8/+QUsbGxsLGxQYMGDRAcHIyWLVvC19cXAwYMQGxsLI4fPw6ZTIbSpUujVKlSuHHjBvr27YtVq1Zh165dsLOzU/OVfP/i4+NRoUIFVKtWDdu2bYOTkxOWL1+Onj174t27d7hx4wYKFiyI8uXLo3bt2vjrr7/Qo0cPrF+/Hjt37kThwoXVfQnfnaNHjyIwMBAA8Ouvv2LevHmQy+VKx2SennLy5MkoXLgwypcvj2vXrkFXVxfp6enQ0eEKKESU85gzqRdzJvVjHU6zMHfNXcxbiYiIiIgoL2NNRYXWrFmDihUrom7dutJ0Ye/fv4euri6cnJyk41q2bImgoCC0b98ebdu2RatWreDp6YnY2FhYWlqqK/w85dSpU7h27RoSExPh7OwMW1tbpKWloVixYli6dCkiIiLg5eUlrbv4/PlzhISEoHv37tI5bG1t0b9/f4waNQrW1tbqupTv2uvXr5GUlISiRYtK74l8+fIhPj4ePj4+mDZtGhYsWIChQ4cCAM6fP48FCxbAzs4O9vb2AABjY2PUqVMHU6ZMQbly5dR2Ld+ruLg4pKamokCBAtK22NhYPHv2DHv37sWwYcPg5eWF4cOHAwDCwsIQGhqKJUuWwNLSEkIIWFhYoHjx4ggPD2dnx1d4+/Ytli9fjufPnyMwMBCHDx/GuXPnoK2tneXYjEbG4sWLY9myZbCysoKWlhYbF4koxzBn0gzMmdSHdTjNwtxVvZi3EhERERFRnqe+wep5i0KhEEWKFBHlypUTERER0tRi165dEzKZTBw8eFAIIUR6erpQKBQiISFBVKxYUfj6+qoz7Dxp7dq1wtbWVlSrVk0UKlRI2NnZiQcPHgghhDhz5owwMjISDRs2FG/fvhVyuVy8fv1atG7dWjg6Oor09HQhxP+mhqOvt3XrVlG3bl1RuHBhUa9ePXH8+HGRmpoqnj59Ktq3by8MDAzElClTpOOTkpJEu3btRI8ePYRcLlc618e/0+cJDAwUzZs3F3Z2dqJfv37izJkzQogPU002atRIyGQy4e3tLR2fmJgo2rVrJ1xcXLK8B1gG3+bOnTuiXLlyQiaTifnz50vbP+ezhveeiHIKcybNwJxJfViH0yzMXTUD81YiIiIiIsrLOJW6CgghIJPJ8ODBAxgYGKB///6IiIhAeno6KlSogJ49e2LGjBm4cOECtLW1IZPJYGhoCCMjI2hpsQhUyc/PD7/88gsWLVqE8PBwLFmyBP/88w8WLlyItLQ01KtXD1u3bsWFCxfQpk0b1KpVCx07dsSzZ89w9OhRaGtrQy6XS6NF6OusXr0agwcPRseOHTFv3jy8efMGEyZMQGpqKgoXLoy+ffvCwcEBly9fxqZNm7Bp0yZ06NABf//9NzZv3gwtLS0oFArpfHyffLmMMqhTpw6GDx+OoKAgzJ8/H8nJybCyskLv3r1RrVo1nDp1ChEREdi9ezc6d+6Mv//+G+vWrYNMJmMZqID4/+lwtbS0UKZMGTRr1gxhYWHYunUrgA8jbT6emvJjvPdElBOYM2kG5kzqwzqcZmHuqn7MW4mIiIiI6Ieg3n75vCM5OVkIIUR8fLwoWbKkaNKkiTh37pwQQoijR4+KNm3aiFq1aok9e/aIM2fOCHd3d2FpaSnu37+vzrDzlD///FPIZDKxYcMGadu7d++EmZmZcHZ2FkL8r5yioqLEkiVLxJQpU8SmTZukUU9paWm5Hndes3btWqGrqyv27NkjbZs9e7aQyWQiLCxM2hYYGCh69+4t8uXLJ5ycnESvXr1EamqqEEJI5UFfZ+3atUJfX1/s27dP2jZmzBghk8lEZGSkEOLDe2Ht2rWiYcOGwtDQUNSqVUt07tyZZaAinxot89dff4nu3bsLR0dHsXXrVqV9b9++zY3QiIiYM2kI5kzqxzqcZmDuql7MW4mIiIiI6EciE+L/vxZMX038/2iDoKAgHDt2DLdu3cLx48dRtWpVrFu3DtWqVcPx48fh7++PLVu2oFSpUtDS0sKWLVtQrVo1dYefZwQEBGDRokWws7NDQEAAjIyM0LVrV+zduxcNGjSAjY0NEhISMHToUFStWhV2dnZKj5fL5dmunUafLyEhAdWrV0daWhquX78OIyMjAEDz5s1x5MgRrF69GgqFAt26dYOZmRm0tbXx5s0bmJubQ0tLCzKZjGvSfQMhBF6/fg0bGxs4OjoiNDQUpqamAICff/4ZR48eRUhICGQyGRo3bgxDQ0MAwOPHj5EvXz6YmZmxDFQg428CAPj7++Pp06cwNTXFkCFDYGBggAsXLmDRokV48eIFBgwYgL59+6JFixZo3LgxJk2apOboiehHwJxJ/ZgzqR/rcOrH3FX9mLcSEREREdGPhh3jKnLy5Em0aNECy5YtQ8WKFZGWloZBgwZBW1tbqfHkwYMH0NHRgbGxMSwtLdUcdd6iUCiwY8cOLFu2DPnz54dCoUB0dDQWL16McuXK4cSJEzhx4gT279+P6OhoeHp6YuLEieoOO8+5ceMGWrdujfLly2PXrl3o27cvIiMj0adPH+jr62PLli3Q1dWFvr4+2rVrh549e6JkyZIAlBtm6OuFhISga9euGDZsGGbPng1XV1dcvHgRTk5OsLOzg4+PDypWrAhLS0u0b98e7dq1g7W1NYAP7yNOgfj1Mt+/CRMmYMOGDbC3t0dMTAzMzMxw8uRJGBkZ4cKFC1i+fDmOHTsmNfJeu3YNurq66gyfiH4QzJk0A3Mm9WMdTjMwd1UP5q1ERERERPQjYse4iixatAg7duzAiRMnpApiXFwcatWqBRMTE6xYsQI1atTgN9lzSEbjoEKhwPbt2+Hr64tLly7hzJkzqF69utKxt27dwt27d9GqVSuWRw65efMmmjVrhjdv3qBUqVI4cOAAihYtKu0PDQ1FaGgo7t27hz/++IONWSqU0cAVEhKCDh06wNraGtbW1ggNDYWtrS0A4NGjR7hy5Qq8vLxgbW2N4OBgloGKvXnzBqNGjYK7uztKlSqFyMhIjBgxAomJiYiMjISRkRFu376N+/fv4+HDhxg6dCh0dHQ44omIchxzJs3CnEm9WIdTP+au6se8lYiIiIiIfiTsGP9GGY2L06dPR1BQEG7evAkASEpKgqGhIQ4ePIhWrVqhUqVK2LBhQ5YGR1KdzA29QUFB8PX1hbm5OTZu3AhLS0ukpqZCT09P6TGszOecW7duoWvXrjAzM8OBAwdgZmb2yfvNkR6qlXE/jxw5ghYtWqBnz57w8fFB/vz5s4wwy/idI89Ux8/PD7Nnz0bZsmWxdetWFChQAEIIREZGYuDAgUhKSkJkZKQ04iYDpyYmotzCnEmzMGfKfazDaRbmrurDvJWIiIiIiH40bFX5RhmVcWdnZzx9+hRz584FAKniqKenh3bt2kFfXx/m5ubqCvOHkNFAoqWlBWdnZ4wYMQKxsbFwcXHBmzdvoKenB4VCofQYNvDmnHLlymHHjh149OgRnJ2d8erVK+l+Z3wfRwghlRmpjpaWFhQKBX7++Wfs378f27Ztw7Rp0/DixQvpM0sulwOA1DHChkXVUCgUKFCgAKytrREVFYV8+fIB+HCfq1WrhnXr1sHExASFCxdGSkqK0mPZuEhEuYU5k2ZhzpT7WIfTLMxd1YN5KxERERER/YjYsvKFMhqnrly5goCAAFy6dAlv3rxBhQoV4O7ujrVr12L27NkAgISEBBw5cgT29vY4c+YMSpQooc7Q85zMkx1k/D9zQ2/37t3h5uaGhIQEtG7dGnFxcWxMzGUODg44fPgwbt68CRcXF7x48QLA/xojZTIZG7W+QeZOi4SEBKV9GQ2MrVu3xr59+7B69WrMnj0b0dHRAJQbs/i++HofdxxpaWmhTZs2+P3336Grq4vmzZtL+2QyGapXr47ly5ejY8eO7GQiolzDnEnzMWfKWazDaQbmrurFvJWIiIiIiIhTqX+VXbt2oX///rCyskJMTAx69eqFMWPGwNraGr6+vpgzZw4sLS1hYmKCJ0+e4OjRo6hWrZq6w84TMk8f+fH0eZmnc8s8Rai/vz8iIiKwfPlyNqKoyJdO43nr1i1UqlQJbm5uWLx4cQ5G9mMaM2YM8uXLhwkTJsDExERpX0ZZHThwAG3btoW3tzfGjh2rpkjzlszvg8OHD+P58+cwMTFB7dq1UaRIERw6dAgjR46Era0tjhw5ku05OA0lEeUU5kyagTmT5mAdTnMwd819zFuJiIiIiIg+YMf4Z8poNPznn38wYsQItGvXDr1794a/vz+2bNmCEiVKYMaMGShZsiTu37+Pffv2wczMDI0aNUKpUqXUHX6ekLkyv3r1apw9exbp6elwcHDAlClTshyf3fpzXJfx22W+h7dv34aenh60tLRQrFixf33co0ePYGtry8YUFcj8mr5y5Qratm2LHTt2oF69etken1FmZ86cQe3atTniQ8Xc3d2xdetWlC5dGtHR0ShQoAAmTZqEVq1aISwsDOPHj4etrS0OHTqk7lCJ6AfBnEkzMGdSP9bhNANzV83BvJWIiIiIiH507Bj/AhEREdi0aROePn0KPz8/FChQAACwadMmrFq1Cvb29nB3d0flypXVHGne5u7ujk2bNmHgwIEwMjKCh4cHevfujY0bN2Y59uMRUvRtMt/PKVOmIDg4GO/fv4dcLsfYsWMxbNiwLKM+PsaRBqrj7e2NuLg4pKamYt68ef96bOayS09PZwPjN8h8L/39/aX3Qt26dbFo0SJMmTIFQUFBaNeuHdLT03HkyBH06tULffv2xdKlS9UcPRH9SJgzqQ9zJs3BOpzmYO6a+5i3EhERERERKWPt8gscPnwY27dvh46ODmJjY6VGFRcXFwDA+vXrMXXqVMybNw/ly5dXZ6h51rlz57B7927s3LkTDRo0wN69e2FgYIC6desqHZfRAMAGXtXKuJ9eXl5YvXo1tm3bBiEEbt26hbFjxyI6OhoLFy7813OwgVc1kpKSEBERgR07dqB9+/b/eXzm9wIbFr/O/v370a5dO6V7efXqVXTs2BF169ZFcHAwZsyYgcWLF6Ndu3Z4//494uPj0bx5c4SGhqJ27dpqjJ6IfjTMmdSLOZPmYB1OMzB3zV3MW4mIiIiIiLLH+RG/wOTJkzF9+nQYGhpi0aJFePTokbTPxcUFvXv3RlpaGszNzdUXZB4XHR0NY2NjNGjQAHv27EGfPn2wcOFCDB8+HPHx8QgJCQEANu7moPT0dJw8eRIjR45Es2bN0Lx5c4wcORK7du3C4sWLsWXLFnWHmCd9PLmHoaEhFi9eDDc3N/zxxx/SdIecBCRnTJkyBbt27VK6v0IIJCYmomLFijhz5gxcXV0xf/58DBs2DHK5HNu2bUNISAi0tLRQr149aGtrQy6Xq/EqiOhHwpxJ/ZgzaQbW4dSDuav6MG8lIiIiIiL6NHaMf0JGJTIxMREJCQnS9hEjRmDIkCE4d+4cli5disePH0v7Bg8ejMDAQBQuXDjX482LFApFlm1FihSBra0tVq1ahb59+8Lb2xtDhw4FAFy6dAnbt2/H/fv3czvUPO3jxqrExETcvn1b2q5QKJCeno727dtjyJAhCAgIQEpKSrblR19HoVAorfmakpICAChcuDCmTp2K7t27o1OnTjh16pS0Riyp1ujRo+Hn5weZTIYrV64A+NCZVKFCBYwYMQJOTk5Yu3Ythg0bBgB4//49AgMDlRrfAY7+I6KcwZxJMzBnUj/W4TQDc1f1Yt5KRERERET0aewYz0bGlJKhoaHo3bs3qlWrBnd3dxw4cADAh/Uau3XrhvDwcPj6+uLvv/+WHmtmZqamqPMWIQS0tD68PP38/PD27VsAgKmpKR48eIBffvkFU6dOlRp4k5KS4OXlBSEESpQooba485rMjVp///030tPTkS9fPnTs2BFbt27F9evXoaWlJZWVqakpZDIZ9PX1pW30bRQKhXQvfX194ezsjA4dOsDb2xsAYG1tjUWLFqFLly5o2bIlTp8+zQZGFfL29kZUVBSsrKygq6uLnTt3ok+fPli9ejUA4Ndff8WgQYOgp6eHEiVK4OXLl3jw4AGcnZ3x7t07TJ8+Xc1XQER5HXMmzcCcSf1Yh9MMzF3Vh3krERERERHRf2MrTDZkMhn27dsHZ2dnVKxYEePHj8fly5cxa9YsbN26FQAwadIk9OjRAzt27MDatWuRnp6u5qjzjswNi3fu3MHcuXPRqlUrvHv3Dg4ODli4cCF0dXVx8+ZNrF27Fnv27EG7du3w5MkT+Pv7s2FFRTI3as2cORMTJ07EsWPHAABt27ZFiRIlMGnSJNy8eRNaWlpISkrCX3/9hSJFiqgz7DwnowwmTZqEuXPnokSJEmjWrBl+++03uLu74/3797C0tMTixYvRrVs3NGzYEFevXuXUuCoQHh4Of39//P7777h79y4AoF69eihdujS2bduGdevWAfjQ0N6mTRs4Ojqidu3a6Nq1KxISEnDmzBno6OhwGkoiyjHMmTQDcybNwDqcZmDuqh7MW4mIiIiIiD6PTLA1LIvbt2+ja9eucHNzw9ChQ5GUlIRixYohf/78MDc3x5gxY9C9e3cAwOLFi9GxY0fY29urOeq8IWOkBwD8/vvvuHz5Mu7du4dr166hatWqOHLkCPLnz4/du3dj9erVuHLlCsqUKYNChQphy5Yt0NXVhVwu57RvKjRx4kSsW7cOa9asQd26dVGwYEEAwL59++Dr64tz586hSpUqiIuLg0KhwOXLl6Grq6tUlvRtdu7ciYkTJ2LLli2oW7cuDh8+jNatW0MIARcXF/j6+sLIyAivXr3C6tWrMXHiROjo6Kg77Dxh06ZNWL9+PaysrODp6YkKFSrg+fPncHNzQ3R0NAYPHgxXV1cAwOHDh5GUlAQzMzM0bNgQWlpaSE9PZ1kQUY5gzqR5mDOpF+twmoO5q3owbyUiIiIiIvpvP3TH+KcaoR4/fowVK1bgt99+Q2JiIpycnNCyZUsMHDgQXbt2hbm5OUaMGIGBAweqIeofw6JFizB9+nTs3bsXhQoVwtmzZ7Fs2TLI5XKEh4cjf/78iImJQVpaGgwMDKTpKFmZV61Dhw5hyJAh2LNnD6pWrYq0tDRpyr06deogLS0NQUFBuH//PmxsbDB8+HDo6OiwHFRILpdj69atePfuHdzc3HDgwAH07t0b3t7esLa2RseOHTF27FhMnz4dJiYm0uNYBt8mNTUVenp6AIAVK1Zg165dyJ8/P2bPno3SpUsjOjoav/76K54/fw5XV1cMGjQoyzkyjyAkIsopzJk0A3Om3MM6nGZj7pr7mLcSERERERF9vh+2Yzyj4vfmzRu8ePECcrkclSpVAvChMv/27VtYWVlh6NChSEhIwKpVq2BqaopevXrh5MmTqF69OjZt2oR8+fJxhMc3OnPmDOrXry9N5ZmamgpXV1cUKVJEWotOLpfj6NGjcHNzg5mZGY4cOYJ8+fIpNYxxtM23+/ge/vHHH5gwYQLCwsIQHx+PLVu2ICAgAOnp6TA3N8fp06ezrMnI0WffJqMMMpfFmzdvEBcXBxMTE7Rs2RLdu3fHb7/9hvv376NBgwZ4+fIlZs6cialTp6o5+rwh871ftGgRrl69ipMnT+Lvv/9Gly5dMGPGDDg4OCA6OhojR47Eq1ev0KlTJ4waNUrNkRNRXsecSXMwZ1IP1uE0D3NX9WLeSkRERERE9GV+yK8EZzSoXLt2Da1atUKbNm3Qrl07DBkyBACgra0NKysrAB+m5CtUqBBMTU0BAKamphg3bhz8/PxgZmbGBpVvtHnzZjg6OiIoKAgymQwymQz6+vpIS0tDZGSkdJy2tjaaNWuGjh074uLFi2jevDnevXsHmUwGhUIBACyLb5R5ndJnz54hPT0d+fLlg5aWFnr37o1GjRrh+fPnmDp1KgIDAxEfH48TJ05kOQ8beL9e5jJ48uQJXr58iVevXsHS0hL29vZ4+fIl3r9/j2bNmgEADAwM0KVLF5w+fRqTJk1SZ+h5SkYZeHt7w9PTE87Ozti9ezemT5+Ohw8fwsPDQ/rbsGzZMmhpaeH27dtcp5eIchRzJs3BnEk9WIfTPMxd1Y95KxERERER0Zf54eYqy2hQ+euvv9CgQQMMGzYMbdu2xc6dO7FmzRpUq1YNw4cPh1wuR0pKCuzs7HD79m34+fnh/v372L9/Pzw8PGBjY6PuS8kT2rVrh99++w29e/eGEEJa969Fixbw8/PDjh070KlTJ2lavQoVKqBnz5548eIFRowYgQ0bNkBXV1edl5AnZJ46b+bMmbh37x7c3NxQv359zJo1C3fv3sWYMWPg5OQECwsLvHz5Evnz54exsbGaI887hBBSGcyaNQshISF4//495HI5Fi9ejJYtW8LQ0BD379/Hnj17kJiYiNmzZyM1NRV169bltLgqJIRAamoqjh49il9++QWtW7cGAFSuXBkFCxbEvHnzMH36dMyaNQulS5fGjh07YGFhkWW0FBGRKjFn0gzMmdSDdTjNw9xVMzBvJSIiIiIi+jI/XC1US0sL9+7dQ926dTF+/HjMmjULAFCsWDGsWbMG9+/fB/BhxIGRkRH69OmDxYsXw8vLCwYGBggNDUWRIkXUeQl5hhAC5ubmmDVrFgwNDdGrVy8YGhqiffv26Ny5M4KDg7FixQokJCSgW7duSEtLw65du1CtWjVUr14dq1evRnR0NOzs7NR9Kd+9jEatiRMnYsOGDVi2bBmKFi0KAGjfvr10XFpaGl69eoWBAwfCyMgITk5Oaok3L8polPL09ISvry82btyI0qVLY/jw4ejZsycuX76MEiVKYPXq1Rg2bBgCAwNhYWGBkydPSg1bbFhUjYxRmMbGxoiOjlbaN2TIEJw7dw47duzA69evsWbNGtjb2wPg2oxElHOYM2kO5kzqwTqc5mHuqhmYtxIREREREX2ZH64mpFAosH79epiamsLS0lLaHhgYiLS0NNy9exdLlizBpk2bkJycjObNm2Pfvn04ffo0wsPDUa1aNTVGn3dk/nb6mjVrpG2dO3dGYGAgLC0tsXHjRlhYWGDJkiWws7ODo6Mjbt26henTp6NWrVpIT0/nFHAqFBYWhi1btuDgwYNwdnaGjY0NXrx4gfPnz+PNmzcAgCVLlqBv37548eIFwsPDoa2tDblcrubI846YmBicOHEC69evR5s2bXDz5k1ERkZizpw5sLe3hxACAwYMwJ07d7Br1y6cOXMGurq6SE9P52iPb/Dx50jG76VLl8apU6dw9epVpf1lypRBlSpVUKdOHRQrVkzazsZFIsoJzJk0D3Om3Mc6nGZi7pr7mLcSERERERF9mx/uK9paWlpwc3NDYmIiAgMDoa+vj/j4eCxYsABTpkxB1apVERAQgH/++QeTJ09G2bJlMXr0aLRr107doecpGQ0hU6ZMwfr16+Hl5QVvb2+cPn0avXv3hlwuR+/eveHv74/79+/jzJkzsLKyQpcuXQAAQUFBKFKkCMzNzdV4FXlLeno6bG1tUbhwYdy4cQOBgYHYvHkzdHV1YWNjg7CwMFSsWBEymQyjR4+Gjo4Opz9Usbi4OFy+fBnVqlXDkSNH0KdPHyxYsADDhg1DYmIiFi5ciP79+6N48eLSYxQKBcvgG2QeLfPkyRPo6OjAwMAA5ubmmDNnDg4fPoyePXtizZo1KFOmDExNTXH+/Hl0794dbm5u0pq9bFwkopzCnEnzMGfKfazDaSbmrrmLeSsREREREdG3k4kfdPjI8+fPMXv2bBw+fBj379/HwYMH8dNPPwGA1HDl6+uLy5cvY/z48ShfvryaI/7+vX//Xml9xVevXqFZs2YYNWoU+vfvDwB48eIF5s2bBx8fH2zfvh1du3ZVOsfZs2exfft2bNy4EeHh4ahSpUquXkNekTH6LPMotAMHDmDw4MGoVq0aLly4gDZt2qB+/fooUKAAxo8fj40bN8LR0VE6h1wuh7a2trou4bv3qTX9evToAQMDA+zcuRNLlizBoEGDAAAPHz7EsGHD8Msvv6BDhw65HW6elLlhcMaMGTh48CDu3buH5s2bo3379nB2dkZycjKaNm2K6OhoyGQyGBkZISUlBTdu3ICOjg7XZiSiHMGcSXMwZ9IsrMOpD3NX9WLeSkREREREpBo/7Fe1CxYsiKlTp0JLSwvh4eGIjIyUGlUUCgUAwM3NjaM7VKRly5aoVKkSFixYIG1LTU3Fw4cPlRoKbWxsMGbMGBw7dgy9e/dGcnIy+vTpI+1/8OABrl+/jhMnTqBSpUq5eg15ReZGlcTEROjq6kJPTw+tW7eGt7c37ty5g379+qFJkyYoUKAAXr16BVNTU6Snpyudhw28Xy9zGbx9+xYKhQIFChQA8GEaxMWLF6NLly5Sw2J8fDxGjBgBuVyOtm3bqi3uvCajDDw8PLBixQqsXbsWRkZGWLJkCdzd3ZGYmAhXV1ecPn0aO3bswKtXr6BQKDBs2DDo6Oiwo4OIcgRzJs3BnEnzsA6nHsxd1Y95KxERERERkWr8sCPGM2SMOoiIiECnTp3g7u4OAGxMUbGoqCiUKVMG+vr6SE1NhZ6eHgCgV69eePfuHVavXg1bW1vp+D59+iAiIgLW1tY4efKk0rfb4+PjYWpqqpbr+N5lbtRasmQJwsLCoFAoULJkSaxatQoAkJaWJq39l5CQgN69e+Pdu3c4fvw4G1NUzMPDA6GhoYiJiUHv3r0xa9YsAEC/fv0QERGBokWLolixYrh+/ToSEhJw8eJF6OrqcgrEb5T58yQ8PBwjRozA2rVrUa9ePRw9ehRt27ZF7dq18eTJE0yfPh19+/bNcg42LhJRTmHOpBmYM2k21uHUg7lr7mPeSkREREREpFo/fO20YMGCmDJlCmrVqoX9+/dj+vTpAMAGFRUSQqBSpUrQ19eHt7c32rdvj3fv3gH4MCrq7du3WLx4MV6+fAngw/Sh8fHxWLJkCU6cOAEA0hSWANjA+w0yGqQmTZqE+fPno0mTJujSpQuCg4PRsWNHpKenQ1dXF4mJiZg3bx6cnZ3x8uVLHDt2DNra2pDL5Wq+gu9b5vu3cuVKrFu3Dv369YOrqysWLVqEnj17IiUlBRs3bsTYsWNRtGhRpKamonXr1rh06ZLU+M6Gxa+nUCikxsXo6GhUqVIFnTp1Qq1atXDw4EH06NEDy5Ytw+rVq6Gjo4PJkydj5cqVWc7DxkUiygnMmTQHcybNxjpc7mDuql7MW4mIiIiIiFTvhx8xnuH58+eYNGkSnjx5gsDAQFhaWqo7pDzp9OnTaNWqFVq1aoVNmzZBX18fCxYsQHBwMGJiYlC3bl1ERUVBCIGLFy9CW1ubIwxUbN++fZg0aZI00mDfvn3o1asXhBCoWbMmjhw5Al1dXezatQtXr17F1KlToaOjwxE43+Dj9fzOnTuHc+fOwdbWVloT9syZM2jRogXatGmDtWvXwsTEJMt5ONpDdSZOnIjo6GisXr0aQgjo6+uja9euKF++PGbOnAktLS107twZ9+/fR5UqVbBx40auyUhEuYo5k/oxZ9J8rMPlDOaumoV5KxERERERkeqw5ez/FSxYEPPmzcOWLVvYoKIi165dw/HjxxEeHi5ta9CgAY4cOYIjR46gV69eSEtLw4QJEzB//nz06tULKSkpaNSoES5cuCCNtmEDr2qlpqaid+/eqFevHg4cOID+/fvDy8sLISEhOHv2LJydnZGeno7OnTvD09NTWpOODbxfx9nZGX/99Zf0+/Xr11G/fn2MHTsWcXFxAD40PtavXx+HDh3CgQMHMHz4cDx//jzLudiw+PUyfwfs7Nmz2L9/P0aMGAEDAwMYGhoiMTER169fh76+PrS0tBAXFwc9PT1MmTJFalzk98iIKKcwZ9JMzJk0H+twqsfcVf2YtxIREREREeUcjhinHOHv74+5c+ciPj4e2tra+Pnnn7FhwwZp//nz59G6dWs0btwYW7ZsgaGhIQDlUQUcbZNzHj9+DAsLCzRv3hxt2rTB1KlTER0djSZNmuDOnTsYNGgQ/Pz81B1mntCnTx+sX78eenp60uib3bt3o1+/fujevTuWLVsGAwMDad+5c+dQv359eHp6wsPDQ93h5zmLFy/G48ePkZqaiuXLlwP40PiYlJSE0aNH4+rVq2jevDlOnz6NhIQEnD17FlpaWhyFSUQ5hjmTZmPORD8a5q6ag3krERERERGR6rG2RCq3evVqDB06FNOmTUNYWBg6dOiAgIAAbN++HcCHtdLq1KmDAwcO4Pjx4+jfvz9iYmIAKI8qYAOvaigUCun/Gd+DsbOzw7Nnz/D8+XO0adMGwIc1SWvXro0LFy5kuzYdfZmMNRm3bNkCPT09LF++HOHh4ZDL5ejUqRPWrFkDf39/eHp6Ii0tTRrZUbduXVy9ehWTJ09W8xXkDR9/9+vq1atYunQpLl26hNjYWAAfXvtGRkZwcXFB5cqVERYWBnNzc5w6dYqNi0SUo5gzaRbmTPQjY+6qfsxbiYiIiIiIch5HjJNK7dmzB507d8bevXvRrl07AEBERATq1KmDBQsWYNy4cUrHnz9/HvXq1cOUKVMwa9YsdYScJ/355584e/Yspk6dCgDZNpDExsaiYsWKqF+/Ptzc3DBr1iwIIXDo0CFoaWlxTUAVyRhNU7ZsWSQnJ2Pr1q2oW7cutLW1ERgYiL59+2LcuHH4/fffoaOjo7SmI0cAfpsTJ04gIiICMpkMvXr1QsGCBQEAkyZNwvz587Fq1Sr07dtXGn0JAGlpaZDL5dDX14dMJmMZEFGOYc6kGZgzESlj7qoezFuJiIiIiIhyB2tNpDIpKSk4ePAgSpQogYcPH0rbvby8AAAXL16Eu7s7ChQogEGDBkFXVxd16tRBVFQUypYtq66w85yUlBQEBQXh7Nmz0NfXx4QJE7KMHhBCwNzcHL6+vhg9ejQGDhyIQoUK4c8//5SOZQOvat2+fRuOjo7o168f/P39Ua9ePfTo0QMA4Orqinfv3sHX15cjAFVk06ZNmD17Nlq3bg0HBwepcREA5s6di9jYWIwaNQpGRkbo2rUrDAwMAHwYgamrqwvgw/uEZUBEOYE5k2ZgzkT0acxdcw/zViIiIiIiotzDEeOkUtHR0Zg/fz7Onz+P7t274/Tp07h9+zbGjx+PkiVLYvPmzbh69SoeP34MY2NjrFy5Ej/99BMAjjBQpWfPnsHLywvnzp1Dp06d4O7uDiDrKKjk5GSkpqbi7du3sLOzg5aWFstBRTLf68z3tG7dunj9+rXUwKitrY0NGzbA398f4eHh0ogb+nqbN2/G0KFDsXnzZrRt2xb6+voAgCVLlqBIkSLo1q0bAGDYsGHYvHkz/Pz80LlzZ6UROEREOY05k2ZgzkT0AXNX9WDeSkRERERElLvYMU4q9/z5c8yePRshISGIi4vD1atXUaRIEQD/a3DZsmUL7t+/jylTprBBMYdklENERES2Db3Pnz/H+PHj0aFDB6nBhWvSfZt/m4714wbGN2/ewN/fX5qaMkPm6Sjpy928eRPdu3fHiBEjMHToUGm7s7Mzdu7ciRYtWmDIkCHo1KkTAOCXX37BqlWrEBYWhhYtWqgrbCL6QTFn0gzMmehHxdxVvZi3EhERERER5T625pDKFSxYEFOnTkX79u1hb2+Pbdu2SfvS09MBAH369MH06dOho6MDuVyurlDztIIFC2LKlCmoVasWdu/ejXnz5gEAtLS0EB0dja5du+LChQtSQ0vGPvo6GdOxBgUFYcGCBQAgTbEKfJhaMi0tDQBw7tw52NjYoFmzZrh+/brSediw+G3++ecfxMfHw8nJSbr3I0aMQGRkJEJCQpCeno5169Zh586dAIAVK1ZgwYIFaNq0qTrDJqIfFHMmzcCciX5EzF3Vj3krERERERFR7uOIccoxnxp9I5fLuRZjLspcDl26dMGAAQPQrVs3vHjxAleuXIGuri7LREU+ZzrWzP8fOXIkFi9ezHuvQrNnz8bixYvx+vVraVt0dDTkcjlsbW1x8+ZNDB48GEIIbNmyBfb29tJxnBKXiNSFOZNmYM5EPxrmrurFvJWIiIiIiCj3cagD5ZiM0Te1a9fGvn37pCn62JCSuzKXQ3BwMEqWLInnz59LDbzp6eksExUpXLgwJk6cKI04mz9/PgDl0TevXr1Cjx49EBISAh8fH2hra3MEoAqVKlUKSUlJOHz4sLStUKFCsLW1hUKhgIODA9q3bw9zc3NYW1srPZaNi0SkLsyZNANzJvrRMHdVL+atREREREREuY8d45SjChYsiMmTJ6NkyZJ4+fIlOEGBemSUQ9myZVG/fn389ddfUgMvG1VU67+mY+3SpQsuX76Mli1bSo9hI7vq1KpVCzo6Oli9ejUePXqktE9LSwvx8fE4efIkypYtC2NjYzVFSUSUFXMmzcCciX40zF3Vh3krERERERFR7uNU6pQr3r59C3Nzc2hpaUEIwbXo1CQmJgZmZmbQ0tJiA28O43Ss6rNt2zb0798fXbp0wYQJE1C1alUAwKNHjzB48GC8fPkSFy9ehI6ODj+PiEjjMGfSDMyZ6EfD3FU9mLcSERERERHlLnaMU67KvEYdqQ/LIXc8f/4cc+bMwYULF3Dr1i0ULlyYI89ygVwux4YNG/DLL7/AxsYGFStWRHp6OuLj4wEAJ0+eZOMuEWk8/q3WDCwH+pEwd819zFuJiIiIiIhyFzvGiYhy0PPnz+Hu7o5Xr15h7969bFjMRVeuXMHatWtx584d2NnZoXr16hg6dCi0tbVZBkRERETZYO6qHsxbiYiIiIiIcgc7xomIchinY9UsHHFDRERE9GnMXTUH81YiIiIiIiLVYsc4EVEu4XSsuY9rMRIRERF9HeauuYt5KxERERERUc5jxzgREREREREREREREREREeVp/Po3ERERERERERERERERERHlaewYJyIiIiIiIiIiIiIiIiKiPI0d40RERERERERERERERERElKexY5yIiIiIiIiIiIiIiIiIiPI0dowTEREREREREREREREREVGexo5xIiIiIiIiIiIiIiIiIiLK09gxTkREREREREREREREREREeRo7xomIVCQ8PBwymQyxsbGf/ZjixYtjyZIlORYTEREREdHHmLcSERERERHRj4gd40T0w3B1dYVMJsOwYcOy7BsxYgRkMhlcXV1zPzAiIiIiokyYtxIRERERERGpHjvGieiHUrRoUQQGBiIpKUnalpycjK1bt8LOzk6NkRERERER/Q/zViIiIiIiIiLVYsc4Ef1QqlevjqJFi2LXrl3Stl27dsHOzg7VqlWTtqWkpGDkyJGwtraGgYEBHB0dERERoXSuAwcOoEyZMjA0NESTJk3w999/Z3m+U6dOoWHDhjA0NETRokUxcuRIvH//PtvYhBDw9PSEnZ0d9PX1UbhwYYwcOVI1F05ERERE3xXmrURERERERESqxY5xIvrhDBgwABs2bJB+X79+Pfr37690zG+//Ybg4GBs3LgRly9fRqlSpdCiRQu8ffsWAPDPP/+gc+fOaNeuHa5cuYJBgwZh4sSJSue4f/8+WrZsiS5duuDq1avYvn07Tp06BTc3t2zjCg4OxuLFi7F69WrcvXsXe/bsQaVKlVR89URERET0vWDeSkRERERERKQ67Bgnoh9Onz59cOrUKTx69AiPHj3C6dOn0adPH2n/+/fvsXLlSixYsACtWrVC+fLlsWbNGhgaGmLdunUAgJUrV6JkyZJYuHAhypYti969e2dZ53Hu3Lno3bs3Ro8ejdKlS6N+/frw8fHBpk2bkJycnCWux48fo2DBgvj5559hZ2eH2rVrY/DgwTl6L4iIiIhIczFvJSIiIiIiIlIddowT0Q/HysoKbdq0gb+/PzZs2IA2bdqgQIEC0v779+8jLS0NDRo0kLbp6uqidu3auHnzJgDg5s2bqFOnjtJ569Wrp/T7X3/9BX9/f5iYmEg/LVq0gEKhwMOHD7PE1a1bNyQlJaFEiRIYPHgwdu/ejfT0dFVeOhERERF9R5i3EhEREREREamOjroDICJShwEDBkhTQy5fvjxHniMhIQFDhw7Ndr1FOzu7LNuKFi2K27dv48iRIzh8+DB++eUXLFiwAMePH4eurm6OxEhEREREmo15KxEREREREZFqcMQ4Ef2QWrZsidTUVKSlpaFFixZK+0qWLAk9PT2cPn1a2paWloaIiAiUL18eAODg4IALFy4oPe7cuXNKv1evXh03btxAqVKlsvzo6ellG5ehoSHatWsHHx8fhIeH4+zZs4iKilLFJRMRERHRd4h5KxEREREREZFqcMQ4Ef2QtLW1pekltbW1lfYZGxtj+PDhmDBhAvLnzw87Ozt4eXkhMTERAwcOBAAMGzYMCxcuxIQJEzBo0CBcunQJ/v7+Sudxd3dH3bp14ebmhkGDBsHY2Bg3btzA4cOH4evrmyUmf39/yOVy1KlTB0ZGRtiyZQsMDQ1RrFixnLkJRERERKTxmLcSERERERERqQZHjBPRDytfvnzIly9ftvvmzZuHLl26oG/fvqhevTru3buHgwcPwsLCAsCHKSWDg4OxZ88eVKlSBatWrcKcOXOUzlG5cmUcP34cd+7cQcOGDVGtWjV4eHigcOHC2T6nubk51qxZgwYNGqBy5co4cuQI9u/fD0tLS9VeOBERERF9V5i3EhEREREREX07mRBCqDsIIiIiIiIiIiIiIiIiIiKinMIR40RERERERERERERERERElKexY5yIiIiIiIiIiIiIiIiIiPI0dowTEREREREREREREREREVGexo5xIiIiIiIiIiIiIiIiIiLK09gxTkREREREREREREREREREeRo7xomIiIiIiIiIiIiIiIiIKE9jxzgREREREREREREREREREeVp7BgnIiIiIiIiIiIiIiIiIqI8jR3jRERERERERERERERERESUp7FjnIiIiIiIiIiIiIiIiIiI8jR2jBMRERERERERERERERERUZ7GjnEiIiIiIiIiIiIiIiIiIsrT2DFORERERERERERERERERER5GjvGiYiIiIiIiIiIiIiIiIgoT2PHOBERERERERERERERERER5WnsGCciIiIiIiIiIiIiIiIiojyNHeNERERERERERERERERERJSnsWOc6Cu5urqiePHi6g6DvnMymQyenp7qDkPtGjdujMaNG0u///3335DJZPD391dbTB/7OMZv8fHnR8b1ent7q+T8RESU8z7370J4eDhkMhnCw8NzPCbKnir/hv/oNDFHU5fixYvD1dVV+l0T3+sfx/itXF1dYWJiorLzERERERER5TZ2jJPG8/f3h0wmk350dHRQpEgRuLq64unTp+oOT2N8fJ8y/0ycOFHd4WVrzpw52LNnj8rOt2LFCshkMtSpU+erz/Hs2TN4enriypUrKotL02U04mX86OrqokSJEnBxccGDBw/UHd4XOXPmDDw9PREbG6u2GIoXL462bduq7fmJiOjr5MWc09XVVema9PX1UaZMGXh4eCA5OVnd4RGA3377DTKZDN27d//qc9y4cQOenp74+++/VReYhvv4/WpgYIAyZcrAzc0NL168UHd4X+TAgQNq/6JsQkICpk+fjooVK8LY2BiWlpaoWrUqRo0ahWfPnqk1NiIiIiIiIlXSUXcARJ9r5syZsLe3R3JyMs6dOwd/f3+cOnUK165dg4GBgbrD0xgZ9ymzihUrqimafzdnzhx07doVHTt2VMn5AgICULx4cVy4cAH37t1DqVKlvvgcz549w4wZM1C8eHFUrVpVJXF9L0aOHIlatWohLS0Nly9fhp+fH0JDQxEVFYXChQvnaizFihVDUlISdHV1v+hxZ86cwYwZM+Dq6gpzc/OcCU4F1qxZA4VCoe4wiIgoG5+bcx46dEiNUX4+fX19rF27FgDw7t077N27F7NmzcL9+/cREBCg5uhyh6aWlRAC27ZtQ/HixbF//37Ex8fD1NT0i89z48YNzJgxA40bN/7hZrTK/H49deoUVq5ciQMHDuDatWswMjLK1VgaNWqEpKQk6OnpfdHjDhw4gOXLl6utczwtLQ2NGjXCrVu30K9fP/z6669ISEjA9evXsXXrVnTq1CnX6wJEREREREQ5hR3j9N1o1aoVatasCQAYNGgQChQogPnz52Pfvn1wdnZWc3SaI/N9UqX379/D2NhY5edVlYcPH+LMmTPYtWsXhg4dioCAAEyfPl3dYX1XGjZsiK5duwIA+vfvjzJlymDkyJHYuHEjJk2alO1jcup1kTHyJ6/60g5/IiLKPZ+bc35p55e66OjooE+fPtLvv/zyC+rXr49t27Zh0aJFsLGxybVY0tPToVAocv3eaWpZhYeH48mTJzh69ChatGiBXbt2oV+/fuoO67vy8fvV0tISixYtwt69e9GzZ89sH5NT+auWltZ3mb/u2bMHkZGRCAgIQK9evZT2JScnIzU1NVfjUSgUSE1N/S7vJRERERERaT5OpU7frYYNGwIA7t+/L21LTU2Fh4cHatSoATMzMxgbG6Nhw4Y4duyY0mMzr+fr5+eHkiVLQl9fH7Vq1UJERESW59qzZw8qVqwIAwMDVKxYEbt37842pvfv32PcuHEoWrQo9PX1UbZsWXh7e0MIoXScTCaDm5sbduzYgfLly8PQ0BD16tVDVFQUAGD16tUoVaoUDAwM0LhxY5VOi3j06FE0bNgQxsbGMDc3R4cOHXDz5k2lYzw9PSGTyXDjxg306tULFhYWcHR0lPZv2bIFNWrUgKGhIfLnz48ePXrgn3/+UTrH3bt30aVLFxQsWBAGBgawtbVFjx498O7dO+kevH//Hhs3bpSmQMy8/t2tW7fw+PHjz76ugIAAWFhYoE2bNujatesnR0DFxsZizJgxKF68OPT19WFrawsXFxe8fv0a4eHhqFWrFoAPHcMZcWWsofipNfo+Xrfyc1+Hn+PFixfQ0dHBjBkzsuy7ffs2ZDIZfH19AXwY7TFjxgyULl0aBgYGsLS0hKOjIw4fPvzFzwsAP/30E4APXzoAVPO6ACC95wwNDVG7dm2cPHkyyzGfWr/y1q1bcHZ2hpWVFQwNDVG2bFlMmTJFim/ChAkAAHt7e6n8Mr9/VBnjt/h4jfHsCCEwZMgQ6OnpYdeuXV90Df/1/iMios+XXc4JZL9u9ZMnT9CxY0cYGxvD2toaY8aMQUpKSrbnXb58OUqUKKH0tya7c6akpGD69OkoVaoU9PX1UbRoUfz222+fPO9/kclkcHR0hBAiy5IpYWFhUp5oamqKNm3a4Pr161nOkZHDZs6NP/7bljnfXrJkiZRv37hxA8CHv+ldu3ZF/vz5YWBggJo1a2Lfvn1Kz/M5uc3z58/Rv39/2NraQl9fH4UKFUKHDh2U/v5nd19fvnyJgQMHwsbGBgYGBqhSpQo2btyodMyX1BnS0tJw69YtREdH/2cZZAgICED58uXRpEkT/Pzzz5/MX58+fYqBAweicOHC0NfXh729PYYPH47U1FT4+/ujW7duAIAmTZpI+U/GOtcymSzbkcgf57Vv377F+PHjUalSJZiYmCBfvnxo1aoV/vrrr8++ngwXL16ETCbLcj8B4ODBg5DJZAgJCQEAxMfHY/To0VJubm1tjWbNmuHy5ctf/LxA1vw1Y03s+/fvo3Xr1jA1NUXv3r0BfOiAXbJkCSpUqAADAwPY2Nhg6NChiImJUTqnEAK///47bG1tYWRkhCZNmmT7vvjUGuPnz59H69atYWFhAWNjY1SuXBlLly6V4lu+fDkAKE0Nn0HVMWYn47OtQYMGWfYZGBggX758WbY/ffoUHTt2hImJCaysrDB+/HjI5XKlY7y9vVG/fn1YWlrC0NAQNWrUwM6dO7OcK6NuHBAQgAoVKkBfXx9//PGH9DwDBgyAjY0N9PX1UaFCBaxfvz7LOZYtW4YKFSrAyMgIFhYWqFmzJrZu3fpZ109ERERERD8Wjhin71ZGY5eFhYW0LS4uDmvXrkXPnj0xePBgxMfHY926dWjRogUuXLiQZWrsrVu3Ij4+HkOHDoVMJoOXlxc6d+6MBw8eSCM6Dx06hC5duqB8+fKYO3cu3rx5IzW+ZSaEQPv27XHs2DEMHDgQVatWxcGDBzFhwgQ8ffoUixcvVjr+5MmT2LdvH0aMGAEAmDt3Ltq2bYvffvsNK1aswC+//IKYmBh4eXlhwIABOHr06Gfdl3fv3uH169dK2woUKAAAOHLkCFq1aoUSJUrA09MTSUlJWLZsGRo0aIDLly9n6ajr1q0bSpcujTlz5kid+7Nnz8a0adPg7OyMQYMG4dWrV1i2bBkaNWqEyMhImJubIzU1FS1atEBKSgp+/fVXFCxYEE+fPkVISAhiY2NhZmaGzZs3Y9CgQahduzaGDBkCAChZsqT03A4ODnBycsrSsPQpAQEB6Ny5M/T09NCzZ0+sXLkSERERUkc38GHtvIYNG+LmzZsYMGAAqlevjtevX2Pfvn148uQJHBwcMHPmTHh4eGDIkCFSQ3j9+vU/K4YMX/o6/Dc2NjZwcnJCUFBQlhHw27dvh7a2ttQY6unpiblz50r3NS4uDhcvXsTly5fRrFmzL7oG4H+NZJaWlkrbv/Z1AQDr1q3D0KFDUb9+fYwePRoPHjxA+/btkT9/fhQtWvRf47l69SoaNmwIXV1dDBkyBMWLF8f9+/exf/9+zJ49G507d8adO3ewbds2LF68WHrdW1lZ5VqMqiKXyzFgwABs374du3fvRps2bT77Gj7n/UdERJ8vu5wzO0lJSWjatCkeP36MkSNHonDhwti8eXO2OdzKlSvh5uaGhg0bYsyYMfj777/RsWNHWFhYKOWYCoUC7du3x6lTpzBkyBA4ODggKioKixcvxp07d7Bnzx6VXdPmzZvRr18/tGjRAvPnz0diYiJWrlwJR0dHREZGSnliaGgounfvjkqVKmHu3LmIiYnBwIEDUaRIkWyfa8OGDUhOTsaQIUOgr6+P/Pnz4/r162jQoAGKFCmCiRMnwtjYGEFBQejYsSOCg4PRqVMnAJ+X23Tp0gXXr1/Hr7/+iuLFi+Ply5c4fPgwHj9+/MkvoSUlJaFx48a4d+8e3NzcYG9vjx07dsDV1RWxsbEYNWqU0vGfU2d4+vQpHBwc0K9fvyxf7MtOSkoKgoODMW7cOABAz5490b9/fzx//hwFCxaUjnv27Blq166N2NhYDBkyBOXKlcPTp0+xc+dOJCYmolGjRhg5ciR8fHwwefJkODg4AID07+d68OAB9uzZg27dusHe3h4vXrzA6tWr4eTkhBs3bnzRVNo1a9ZEiRIlEBQUlGUE/Pbt22FhYYEWLVoAAIYNG4adO3fCzc0N5cuXx5s3b3Dq1CncvHkT1atX/6JrALLPX9PT09GiRQs4OjrC29tbmmJ96NCh8Pf3R//+/TFy5Eg8fPgQvr6+iIyMxOnTp6Wy9fDwwO+//47WrVujdevWuHz5Mpo3b/5ZI6kPHz6Mtm3bolChQhg1ahQKFiyImzdvIiQkBKNGjcLQoUPx7NkzHD58GJs3b87y+NyIsVixYgCATZs2YerUqUod89mRy+Vo0aIF6tSpA29vbxw5cgQLFy5EyZIlMXz4cOm4pUuXon379ujduzdSU1MRGBiIbt26ISQkRMptMxw9ehRBQUFwc3NDgQIFULx4cbx48QJ169aVOs6trKwQFhaGgQMHIi4uDqNHjwbwYYmikSNHomvXrhg1ahSSk5Nx9epVnD9/PssIeCIiIiIiIggiDbdhwwYBQBw5ckS8evVK/PPPP2Lnzp3CyspK6Ovri3/++Uc6Nj09XaSkpCg9PiYmRtjY2IgBAwZI2x4+fCgACEtLS/H27Vtp+969ewUAsX//fmlb1apVRaFChURsbKy07dChQwKAKFasmLRtz549AoD4/ffflZ6/a9euQiaTiXv37knbAAh9fX3x8OFDadvq1asFAFGwYEERFxcnbZ80aZIAoHTsv92n7H4yX4u1tbV48+aNtO2vv/4SWlpawsXFRdo2ffp0AUD07NlT6Tn+/vtvoa2tLWbPnq20PSoqSujo6EjbIyMjBQCxY8eOf43Z2NhY9OvXL9t9AISTk9O/Pj7DxYsXBQBx+PBhIYQQCoVC2NrailGjRikd5+HhIQCIXbt2ZTmHQqEQQggREREhAIgNGzZkOaZYsWLZxuvk5KQU6+e+DoX4cJ3Tp0//1+vLeG1ERUUpbS9fvrz46aefpN+rVKki2rRp86/nys6xY8cEALF+/Xrx6tUr8ezZMxEaGiqKFy8uZDKZiIiIEEJ8++siNTVVWFtbi6pVqyrdHz8/vyzlnfEezVwOjRo1EqampuLRo0dKz5NRdkIIsWDBgmzfLzkR46cUK1bsP8uhX79+Sp8fGde7YMECkZaWJrp37y4MDQ3FwYMHv/gaPvf9R0REyr4k5xQi69//JUuWCAAiKChI2vb+/XtRqlQpAUAcO3ZMCCFESkqKsLS0FLVq1RJpaWnSsf7+/ln+1mzevFloaWmJkydPKj33qlWrBABx+vTpf72mfv36CWNjY/Hq1Svx6tUrce/ePeHt7S1kMpmoWLGi9Dc0Pj5emJubi8GDBys9/vnz58LMzExpe6VKlYStra2Ij4+XtoWHh2fJjTP+tuXLl0+8fPlS6bxNmzYVlSpVEsnJydI2hUIh6tevL0qXLi1t+6/cJiYmRvr7+W8+VVZbtmyRtqWmpop69eoJExMTKRf/kjpDxrGfym0/tnPnTgFA3L17VwghRFxcnDAwMBCLFy9WOs7FxUVoaWlJ+VhmGeW3Y8cOpddYZp/KNT/Oa5OTk4VcLlc65uHDh0JfX1/MnDkzy3VmlytnNmnSJKGrq6t031JSUoS5ublSPmxmZiZGjBjxr+fKTnbv18DAQGFpaSkMDQ3FkydPhBAf3gMAxMSJE5Uef/LkSQFABAQEKG3/448/lLa/fPlS6OnpiTZt2ijlnJMnT85S3hk5dUY5pKenC3t7e1GsWDERExOj9DyZzzVixAilOltOxpidxMREUbZsWek97OrqKtatWydevHiR5diM+5n5NSGEENWqVRM1atTIct7MUlNTRcWKFZXqL0J8eI1qaWmJ69evK20fOHCgKFSokHj9+rXS9h49eggzMzPp/B06dBAVKlT412skIiIiIiLKwKnU6bvx888/w8rKCkWLFkXXrl1hbGyMffv2KY2q0dbWltYQVCgUePv2LdLT01GzZs1sp+Pr3r270kiZjBHCGdNKRkdH48qVK+jXr5/SKMtmzZqhfPnySuc6cOAAtLW1MXLkSKXt48aNgxACYWFhStubNm2qNIqlTp06AD6MejE1Nc2y/eOpLj9l+fLlOHz4sNJP5mtxdXVF/vz5peMrV66MZs2a4cCBA1nONWzYMKXfd+3aBYVCAWdnZ7x+/Vr6KViwIEqXLi1NFZ5xrw4ePIjExMTPivtjQogvGi1uY2ODJk2aAPgwHV/37t0RGBioNKVfcHAwqlSpIo1Cyuy/RkZ8iS99Hf6Xzp07Q0dHB9u3b5e2Xbt2DTdu3ED37t2lbebm5rh+/Tru3r37VXEPGDAAVlZWKFy4MNq0aSNNdf/xmvVf+7q4ePEiXr58iWHDhimt9enq6vqfo5hfvXqFEydOYMCAAbCzs1Pa9zlllxsxqkJqaqo0kubAgQNo3rz5F1+DKt5/REQ/ss/JObNz4MABFCpUCF27dpW2GRkZSTPjZLh48SLevHmDwYMHQ0fnfxN49e7dO8uo9B07dsDBwQHlypVT+uzPmC76c5Zpef/+PaysrGBlZYVSpUph/PjxaNCgAfbu3Sv9DT18+DBiY2PRs2dPpefR1tZGnTp1pOd59uwZoqKi4OLiAhMTE+k5nJycUKlSpWyfv0uXLtLsLcCHKbuPHj0KZ2dnxMfHS8/15s0btGjRAnfv3sXTp08B/HduY2hoCD09PYSHh2eZWvrfHDhwAAULFlRag1pXVxcjR45EQkICjh8/rnT8f9UZgA9TkwshPmu0OPAhf61ZsyZKlSoFANLU9ZmnU1coFNizZw/atWuXJR8DVJu/6uvrQ0vrQ/OAXC7HmzdvYGJigrJly35V/tq9e3ekpaUpLQdz6NAhxMbGZslfz58/j2fPnn1V3Jnfrz169ICJiQl2796dZQaDzCOZgQ/vLTMzMzRr1kzpNV+jRg2YmJhIr/kjR44gNTUVv/76q9L9zhit/G8iIyPx8OFDjB49WpqZKMPnlF1uxAh8eB+dP39eWpLI398fAwcORKFChfDrr79mu2zDx/WBhg0bZqmvGhoaSv+PiYnBu3fv0LBhw2xfT05OTkr1ayEEgoOD0a5dOwghlK6/RYsWePfunXQec3NzPHnyJNsl0YiIiIiIiD7GqdTpu7F8+XKUKVMG7969w/r163HixAno6+tnOW7jxo1YuHAhbt26hbS0NGm7vb19lmM/7mDLaPDKaFh79OgRAKB06dJZHvtxI9GjR49QuHBhpU5t4H/TGGac61PPndGZ9fFUzRnbP7exr3bt2tk2nGU8f9myZbPsc3BwwMGDB/H+/XsYGxtL2z++Z3fv3oUQItv7AUCays/e3h5jx47FokWLEBAQgIYNG6J9+/bo06ePyjsX5XI5AgMD0aRJE2ktQeDDFwoWLlyIP//8U+pcvH//Prp06aLS5/+UL3kd/pcCBQqgadOmCAoKwqxZswB8mIZSR0cHnTt3lo6bOXMmOnTogDJlyqBixYpo2bIl+vbti8qVK3/W83h4eKBhw4bQ1tZGgQIF4ODgoNRg/6lr+NzXxafeT7q6uihRosS/xpbR0FaxYsXPupaP5UaMqjB37lwkJCQgLCwsy1qomvj+IyLKiz435/zYo0ePUKpUqSwdXh/nXhl/azI6RDPo6Ohkmfr77t27uHnzplLHcmYvX778z7gMDAywf/9+AB/WQPfy8sLLly+VOq0yOp4zOtw/lrHG8Kdiz9iWXYfXx3nDvXv3IITAtGnTMG3atGyf7+XLlyhSpMh/5jb6+vqYP38+xo0bBxsbG9StWxdt27aFi4uL0nTkH3v06BFKly4tdQRn+Ny8/eM6w5eKjY3FgQMH4Obmhnv37knbGzRogODgYNy5cwdlypTBq1evEBcX99X5z5dQKBRYunQpVqxYgYcPHyp9ufTjZXU+R5UqVVCuXDls374dAwcOBPAhfy1QoIDS68zLywv9+vVD0aJFUaNGDbRu3RouLi6fnXdlvF91dHRgY2ODsmXLZilXHR2dLF9suXv3Lt69ewdra+tsz5vx3vpUbmhlZfWfyytkTOv+LflrTseYwczMDF5eXvDy8sKjR4/w559/wtvbG76+vjAzM8Pvv/8uHWtgYJDlM8nCwiLL+yEkJAS///47rly5otS5nt2XAj7+nHj16hViY2Ph5+cHPz+/bGPOuH53d3ccOXIEtWvXRqlSpdC8eXP06tUr2zXTiYiIiIiI2DFO343MHb4dO3aEo6MjevXqhdu3b0sjVrZs2QJXV1d07NgREyZMgLW1NbS1tTF37lypYSIzbW3tbJ9L/P+6yTnpU8+tzpg+lrnBFPjQYCaTyRAWFpZtnJlHDi1cuBCurq7Yu3cvDh06hJEjR2Lu3Lk4d+7cf464+hJHjx5FdHQ0AgMDERgYmGV/QECA0qjbb/GpkR1yuVzpfnzp6/Bz9OjRA/3798eVK1dQtWpVBAUFoWnTptI62gDQqFEj3L9/X7rna9euxeLFi7Fq1SoMGjToP5+jUqVK+Pnnn//zuG95XajL9xAjALRo0QJ//PEHvLy80LhxYxgYGEj7NPH9R0SUF31OzplbFAoFKlWqhEWLFmW7/+MvVGZHW1tb6e97ixYtUK5cOQwdOhT79u2Tngf4sM54dh3K2X1R7nNllzcAwPjx46V1pj+W0fH+ObnN6NGj0a5dO+zZswcHDx7EtGnTMHfuXBw9ehTVqlX76rgzU3V+vmPHDqSkpGDhwoVYuHBhlv0BAQGYMWPGV537c2Xu+AaAOXPmYNq0aRgwYABmzZqF/PnzQ0tLC6NHj5bK7Et1794ds2fPxuvXr2Fqaop9+/ahZ8+eSq8nZ2dnNGzYELt378ahQ4ewYMECzJ8/H7t27UKrVq3+8zk+9aXgzDKPhs+gUChgbW2tNEI/s099GSU3qSvGYsWKYcCAAejUqRNKlCiBgIAApY7xT70fMjt58iTat2+PRo0aYcWKFShUqBB0dXWxYcMGbN26Ncvxn/qc6NOnT5Z16jNkfEHGwcEBt2/fRkhICP744w8EBwdjxYoV8PDwyPH3ERERERERfX/YMU7fpYxOxiZNmsDX1xcTJ04EAOzcuRMlSpTArl27lDoxp0+f/lXPU6xYMQDIdvrG27dvZzn2yJEjiI+PVxo1fuvWLaVzqUvG838cN/AhxgIFCiiNFs9OyZIlIYSAvb09ypQp85/PWalSJVSqVAlTp07FmTNn0KBBA6xatUpqWFHF9I8BAQGwtrbG8uXLs+zbtWsXdu/ejVWrVsHQ0BAlS5bEtWvX/vV8/xaThYUFYmNjs2x/9OiR0qgWVb8OgQ8N80OHDpWmU79z5w4mTZqU5bj8+fOjf//+6N+/PxISEtCoUSN4enp+Vsf41/rc10Xm91PmkUJpaWl4+PAhqlSp8snHZtzfry2/3IhRFerWrYthw4ahbdu26NatG3bv3i01Hqv6/UdERP/tUzlndooVK4Zr165BCKH09yi7nBH4MHI6YxkYAEhPT8fff/+tNNNLyZIl8ddff6Fp06Yqmza7UKFCGDNmDGbMmIFz586hbt26KFmyJADA2tr6X78klzn2j/0fe/cdHlWZ9nH8NymTQEISShJagIBKFwRfIQQpioYiFlBRXOmgLrgKtsWOBdRdsQFiQUDFRUBs4EoRAxLCqkiQItiAoJLQJA3IpJz3j2PKkAkkZJIzk3w/18VFTpmZ+8yZmZzM/dz342qdKwW/0/39/cs0IK8s1zatWrXSPffco3vuuUc//fSTOnfurOeff17vvvtuqcfx/fffKz8/3ylhWlXX7YsWLVKHDh1cXhu+9tpreu+99zRt2jSFh4crJCTE7devDodDBw8edFq3bNky9e3bV/PmzXNaf/z4caeBmOUxbNgwTZs2TR988IEiIyOVnp6um266qcR+jRo10t///nf9/e9/16FDh9SlSxc9/fTTZUqMn6tWrVpp7dq1io2NLZGULa74tWHx6/3Dhw+ftWNAwftqx44dZ3ytn+n6tbJjPJO6deuW6e8nVz744AMFBgZq1apVTh035s+fX6bbh4eHq06dOsrLyyvT50RQUJCGDRumYcOGyeFwaMiQIXr66ac1depUp4GmAAAAAMAc4/Baffr00SWXXKIXX3xRp06dklQ0er149cb//vc/JSYmntNjNGrUSJ07d9bChQuVlpZWuH7NmjXatWuX074DBw5UXl6eZs2a5bT+hRdekM1mq9Qvdsqi+LEU/3Jsx44dWr16tQYOHHjW+xgyZIh8fX01bdq0EhUyhmHo6NGjkqT09HTl5uY6be/YsaN8fHyc2ugFBQW5TDRL5heTycnJZ4zn5MmTWr58ua666ipdf/31Jf5NmjRJGRkZhdVQQ4cO1bZt2/Thhx+WuK+C4ykYHOAqrlatWmnz5s1yOByF61asWKEDBw447efu16Fkzp0XFxenJUuWaPHixbLb7br22mud9il4/gsEBwfrvPPOczkvoDuV9XVx8cUXKzw8XHPnznV6DhcsWFDq66BAeHi4evXqpbfeeqvE66L4Y5Z2/qoiRnfp16+fFi9erM8//1y33nprYcWMu99/AICycXXN6crAgQP1xx9/aNmyZYXrTpw4UaIN8MUXX6z69evrjTfecPq8XrRoUYkk1o033qjff/9db7zxRonHO3nypLKyss7pmO68807Vrl1bzzzzjCSzijwkJETTp093mgKmwOHDhyVJjRs3VocOHfT2228rMzOzcPv69eu1ffv2Mj12RESE+vTpo9dee61Ecrb4Y0lnv7Y5ceJEiXPSqlUr1alT54y/8wYOHKiUlJTCAYeSOTDhlVdeUXBwsHr37l2mYykuJydHu3fvdnlMxR04cEAbNmzQjTfe6PL6dfTo0fr555/1v//9Tz4+Prr22mv16aef6ttvvy1xX2W9ft2wYYPTutdff71Exbivr2+J64ulS5cWzvd+Ltq2bauOHTvq/fff1/vvv69GjRqpV69ehdvz8vKc/saSzNdH48aNK/2a5cYbb1ReXl7hNEXF5ebmFj6X/fr1k7+/v1555RWn5+fFF18862N06dJF0dHRevHFF0ucm7Jcv1ZFjJK0bds2HTlypMT6/fv3a9euXS6n4jobX19f2Ww2p9fZvn379NFHH5X59kOHDtUHH3zgMjF/ps8Ju92udu3ayTAMl59nAAAAAGo2Ksbh1e677z7dcMMNWrBgQWGV5fLly3Xddddp0KBB2rt3r+bOnat27do5fXlXHjNmzNCgQYPUs2dPjRkzRseOHdMrr7yi9u3bO93n4MGD1bdvXz300EPat2+fOnXqpNWrV+vjjz/W3XffXVgxYKV//etfGjBggGJiYjR27FidPHlSr7zyikJDQ/X444+f9fatWrXSU089palTp2rfvn269tprVadOHe3du1cffvihJkyYoHvvvVfr1q3TpEmTdMMNN+iCCy5Qbm6u3nnnncIvOAp07dpVa9eu1cyZM9W4cWNFR0erW7dukswv0nr37q34+PhS4/nkk0+UkZGhq6++2uX27t27Kzw8XIsWLdKwYcN03333admyZbrhhhs0ZswYde3aVceOHdMnn3yiuXPnqlOnTmrVqpXCwsI0d+5c1alTR0FBQerWrZuio6M1btw4LVu2TP3799eNN96oX375Re+++26Jc1sZr0PJrLr529/+pjlz5iguLk5hYWFO29u1a6c+ffqoa9euqlevnr799lstW7ZMkyZNOufHLIuyvi78/f311FNP6bbbbtNll12mYcOGae/evZo/f36Z5pF8+eWX1bNnT3Xp0kUTJkxQdHS09u3bp5UrVyopKUmS+ZqSpIceekg33XST/P39NXjw4CqLscDPP//ssjL7oosu0qBBg856+2uvvVbz58/XiBEjFBISotdee83t7z8AQNmdfs3pyvjx4zVr1iyNGDFCW7ZsUaNGjfTOO++odu3aTvvZ7XY9/vjjuvPOO3XZZZfpxhtv1L59+7RgwQK1atXKqXr01ltv1ZIlS3T77bfryy+/VGxsrPLy8rR7924tWbJEq1atOmsbaVfq16+v0aNHa86cOfrhhx/Utm1bvfrqq7r11lvVpUsX3XTTTQoPD1dycrJWrlyp2NjYwsGf06dP1zXXXKPY2FiNHj1af/75p2bNmqUOHTqU+Tpn9uzZ6tmzpzp27Kjx48erZcuWSk1NVWJion777Tdt27ZN0tmvbX788UddfvnluvHGG9WuXTv5+fnpww8/VGpqqsvK5AITJkzQa6+9plGjRmnLli1q0aKFli1bpoSEBL344otO3Z/K6vfff1fbtm01cuRILViwoNT93nvvPRmGUer168CBA+Xn56dFixapW7dumj59ulavXq3evXtrwoQJatu2rQ4ePKilS5dq48aNCgsLU+fOneXr66tnn31WaWlpCggI0GWXXaaIiAiNGzdOt99+u4YOHaorrrhC27Zt06pVq0pUgV911VV64oknNHr0aPXo0UPbt2/XokWLynX948qwYcP06KOPKjAwUGPHjnWq0M/IyFDTpk11/fXXq1OnTgoODtbatWv1zTffuGwx7069e/fWbbfdphkzZigpKUlXXnml/P399dNPP2np0qV66aWXdP311ys8PFz33nuvZsyYoauuukoDBw7U1q1b9d///veslfQ+Pj569dVXNXjwYHXu3FmjR49Wo0aNtHv3bu3cuVOrVq2SVHT9+o9//ENxcXHy9fXVTTfdVCUxSuag78cee0xXX321unfvruDgYP3666966623lJ2dXaa/E083aNAgzZw5U/3799fw4cN16NAhzZ49W+edd56+//77Mt3HM888oy+//FLdunXT+PHj1a5dOx07dkzfffed1q5dq2PHjkmSrrzySjVs2FCxsbGKjIzUDz/8oFmzZmnQoEHn9F4GAAAAUM0ZgIebP3++Icn45ptvSmzLy8szWrVqZbRq1crIzc018vPzjenTpxvNmzc3AgICjIsuushYsWKFMXLkSKN58+aFt9u7d68hyfjXv/5V4j4lGY899pjTug8++MBo27atERAQYLRr185Yvnx5ifs0DMPIyMgwJk+ebDRu3Njw9/c3zj//fONf//qXkZ+fX+IxJk6c6LSutJi+/PJLQ5KxdOnSc36eilu7dq0RGxtr1KpVywgJCTEGDx5s7Nq1y2mfxx57zJBkHD582OV9fPDBB0bPnj2NoKAgIygoyGjTpo0xceJEY8+ePYZhGMavv/5qjBkzxmjVqpURGBho1KtXz+jbt6+xdu1ap/vZvXu30atXL6NWrVqGJGPkyJFOz1Hv3r3PeCyDBw82AgMDjaysrFL3GTVqlOHv728cOXLEMAzDOHr0qDFp0iSjSZMmht1uN5o2bWqMHDmycLthGMbHH39stGvXzvDz8zMkGfPnzy/c9vzzzxtNmjQxAgICjNjYWOPbb781evfu7RRrWV+HBcd5+uutNOnp6YXP1bvvvlti+1NPPWVccsklRlhYmFGrVi2jTZs2xtNPP204HI4z3m9ZX2MVfV0UmDNnjhEdHW0EBAQYF198sbFhw4YSz2HB+6H4c28YhrFjxw7juuuuM8LCwozAwECjdevWxiOPPOK0z5NPPmk0adLE8PHxMSQZe/furZQYS9O8eXNDkst/Y8eONQzDKPNn0pw5cwxJxr333lvmYyjr+w8A4Kw815yGYbj8vbB//37j6quvNmrXrm00aNDAuOuuu4zPP//ckGR8+eWXTvu+/PLLhdcKl1xyiZGQkGB07drV6N+/v9N+DofDePbZZ4327dsbAQEBRt26dY2uXbsa06ZNM9LS0s54TCNHjjSCgoJcbvvll18MX19fp+uvL7/80oiLizNCQ0ONwMBAo1WrVsaoUaOMb7/91um2ixcvNtq0aWMEBAQYHTp0MD755BNj6NChRps2bQr3OdP1dsHjjxgxwmjYsKHh7+9vNGnSxLjqqquMZcuWFe5ztmubI0eOGBMnTjTatGljBAUFGaGhoUa3bt2MJUuWOD2Wq3OVmppqjB492mjQoIFht9uNjh07lrjuKM/fDAX7Fn8+XenYsaPRrFmzM+7Tp08fIyIiwsjJyTEMw3xdjRgxwggPDzcCAgKMli1bGhMnTjSys7MLb/PGG28YLVu2NHx9fZ1eb3l5ecYDDzxgNGjQwKhdu7YRFxdn/Pzzz0bz5s2dYj116pRxzz33GI0aNTJq1aplxMbGGomJiWW+RivNTz/9VHgdtHHjRqdt2dnZxn333Wd06tTJqFOnjhEUFGR06tTJmDNnzlnvt6x/+5zpPWAYhvH6668bXbt2NWrVqmXUqVPH6Nixo3H//fcbf/zxR+E+eXl5xrRp0wqfmz59+hg7duwo8RwWXFOf/l7fuHGjccUVVxQe44UXXmi88sorhdtzc3ONO++80wgPDzdsNptx+tc07ozRlV9//dV49NFHje7duxsRERGGn5+fER4ebgwaNMhYt25dmZ7Pgr8Tips3b55x/vnnGwEBAUabNm2M+fPnu9zP1d/GBVJTU42JEycaUVFRhr+/v9GwYUPj8ssvN15//fXCfV577TWjV69eRv369Y2AgACjVatWxn333XfWz0cAAAAANZPNME7rlwYAAAAAqFL5+fkKDw/XkCFDXLZO93SdO3dWeHi41qxZY3UoAAAAAAAALjHHOAAAAABUoVOnTpWYz/ntt9/WsWPH1KdPH2uCKqOcnBynudElKT4+Xtu2bfP42AEAAAAAQM1GxTgAAAAAVKH4+HhNnjxZN9xwg+rXr6/vvvtO8+bNU9u2bbVlyxbZ7XarQyzVvn371K9fP/3tb39T48aNtXv3bs2dO1ehoaHasWOH6tevb3WIAAAAAAAALvlZHQAAAAAA1CQtWrRQVFSUXn75ZR07dkz16tXTiBEj9Mwzz3h0UlyS6tatq65du+rNN9/U4cOHFRQUpEGDBumZZ54hKQ4AAAAAADwaFeMAAAAAAAAAAJc2bNigf/3rX9qyZYsOHjyoDz/8UNdee+0ZbxMfH68pU6Zo586dioqK0sMPP6xRo0ZVSbwAAAClYY5xAAAAAAAAAIBLWVlZ6tSpk2bPnl2m/ffu3atBgwapb9++SkpK0t13361x48Zp1apVlRwpAADAmVEx7gb5+fn6448/VKdOHdlsNqvDAQAAVcgwDGVkZKhx48by8WHMITwb160AANRsXLuiomw221krxh944AGtXLlSO3bsKFx300036fjx4/r8889LvV12drays7MLl/Pz83Xs2DHVr1+fa1cAAGqYyrpuZY5xN/jjjz8UFRVldRgAAMBCBw4cUNOmTa0OAzgjrlsBAIDEtSsqV2Jiovr16+e0Li4uTnffffcZbzdjxgxNmzatEiMDAADext3XrSTG3aBOnTqSzJMTEhIiyRzRePjwYYWHhzMC10KcB8/AefAcnAvPwHnwDO46D+np6YqKiiq8HgA8mavr1nNREz/Hatoxc7zVG8db/dW0Y+Z4y45rV1SFlJQURUZGOq2LjIxUenq6Tp48qVq1arm83dSpUzVlypTC5bS0NDVr1qzC164AAMD7VNZ1K4lxNyho5RMSEuKUGD916pRCQkJqxB9lnorz4Bk4D56Dc+EZOA+ewd3ngdZ+8AaurlvPRU38HKtpx8zxVm8cb/VX046Z4y0/rl3hiQICAhQQEFBifUWvXQEAgPdy93Vr9f9rAQAAAAAAAABQJRo2bKjU1FSndampqQoJCSm1WhwAAKAqkBgHAAAAAAAAALhFTEyMvvjiC6d1a9asUUxMjEURAQAAmEiMAwAAAAAAAABcyszMVFJSkpKSkiRJe/fuVVJSkpKTkyWZc4OPGDGicP/bb79dv/76q+6//37t3r1bc+bM0ZIlSzR58mQrwgcAAChEYhwAAAAAAAAA4NK3336riy66SBdddJEkacqUKbrooov06KOPSpIOHjxYmCSXpOjoaK1cuVJr1qxRp06d9Pzzz+vNN99UXFycJfEDAAAU8LM6AAAAAAAAAACAZ+rTp48Mwyh1+4IFC1zeZuvWrZUYFQAAQPlRMQ4AAAAAAAAAAAAAqNZIjAMAAAAAAAAAAAAAqjUS4wAAAEAFzJgxQ//3f/+nOnXqKCIiQtdee6327NnjtM+pU6c0ceJE1a9fX8HBwRo6dKhSU1Od9klOTtagQYNUu3ZtRURE6L777lNubq7TPvHx8erSpYsCAgJ03nnnuWxbCQAAAAAAAKAkEuMAAABABaxfv14TJ07U5s2btWbNGuXk5OjKK69UVlZW4T6TJ0/Wp59+qqVLl2r9+vX6448/NGTIkMLteXl5GjRokBwOhzZt2qSFCxdqwYIFevTRRwv32bt3rwYNGqS+ffsqKSlJd999t8aNG6dVq1ZV6fECAAAAAAAA3sjP6gAAAAAAb/b55587LS9YsEARERHasmWLevXqpbS0NM2bN0/vvfeeLrvsMknS/Pnz1bZtW23evFndu3fX6tWrtWvXLq1du1aRkZHq3LmznnzyST3wwAN6/PHHZbfbNXfuXEVHR+v555+XJLVt21YbN27UCy+8oLi4OJexZWdnKzs7u3A5PT1dkpSfn6/8/PxzPub8/HwZhlGh+/A2Ne2YOd7qjeOt/mraMXO85bstAAAAUFN5bGL88ccf17Rp05zWtW7dWrt375ZktqO85557tHjxYmVnZysuLk5z5sxRZGRk4f7Jycm644479OWXXyo4OFgjR47UjBkz5OdXdNjx8fGaMmWKdu7cqaioKD388MMaNWpUlRwjAAAAqp+0tDRJUr169SRJW7ZsUU5Ojvr161e4T5s2bdSsWTMlJiaqe/fuSkxMVMeOHZ2uZePi4nTHHXdo586duuiii5SYmOh0HwX73H333aXGMmPGjBLX1JJ0+PBhnTp16pyPMT8/X2lpaTIMQz4+NaMJVU07Zo63euN4q7+adswcb9llZGRUUlQAAACA5/PYxLgktW/fXmvXri1cLp7Qnjx5slauXKmlS5cqNDRUkyZN0pAhQ5SQkCCpqB1lw4YNtWnTJh08eFAjRoyQv7+/pk+fLqmoHeXtt9+uRYsW6YsvvtC4cePUqFGjUqtuAAAAgNLk5+fr7rvvVmxsrDp06CBJSklJkd1uV1hYmNO+kZGRSklJKdyneFK8YHvBtjPtk56erpMnT6pWrVol4pk6daqmTJlSuJyenq6oqCiFh4crJCSkQsdps9kUHh5eIxIQUs07Zo63euN4q7+adswcb9kFBgZWUlQAAACA5/PoxLifn58aNmxYYr2V7SgBAACA0kycOFE7duzQxo0brQ5FkhQQEKCAgIAS6318fCqcOLDZbG65H29S046Z463eON7qr6YdM8dbNjXl+QEAAABc8ejE+E8//aTGjRsrMDBQMTExmjFjhpo1a2ZpO0qpbHM11rT5rTwV58EzcB48B+fCM3AePIO7zgPnEQUmTZqkFStWaMOGDWratGnh+oYNG8rhcOj48eNOVeOpqamFg0AbNmyor7/+2un+UlNTC7cV/F+wrvg+ISEhLqvFAQAAAAAAABTx2MR4t27dtGDBArVu3VoHDx7UtGnTdOmll2rHjh2WtqOUyjZXY02b38pTcR48A+fBc3AuPAPnwTO46zwwTyMMw9Cdd96pDz/8UPHx8YqOjnba3rVrV/n7++uLL77Q0KFDJUl79uxRcnKyYmJiJEkxMTF6+umndejQIUVEREiS1qxZo5CQELVr165wn88++8zpvtesWVN4HwAAAAAAAABK57GJ8QEDBhT+fOGFF6pbt25q3ry5lixZYnlFTFnmaqxp81t5Ks6DZ+A8eA7OhWfgPHgGd50H5mnExIkT9d577+njjz9WnTp1CgdhhoaGqlatWgoNDdXYsWM1ZcoU1atXTyEhIbrzzjsVExOj7t27S5KuvPJKtWvXTrfeequee+45paSk6OGHH9bEiRMLW6HffvvtmjVrlu6//36NGTNG69at05IlS7Ry5UrLjh0AAAAAAADwFh6bGD9dWFiYLrjgAv3888+64oorLG1HWda5Gmva/FaeivPgGTgPnoNz4Rk4D57BHeeBc4hXX31VktSnTx+n9fPnz9eoUaMkSS+88IJ8fHw0dOhQZWdnKy4uTnPmzCnc19fXVytWrNAdd9yhmJgYBQUFaeTIkXriiScK94mOjtbKlSs1efJkvfTSS2ratKnefPNNxcXFVfoxAgAAAAAAAN7OaxLjmZmZ+uWXX3TrrbfSjhIAAJRddrbk7y+RwEYlMQzjrPsEBgZq9uzZmj17dqn7NG/evMS16en69OmjrVu3ljtGAADgJU6elCzulAgAAABUVx77DfG9996r9evXa9++fdq0aZOuu+46+fr66uabb3ZqR/nll19qy5YtGj16dKntKLdt26ZVq1a5bEf566+/6v7779fu3bs1Z84cLVmyRJMnT7by0AEAgDsFBEjHjkllSF4CAAAAljIM6cQJq6MAAAAAqiWPrRj/7bffdPPNN+vo0aMKDw9Xz549tXnzZoWHh0uiHSUAACiH+vWlrCwpONjqSAAAAIDS1a5tXrfm59PxCAAAAHAzj02ML168+IzbaUcJAABcMgxp1y6pffuidTYbSXEAAAB4nl9+kRo3dm6fHhRkXTwAAABANcbQUwAAUH3k5Ul33CF16SKtW2d1NAAAAEDpvvlG6t5dGjZMys21OhoAAACg2iMxDgAAqodTp8wvFV97TXI4pOuuk44etToqAAAAoKQ1a6S+faUjR6RPP5WmT7c6IgAAAKDaIzEOAAC8X3q6NHCg9MEH5rKfn/Tqq+bc4gAAAIAnef99adAgcy5xSerdW7rrLmtjAgAAAGoAEuMAAMC7paZKffpIX35pLteuLa1YIQ0fbmlYAAAAQAmzZkk33yzl5JjL114rff65FBpqaVgAAABATUBiHAAAeK9ff5ViY6WtW83levXMucXj4qyNCwAAACjOMKTHHpPuvNP8WZLGjZOWLpUCA62NDQAAAKgh/KwOAAAA4Jxs2yb17y+lpJjLUVHSqlVS27bWxgUAAAAUl5cnTZwovfZa0boHH5Seekqy2ayLCwAAAKhhSIwDAADvc+KEWRWemmout21rJsWjoqyNCwAAADjdv//tnBR/8UXmFAcAAAAsQCt1AADgfWrXll59VfLxkbp3l776iqQ4AAAAPNOkSVK3bpKfn7RoEUlxAAAAwCJUjAMAAO903XXSihVSr15SUJDV0QAAAACuBQVJK1eaUwFddpnV0QAAAAA1FhXjAADA8xmGWRV+ugEDSIoDAADAs+zdK/32m/O6+vVJigMAAAAWIzEOAAA8W36+dM89ZmX4K69YHQ0AAABQuu+/l3r0kOLipGPHrI4GAAAAQDEkxgEAgOfKyZFGjpReeMFcvusuafdua2MCAAAAXPnqK3MwZ0qKtGuXNGWK1REBAAAAKIY5xgEAgGfKypKuv176/HNz2cdHev11qU0ba+MCAAAATvfJJ9KwYdKpU+Zyt27S889bGxMAAAAAJ1SMAwAAz3P0qHT55UVJ8YAA6YMPpLFjrY0LAAAAON1bb0nXXVeUFO/fX/riC3NecQAAAAAeg8Q4AADwLAcOSJdeKv3vf+ZySIi0erV07bWWhgUAAAA4MQzp2WfNwZv5+ea6W24xq8eDgqyNDQAAAEAJJMYBAIDn+OEHqUcP839JathQ2rDBnKsRAAAA8BT5+dI990j//GfRurvvlt5+W/L3tywsAAAAAKUjMQ4AADxDfr45L+Nvv5nLrVpJCQlSp07WxgUAAACcbulS6YUXipZnzJBmzpR8+KoNAAAA8FRcrQMAAM/g4yMtWiSFhUmdO5tJ8ZYtrY4KAAAAKOnGG6VRo8xr2DfeMCvHbTarowIAAABwBn5WBwAAAFCoY0fpiy/MavHQUKujAQAAAFyz2cyE+NixUs+eVkcDAAAAoAyoGAcAANb55BMpN9d5XZcuJMUBAADgWX77Tfr6a+d1fn4kxQEAAAAvQmIcAABUPcOQHnpIuuYa6bbbzGUAAADAE/3wg9SjhxQXJ+3YYXU0AAAAAM4RiXEAAFC1cnOlCROk6dPN5bfektautTYmAAAAwJX//c+sCj9wQDp+XJo4kUGdAAAAgJdijnEAAFB1Tp2Shg+XPvzQXLbZpJdflq64wtq4AAAAgNOtWiUNGSKdOGEud+4sLVliXsMCAAAA8DokxgEAQNVISzNbp69fby77+0tvvy3ddJO1cQEAAACn+89/pBEjzG5HktSnj/TRR1JoqJVRAQAAAKgAWqkDAIDKl5Ii9e5dlBQPCpJWriQpDgAAAM/z8stml6OCpPiQIdJ//0tSHAAAAPByJMYBAEDl+uUXKTZW2rbNXK5fX/ryS9qnAwAAwLMYhvTww9JddxWtmzDBbJ8eGGhdXAAAAADcgsQ4AACoXPfcI/36q/lzs2ZSQoL0f/9nbUwAAADA6b7+Wnr66aLlRx6R5s6VfH2tiwkAAACA25AYBwAAlWvePKltW6l9e2nTJql1a6sjAgAAAErq1k166SXJZjPbqT/xhPkzAAAAgGrBz+oAAABANVe/vrR6tVS7tlSvntXRAAAAAKX7xz+kvn2ljh2tjgQAAACAm1ExDgAA3Ov996Vjx5zXNW1KUhwAAACeJTVVWr685HqS4gAAAEC1RGIcAAC4h2FI06dLN90kXXWVlJVldUQAAACAa7/+KsXGSjfcIH30kdXRAAAAAKgCJMYBAEDF5edLd98tPfSQuZyYaFaOAwAAAJ4mKUnq0UP65RfzOvaBB6ScHKujAgAAAFDJmGMcAABUjMMhjRol/ec/Reuee04aM8aykAAAAACX1q+Xrr5aSk83l9u1k1atkvz9rY0LAAAAQKUjMQ4AAM5dZqZ0/fXml4mS5OsrvfGGNHq0tXEBAAAAp/voI3Pan+xsczkmRlqxQqpXz9KwAAAAAFQNWqkDAIBzc+SIdPnlRUnxwEBp+XKS4gAAAPA8b74pDR1alBQfOFBau5akOAAAAFCDkBgHAADll5wsXXqp9PXX5nJoqLR6tdmWEgAAAPAUhiHNmCGNH2/OJy5Jf/ubWT1eu7aloQEAAACoWiTGAQBA+b3yirR7t/lzo0bSV1+ZiXIAAADAk/z2mzR9etHylCnSwoXMKQ4AAADUQCTGAQBA+U2fLg0aJJ1/vrRpk9Sxo9URAQAAACVFRZnV4Xa79Oyz0r//LfnwdRgAAABQE/lZHQAAAPBC/v7SkiVSVpYUHm51NAAAAEDpLr9c+vFHqXlzqyMBAAAAYCGGyAIAgLNbvFjaudN5Xe3aJMUBAADgWY4elV580ZxbvDiS4gAAAECNR8U4AAA4s5deku6+W2rSxGyb3qyZ1REBAAAAJR04IA0YIP3wg5SRIT3yiNURAQAAAPAgVIwDAADXDEN68EEzKS5Jv/8uvf22pSEBnmrDhg0aPHiwGjduLJvNpo8++shpu81mc/nvX//6V+E+LVq0KLH9mWeecbqf77//XpdeeqkCAwMVFRWl5557rioODwAAj+f744+y9expJsUl6dVXpT//tDYoAAAAAB6FinEAAFBSbq50++3SvHlF6x57THroIetiAjxYVlaWOnXqpDFjxmjIkCElth88eNBp+b///a/Gjh2roUOHOq1/4oknNH78+MLlOnXqFP6cnp6uK6+8Uv369dPcuXO1fft2jRkzRmFhYZowYYKbjwgAAC+yebPqX3utbAWJ8PPOk1avlurWtTYuAAAAAB6FxDgAAHB28qR0883Sxx+byzab9Mor0sSJ1sYFeLABAwZowIABpW5v2LCh0/LHH3+svn37qmXLlk7r69SpU2LfAosWLZLD4dBbb70lu92u9u3bKykpSTNnziw1MZ6dna3s7OzC5fT0dElSfn6+8vPzy3RsruTn58swjArdh7epacfM8VZvHG/1V6OO+fPPZbvhBtlOnJAkGV26yFi5UoqIkKrp8Vfk/NaI1wQAAABQChLjAACgyPHj0jXXSBs2mMv+/tK770o33mhpWEB1kpqaqpUrV2rhwoUltj3zzDN68skn1axZMw0fPlyTJ0+Wn595yZ6YmKhevXrJbrcX7h8XF6dnn31Wf/75p+q6qIqbMWOGpk2bVmL94cOHderUqXM+hvz8fKWlpckwDPn41IzZmWraMXO81RvHW/3VlGMO/OADhd59t2y5uZKk7NhYHZ8/X4YkHTpkaWyVqSLnNyMjo5KiAgAAADwfiXEAAGA6eFDq31/6/ntzOShI+ugjqV8/S8MCqpuFCxeqTp06JVqu/+Mf/1CXLl1Ur149bdq0SVOnTtXBgwc1c+ZMSVJKSoqio6OdbhMZGVm4zVVifOrUqZoyZUrhcnp6uqKiohQeHq6QkJBzPob8/HzZbDaFh4dX64RLcTXtmDne6o3jrf5qxDG//LJ8Jk8uXDx51VXyX7xY4bVqWRhU1ajI+Q0MDKykqAAAAADPR2IcAACYVq4sSoo3aCD997/SxRdbGxNQDb311lu65ZZbSnwxXTyBfeGFF8put+u2227TjBkzFBAQcE6PFRAQ4PK2Pj4+FU6U2Gw2t9yPN6lpx8zxVm8cb/VXrY85M9Oc6ucvxm23Ke2RRxRRq1b1PF4XzvX81pTnBwAAAHCFq2EAAGAaN06aOlVq3lxKSCApDlSCr776Snv27NG4cePOum+3bt2Um5urffv2STLnKU9NTXXap2C5tHnJAQColoKDpdWrpchI6bHHZMyeLfn6Wh0VAAAAAA9HYhwAABR5+mlpyxbpggusjgSolubNm6euXbuqU6dOZ903KSlJPj4+ioiIkCTFxMRow4YNysnJKdxnzZo1at26tcs26gAAVGutWkk7d0qPPy7ZbFZHAwAAAMALkBgHAKCmWr5c+uQT53U2m1S/vjXxAF4sMzNTSUlJSkpKkiTt3btXSUlJSk5OLtwnPT1dS5cudVktnpiYqBdffFHbtm3Tr7/+qkWLFmny5Mn629/+Vpj0Hj58uOx2u8aOHaudO3fq/fff10svveTUgh0AgGopLU26/37p1Cnn9Vy3AgAAACgH5hgHAKAmev116Y47JLvdbEN56aVWRwR4tW+//VZ9+/YtXC5IVo8cOVILFiyQJC1evFiGYejmm28ucfuAgAAtXrxYjz/+uLKzsxUdHa3Jkyc7Jb1DQ0O1evVqTZw4UV27dlWDBg306KOPasKECZV7cAAAWCklRerfX9q2Tfr1V+n992mbDgAAAOCckBgHAKAmMQyzXfojj5jLp05JS5eSGAcqqE+fPjIM44z7TJgwodQkdpcuXbR58+azPs6FF16or7766pxiBADA6/zyi3TllWZCXJLWr5f27TPbqAMAAABAOdFKHQCAmiI/X/rHP4qS4pJ0333SSy9ZFxMAAADgytatUmxsUVK8eXNp40aS4gAAAADOGRXjAADUBA6HNHKktHhx0brnnjMT4wAAAIAniY+Xrr5aysgwl9u3l1atkpo0sTQsAAAAAN6NxDgAANVdZqY0ZIi0Zo257OsrzZtnJsoBAAAAT7J8uXTzzebATknq0UP69FOpXj1r4wIAAADg9WilDgBAdXb4sHTZZUVJ8cBA6aOPSIoDAADA87z+unTDDUVJ8UGDzOtYkuIAAAAA3IDEOAAA1dmuXVJSkvlzWJj5xeJVV1kZEQAAAFBSfr60dKn5vySNGCF9+KFUu7a1cQEAAACoNkiMAwBQnfXuLb37rtS0qbRhg9Szp9URAQAAACX5+Jht1Lt2le69V5o/X/L3tzoqAAAAANUIc4wDAFDd3XijWSVOtQ0AAAA8WZ065mBOrlsBAAAAVAIqxgEAqE5WrpSee67ker5cBAAAgCfJzJTGjZMOHnRez3UrAAAAgEpCxTgAANXF229LY8ZIeXnmfOITJlgdEQAAAFDSkSPSwIHSN9+Y/9avN69fAQAAAKASUTEOAEB1MHOmNHKkmRSXpPh4yTAsDQkAAAAoITlZ6tnTTIhL0v790i+/WBsTAAAAgBqBxDgAAN7MMKQHHpDuuado3cSJ0jvvSDabdXEBAAAAp9u5U+rRQ9qzx1xu1Ej66iupa1dr4wIAAABQI9BKHQAAb5Wba7ZLnz+/aN20adIjj5AUBwAAgGdJTJQGDZL+/NNcPv98afVqqUULS8MCAAAAUHOQGAcAwBudPCnddJP0ySfmss0mzZkj3X67tXEBAAAAp/vvf6WhQ81rWMmsEP/sMykiwtq4AAAAANQoJMYBAPA2x49LV19ttp2UJLtdWrRIuv56S8MCAAAASnj3XWn0aLPbkSRdfrn04YdSnTrWxgUAAACgxmGOcQAAvM2xY9KPP5o/BwebFTgkxQEAAOCJtmwpSorfeKO0ciVJcQAAAACWIDEOAIC3adnSTIafd54UHy9ddpnVEQEAAACuPf+8NHy4NHGi9N57UkCA1REBOEezZ89WixYtFBgYqG7duunrr78+4/4vvviiWrdurVq1aikqKkqTJ0/WqVOnqihaAACAkmilDgCAN7roIumHHyQ/fpUDAADAg/n4SAsXSr6+ks1mdTQAztH777+vKVOmaO7cuerWrZtefPFFxcXFac+ePYqIiCix/3vvvad//vOfeuutt9SjRw/9+OOPGjVqlGw2m2bOnGnBEQAAAFAxDgCA51u3zpyXMS/PeT1JcQAAAHiSkyelW26RTq8i9fMjKQ54uZkzZ2r8+PEaPXq02rVrp7lz56p27dp66623XO6/adMmxcbGavjw4WrRooWuvPJK3XzzzWesMs/OzlZ6errTPwAAAHciMQ4AgCdbtkwaMEBasMBsP2kYVkcEAAAAlHT8uBQXZ7ZLHzhQ2r3b6ogAuInD4dCWLVvUr1+/wnU+Pj7q16+fEhMTXd6mR48e2rJlS2Ei/Ndff9Vnn32mgQMHlvo4M2bMUGhoaOG/qKgo9x4IAACo8UiMAwDgqV59VbrxRsnhMJf/+EPKybE2JgAAAOB0Bw9KvXtLX31lLmdnSykp1sYEwG2OHDmivLw8RUZGOq2PjIxUSinv9eHDh+uJJ55Qz5495e/vr1atWqlPnz568MEHS32cqVOnKi0trfDfgQMH3HocAAAAJMYBAPA0hiFNmyb9/e9FFeKjR0vLl0t2u7WxAQAAAMX99JPUo4f0/ffmcni4FB8v9eljZVQALBYfH6/p06drzpw5+u6777R8+XKtXLlSTz75ZKm3CQgIUEhIiNM/AAAAd2JyUgAAPElenvSPf0hz5hSte+ABacYM5mUEAACAZ/nuO6l/f+nwYXO5RQtp9Wrp/PMtDQuAezVo0EC+vr5KTU11Wp+amqqGDRu6vM0jjzyiW2+9VePGjZMkdezYUVlZWZowYYIeeugh+fhQrwUAAKoeVyAAAHiK7Gxp+HDnpPjzz0vPPENSHAAAAJ5l3TqzKrwgKd6hg5SQQFIcqIbsdru6du2qL774onBdfn6+vvjiC8XExLi8zYkTJ0okv319fSVJRkFnNAAAgCpGxTgAAJ4gI0MaMkRau9Zc9vWV5s+Xbr3V2rgAAACA033wgTmg0+Ewl3v2lD75RKpb19q4AFSaKVOmaOTIkbr44ot1ySWX6MUXX1RWVpZGjx4tSRoxYoSaNGmiGTNmSJIGDx6smTNn6qKLLlK3bt30888/65FHHtHgwYMLE+QAAABVjcQ4AACewDCkY8fMn2vVkpYtkwYOtDYmAAAAwJWMjKKk+ODB0vvvm9ewAKqtYcOG6fDhw3r00UeVkpKizp076/PPP1dkZKQkKTk52alC/OGHH5bNZtPDDz+s33//XeHh4Ro8eLCefvppqw4BAACAxDgAAB4hJET673/NLxZffFEqpR0dAAAAYLlRo8wW6rt2SW+8Ifnx9RJQE0yaNEmTJk1yuS0+Pt5p2c/PT4899pgee+yxKogMAACgbPjLBQAAq5w+r1pEhLR5M/OJAwAAwLMYRslr1Pvuc70eAAAAADyUz9l38QzPPPOMbDab7r777sJ1p06d0sSJE1W/fn0FBwdr6NChSk1NdbpdcnKyBg0apNq1aysiIkL33XefcnNznfaJj49Xly5dFBAQoPPOO08LFiyogiMCANRk/l9/LVu/ftLx484b+GIRAAAAnsThMOcTf/fdktu4dgUAAADgRbwiMf7NN9/otdde04UXXui0fvLkyfr000+1dOlSrV+/Xn/88YeGDBlSuD0vL0+DBg2Sw+HQpk2btHDhQi1YsECPPvpo4T579+7VoEGD1LdvXyUlJenuu+/WuHHjtGrVqio7PgBADbNypeoNGyZbfLx0zTXSyZNWRwQAAACUlJEhXXWVtHixNHq0OfUPAAAAAHgpj2+lnpmZqVtuuUVvvPGGnnrqqcL1aWlpmjdvnt577z1ddtllkqT58+erbdu22rx5s7p3767Vq1dr165dWrt2rSIjI9W5c2c9+eSTeuCBB/T444/Lbrdr7ty5io6O1vPPPy9Jatu2rTZu3KgXXnhBcXFxLmPKzs5WdnZ24XJ6erokKT8/X/n5+YU/G4ZRuAxrcB48A+fBc3AuPMDChbKNHy9bXp4kybDbZeTkSAEBFgdW87jr/cD7CQAAVEuHD0sDB0rffmsu+/tLXPcAAAAA8GIenxifOHGiBg0apH79+jklxrds2aKcnBz169evcF2bNm3UrFkzJSYmqnv37kpMTFTHjh0VGRlZuE9cXJzuuOMO7dy5UxdddJESExOd7qNgn+It2083Y8YMTZs2rcT6w4cP69SpU5LML8nT0tJkGIZ8fLyiML9a4jx4Bs6D5+BcWKv2nDkKefLJwuWTV1+ttFdekU6cMP+hSrnr/ZCRkeHGqAAAADzAvn1SXJz044/mcliYtHKl1KOHlVEBAAAAQIV4dGJ88eLF+u677/TNN9+U2JaSkiK73a6wsDCn9ZGRkUpJSSncp3hSvGB7wbYz7ZOenq6TJ0+qVq1aJR576tSpmjJlSuFyenq6oqKiFB4erpCQEEnml+02m03h4eEknyzEefAMnAfPwbmwiGHI9sADsv3VnUSSskaPVsDcuYrw8+hfxdWau94PgYGBbowKAADAYjt2mEnxP/4wlxs3llatkjp0sDYuAAAAAKggj/02/sCBA7rrrru0Zs0aj/vCOSAgQAEuWt76+Pg4fbFus9lKrEPV4zx4Bs6D5+BcVLGcHGn8eGnhwsJV+U88oYxx41TLz4/zYDF3vB84hwAAoNpISDDnFD9+3Fy+4AJp9WqpeXNLwwIAAAAAd/DYb3K3bNmiQ4cOqUuXLvLz85Ofn5/Wr1+vl19+WX5+foqMjJTD4dDxgj/W/pKamqqGDRtKkho2bKjU1NQS2wu2nWmfkJAQl9XiAACU2alT0pAhRUlxm02aO1d66CHzZwAAAMBTfPaZ1K9fUVL84ouljRtJigMAAACoNjw2MX755Zdr+/btSkpKKvx38cUX65Zbbin82d/fX1988UXhbfbs2aPk5GTFxMRIkmJiYrR9+3YdOnSocJ81a9YoJCRE7dq1K9yn+H0U7FNwHwAAnDO7XapTp+jnpUul226zNiYAAADAlXr1pIJOOP36SevWSeHh1sYEAAAAAG7ksa3U69Spow6nzV8VFBSk+vXrF64fO3aspkyZonr16ikkJER33nmnYmJi1L17d0nSlVdeqXbt2unWW2/Vc889p5SUFD388MOaOHFiYSv022+/XbNmzdL999+vMWPGaN26dVqyZIlWrlxZtQcMAKh+fHykBQvMdup//7vUt6/VEQEAAACude8uLVsmvfee9Oabkosp5AAAAADAm3lsYrwsXnjhBfn4+Gjo0KHKzs5WXFyc5syZU7jd19dXK1as0B133KGYmBgFBQVp5MiReuKJJwr3iY6O1sqVKzV58mS99NJLatq0qd58803FxcVZcUgAAG+Xlyf5+hYtF1SKAwAAAJ7EMMx/PsWaCQ4YYP4DAAAAgGrIqxLj8fHxTsuBgYGaPXu2Zs+eXeptmjdvrs8+++yM99unTx9t3brVHSECAGqyb7+VRoyQPvxQat3a6mgAAAAA13JzpXHjpPr1pX//W7LZrI4IAAAAACqdVyXGAQDwWGvXStddJ2VmSldeKW3aJDVpYnVUAAAAgLMTJ6Rhw6QVK8zlyEjp/vutjQkAAAAAqoDP2XcBAABntGSJNHCgmRSXpBYtpKAgS0MCAAAASvjzT3MQZ0FS3G6XWrWyNiYAAAAAqCIkxgEAqIjZs6WbbpJycszla66RPv9cCguzNCwAAADAyR9/SL16SQkJ5nKdOuZ169Ch1sYFAAAAAFWExDgAAOfCMKTHHpMmTTJ/lqQxY6Rly6RatayNDQAAACjuxx+lHj2kHTvM5YgIKT5e6tvX0rAAAAAAoCqRGAcAoLzy8qS//1164omidVOnSm++Kfn5WRcXAAAAcLpvv5ViY6X9+83l6GizarxLF2vjAgAAAIAqxrf3AACUh2FIN98sLV1atO6FF6S777YsJAAAAMClr76SrrpKysw0ly+80Gyf3qiRtXEBAAAAgAWoGAcAoDxsNunii82f/fykd98lKQ5AGzZs0ODBg9W4cWPZbDZ99NFHTttHjRolm83m9K9///5O+xw7dky33HKLQkJCFBYWprFjxyqzIJHxl++//16XXnqpAgMDFRUVpeeee66yDw0A4M1atpTq1zd/7tVLWr+epDgAAACAGouKcQAAyuu++6T0dLMl5YABVkcDwANkZWWpU6dOGjNmjIYMGeJyn/79+2v+/PmFywEBAU7bb7nlFh08eFBr1qxRTk6ORo8erQkTJui9996TJKWnp+vKK69Uv379NHfuXG3fvl1jxoxRWFiYJkyYUHkHBwDwXk2aSKtWSc8+K82eLdWqZXVEAAAAAGAZEuMAAJxNdrZUPIFls0lPPWVdPAA8zoABAzTgLANlAgIC1LBhQ5fbfvjhB33++ef65ptvdPFfXSleeeUVDRw4UP/+97/VuHFjLVq0SA6HQ2+99Zbsdrvat2+vpKQkzZw5s9TEeHZ2trKzswuX09PTJUn5+fnKz88/l0MtvL1hGBW6D29T046Z463eON5qzDAkh0P5/v5Fx3z++dKbb5rbq+lzUKPOsSp2vDXlOQIAAABcITEOAMCZfP+9NHiwNHcu1eEAKiQ+Pl4RERGqW7euLrvsMj311FOq/1d728TERIWFhRUmxSWpX79+8vHx0f/+9z9dd911SkxMVK9evWS32wv3iYuL07PPPqs///xTdevWLfGYM2bM0LRp00qsP3z4sE6dOnXOx5Kfn6+0tDQZhiEfn5oxO1NNO2aOt3rjeKupvDyFPPSQfPft09EFC5R28mT1P+a/1Jhz/JeKHG9GRkYlRQUAAAB4PhLjAACU5quvzKR4Wpp0/fVSfLz0f/9ndVQAvFD//v01ZMgQRUdH65dfftGDDz6oAQMGKDExUb6+vkpJSVFERITTbfz8/FSvXj2lpKRIklJSUhQdHe20T2RkZOE2V4nxqVOnasqUKYXL6enpioqKUnh4uEJCQs75ePLz82Wz2RQeHl4jEhBSzTtmjrd643iroexs2UaMkG3ZMklSw6lTZXv+eYVHRFTfYy6mRpzjYipyvIGBgZUUFQAAAOD5SIwDACRJDoeUmCglJEipqVJkpDmFdkyMVKw4seb45BNp2DCpoKKyY0epZUtrYwLgtW666abCnzt27KgLL7xQrVq1Unx8vC6//PJKe9yAgIASc5lLko+PT4UTBzabzS33401q2jFzvNUbx1uNZGRI110nffGFueznJw0YINtfx1stj9mFan2OXTjX460pzw8AAADgClfDAAA5HNIbb0izZknbt0snTpj/z5plrnc4rI6wis2fLw0ZUpQUj4szv2j8q+UxAFRUy5Yt1aBBA/3888+SpIYNG+rQoUNO++Tm5urYsWOF85I3bNhQqampTvsULJc2dzkAoJo7dEjq27coKV6rljnA829/szYuAAAAAPBAJMYBAEpMNLuEN2smtW4tNWli/t+smbk+MdHqCKvQc89JY8ZIeXnm8vDh5peLQUHWxgWgWvntt9909OhRNWrUSJIUExOj48ePa8uWLYX7rFu3Tvn5+erWrVvhPhs2bFBOTk7hPmvWrFHr1q1dtlEHAFRz+/ZJPXtKBb876tY1E+QDBlgaFgAAAAB4KhLjAAAlJJgdF+vUcV5fp465PiHBmriqVH6+dO+90gMPFK276y7pnXdqaC95AOWRmZmppKQkJSUlSZL27t2rpKQkJScnKzMzU/fdd582b96sffv26YsvvtA111yj8847T3FxcZKktm3bqn///ho/fry+/vprJSQkaNKkSbrpppvUuHFjSdLw4cNlt9s1duxY7dy5U++//75eeuklpznEAQA1xPbtUo8e0k8/mctNm0obN5rzIAEAAAAAXGKOcQCAUlOl4GDX24KDze3V3sSJ0ty5RcvTp0v//Kdks1kXEwCv8e2336pv376FywXJ6pEjR+rVV1/V999/r4ULF+r48eNq3LixrrzySj355JNO838vWrRIkyZN0uWXXy4fHx8NHTpUL7/8cuH20NBQrV69WhMnTlTXrl3VoEEDPfroo5owYULVHSgAwHrffy/17i0dP24ut2kjrVpltnsCAAAAAJSKxDgAQJGRZtGJK5mZUnR01cZjiauvlt5806wcf+01adw4qyMC4EX69OkjwzBK3b5q1aqz3ke9evX03nvvnXGfCy+8UF999VW54wMAVCPnny9deKG0YYN0ySXSypVSgwZWRwUAAAAAHo9W6gAAxcZKublSRobz+owMc31srDVxVakBA6QFC6Rly0iKAwAAwHPVqiV98on0j3+Yc4qTFAcAAACAMqFiHACgmBhpxw4pPt6cUzw42KwUz82V+vSpplMVpqVJoaHO6265xZpYAAAAgDM5/do1NFR66SXr4gEAAAAAL0TFOABAdrs0frw0aZLUsaNUu7b5/6RJ5nq73eoI3Wz3brP95L/+ZXUkAAAAQOny86X77pMuvlg6dMjqaAAAAADAq1ExDgCQZCa/e/c2/1VrX38tDRwoHT0q3X+/1KyZNGyY1VEBAAAAznJyzFGqCxeaywMGSJs3S/7+1sYFAAAAAF6KxDgAoOZYs0a67jopK8tc7ty5BowEAAAAgNc5cUK68UZp5Upz2cdHuv12kuIAAAAAUAEkxgEANcPixdKIEWbljWQmxD/+uOQ84wAAAICV/vxTuuoqadMmczkgQHrvPWnIEGvjAgAAAAAvxxzjAIDqb9YsafjwoqT4dddJn39OUhwAAACe5fffpUsvLUqK16ljXreSFAcAAACACiMxDgCovgxDevRR6c47zZ8lc57GpUulwEBrYwMAAACK27NH6tFD2rnTXI6MlNavl/r0sTQsAAAAAKguSIwDAKqvxx6TnnyyaPmhh6TXXpN8fa2LCQAAADjdb79JPXtKycnmcsuWUkKCdNFF1sYFAAAAANUIiXEAQPU1fLhUv77580svSU89Jdls1sYEAAAAnK5JE+n6682fO3WSNm6UWrWyNiYAAAAAqGb8rA4AAIBK06aN9Nln0i+/SDffbHU0AAAAgGs2mzRrltS4sTkNUFiY1REBAAAAQLVDYhwAUH0cOSKFhEh2e9G6Sy4x/wEAAACe5OBBqVGjomVfX+mRR6yLBwAAAACqOVqpAwCqh717pZgYafRoKT/f6mgAAAAA1wxDeuwxs7vR1q1WRwMAAAAANQYV4wAA77dtm9S/v5SSIv38s3TBBeaXjQAAAIAnycuTJk2S5s41l/v3l374QapXz9q4AAAAAKAGIDEOAPBuGzZIgwdL6enmctu20pgx1sYEAAAAnC47W/rb36Rly4rWPfggSXEAAAAAqCIkxgEA3uvjj6Vhw8wvGSWpe3dpxQqpfn1r4wIAAACKS0+XrrtOWrfOXPbzkxYulIYPtzYuAAAAAKhBmGMcAOCd5s2ThgwpSor37y+tXUtSHAAAAJ4lNVXq27coKV67tvTppyTFAQAAAKCKkRgHAHgXw5CeeUYaN07KzzfX3XKL9MknUlCQtbEBAAAAxe3dK/XsKX33nblcr56ZIO/f39q4AAAAAKAGIjEOAPAuc+dKU6cWLd99t/T225K/v2UhAQAAACVkZUm9ekk//2wuN20qbdwodetmbVwAAAAAUEORGAcAeJebb5YuvND8ecYMaeZMyYdfZwAAAPAwQUHSo4+aP7dpI23aJLVta21MAAAAAFCD+VkdAAAA5RIWJn3+udmC8pZbrI4GAAAAKN348WZno8GDpfr1rY4GAAAAAGo0SuwAAJ7t6FHp0CHndY0akRQHAACA59m9u+S6UaNIigMAAACAByAxDgDwXAcOSJdeKg0cKGVkWB0NAAAA4JphSM8+K7VvLy1ZYnU0AAAAAAAXaKUOAPBMP/wgxcWZyXFJuv12adEit929wyElJkoJCVJqqhQZKcXGSjExkt3utocBAABAdZefL917r/TCC+by3/4mdeoktW5tbVwAAAAAACckxgEAnud//zOrxI8dM5dbtZKefNJtd+9wSG+8IcXHS35+UnCwtH27tHWrtGOHORUkyXEAAACcVU6ONGaM9O67ReumTZMuuMC6mAAAAAAALpEYrwGoigTgVVatkoYMkU6cMJcvukj673/NDy83SUw0k+LNmkl16hStz8gw13foIPXu7baHAwAAQHWUlSXdcIN5rSpJPj7Sa69J48ZZGxcAAAAAwCUS49UcVZEAvMp//iONGCHl5prLfftKH30khYS49WESEszPxOJJcclc9vMzt5MYBwAAQKmOHZMGDZI2bzaXAwKkxYula6+1NCwAAAAAQOlIjFdzVEUC8BovvyzddVfR8pAh5pzigYFuf6jUVHOgkCvBweZ2AAAAwKXffpPi4qRdu8zlkBDpk0/44xoAAAAAPJyP1QGgcpWlKhIALPfpp85J8dtuk5YsqZSkuGR2Zc/MdL0tM9OtXdsBAABQneTnm5XiBUnxyEhpwwaS4gAAAADgBUiMV3NURQLwCgMHSkOHmj8/8oj06quSr2+lPVxsrNmtPSPDeX1Ghrk+NrbSHhoAAADezMdHmjXLHMDZqpW0aZPUqZPVUQEAAAAAyoBW6tVcZKQ5p7grmZlSdHTVxgMALvn6mm3Tb765KEFeiWJipB07zCkl/PzMgUKZmWZSvE8fc3tVcjjMqS8SEswBS5GRZnI+Jkay26s2FgAAAJzFpZdKK1aYc5PRaggAAAAAvAaJ8WouNlbautWsgjx9jnGqIgFYJi1N+v13qV27onUBAVWSFJfMZPP48eZ3mQXJ6Ohoa5LRDof0xhvOSfrt283P7h07zDhJjgMAAFho82apWzfJZitad/nl1sUDAAAAADgnJMarOU+rigQApaRI/fub/yckmC0oLWC3m1NBWj0dZGKi+RndrFnJAUzx8Wby3uoYAQAAaqyXX5buukt68EHp6aetjgYAAAAAUAHMMV7NFVRFTpokdewo1a5t/j9pElWIACzwyy9mWfa2bWaZ9vDhkmFYHZWlEhLMgUvFk+KSueznZ24HAABAFTMM6eGHzaS4JE2fLq1da21MAAAAAIAKoWK8BvCUqkgA3setc18nJZmV4qmp5nKzZtLChc4tKWug1FSzm4crwcFFTxcAAACqSF6edMcd5nw3BR55hPbpAAAAAODlSIwDAFxy69zX69dLV18tpaeby+3bS59/LjVtWlnhe43ISPN5dSUz05z7vDi3DlYAAACAs1OnpFtukZYvN5dtNumll6Q777Q2LgAAAABAhZEYBwC45La5rz/8ULr5Zik721yOiZFWrJDq1auEqL1PbKw52CAjo+TznJtrbi/g1sEKAAAAcJaWJl17rXmxJUn+/tLbb0s33WRlVAAAAAAANyExDgBwqSxzX581Mf7mm9Jtt0n5+ebywIHS0qVS7dqVErM3iokxk9rFk92ZmWZSvE8fc3sBtw1WAAAAgLPUVHPan6QkczkoyKwav/JKS8NC9eDIcyjxQKISDiQoNTNVkcGRio2KVUxUjOy+jGwFAAAAqgqJcQCASxWe+zopySxhLnDrrdK8eWblDQrZ7ebT1KFDUXv06GjX7dHdMlgBAAAAJY0dW5QUr19f+uwz6ZJLLA0J1YMjz6E3tryh+P3x8rP5KdgerO2p27U1Zat2HNqh8V3HkxwHAAAAqgiJcQCAS+Wd+7qEzp2lJ56QHn1Uuuce6bnnJB8fd4dZLdjtZkL7bEntCg9WAAAAgGuzZ5uJcV9fadUqqU0bqyNCNZF4IFHx++PVLKSZ6gQUjXDNyM5Q/P54dYjooN4tGN0KAAAAVAUyFAAAl2JjzXbeGRnO613NfV2qhx+W1qyR/v1vkuJuEBlpDkpwJTPT3A4AAIBz0Ly5ed2akEBSHG6VcCBBfjY/p6S4JNUJqCM/m58SDiRYFBkAAABQ85ClAAC4FBNjznGdnCzt2SP9/rv5f3JyybmvJZmZ2fh453U2m9SvX9UEXAO4ZbACAAAApHXrpBMnnNe1bSs1bWpNPKi2UjNTFWx33fYp2B6s1EzaPgEAAABVhVbqkMMhJSYWzW0bGel6blsANUt55r7WkSPSoEHS1q3mfIwkwytFTIy0Y4c5/sDPz2yfnplpJsVdDlYAAABASfPmSRMmSAMGSB9+KPn7Wx0RqrHI4EhtT3U9R1WmI1PRdc82RxUAAAAAdyExXsM5HNIbbzgnWbZvN3NbO3aYSTGS40DNVaa5r5OTpbg4afduc3n0aOnnn6WAgCqJsSYp12AFAAAAODMMacYM6cEHzeWVK6WFC6Vx46yNC9VabFSstqZsVUZ2Rok5xnONXMVG0fYJAAAAqCq0Uq/hEhPNpHizZlLr1lKTJub/zZqZ6xMTrY4QgEfbtcvMyhYkxRs1Mr9gJCleaQoGKzz4oPTSS+b/vXuTFAestmHDBg0ePFiNGzeWzWbTRx99VLgtJydHDzzwgDp27KigoCA1btxYI0aM0B9//OF0Hy1atJDNZnP698wzzzjt8/333+vSSy9VYGCgoqKi9Nxzz1XF4QGA98vPl+2ee4qS4pI0ZYo0Zox1MaFGiImKUZ/mfZScnqw9R/bo9/TftefIHiWnJ6tP8z6KiaLtEwAAAFBVqBiv4RISzErxOnWc19epY65PSDhLpSiAmmvzZrN9+rFj5vL550urVpklzABQw2RlZalTp04aM2aMhgwZ4rTtxIkT+u677/TII4+oU6dO+vPPP3XXXXfp6quv1rfffuu07xNPPKHx48cXLtcpdpGWnp6uK6+8Uv369dPcuXO1fft2jRkzRmFhYZowYULlHiAAeDOHQ6F33inb8uVF6559VrrvPslmsy4u1Ah2X7vGdx2vDhEdlHAgQamZqYquG63YqFjFRMXI7ssIVwAAAKCqkBiv4VJTzfbprgQHm9srG3OcA17ov/+Vrr9eOnHCXO7SxVwXEWFtXABgkQEDBmjAgAEut4WGhmrNmjVO62bNmqVLLrlEycnJatasWeH6OnXqqGHDhi7vZ9GiRXI4HHrrrbdkt9vVvn17JSUlaebMmaUmxrOzs5WdnV24nJ6eLknKz89Xfn5+uY6xuPz8fBmGUaH78DY17Zg53uqtRh1vVpZ0ww2qtWqVJMnw8ZHx2mtmpbhhmP+qoRp1juX5x+tn89OlzS7Vpc0uLbHtXGKuyPF66nMEAAAAVAUS4zVcZKQ5p7grmZmVX/jJHOeAF1q0SBo1SsrNNZcvu0z68EMpJMTSsACgotLT07Vu3Tq1bt1abdu2rdTHSktLk81mU1hYmNP6Z555Rk8++aSaNWum4cOHa/LkyfLzMy/ZExMT1atXL9mLXRzFxcXp2Wef1Z9//qm6deuWeJwZM2Zo2rRpJdYfPnxYp06dOuf48/PzlZaWJsMw5ONTM2ZnqmnHzPFWbzXleG3HjqnurbfK/t13kiQjMFDH585VdlycdOiQxdFVrppyjgtwvGWXkZFRSVEBAAAAno/EeA0XG2smoTMynNupZ2SYOa/Y2Mp9/OJznJ/++PHxUocOtHIHPEpKijlipSApfv310rvvMqc4AK904403qlevXpo0aZJOnjypiy++WPv27ZNhGFq8eLGGDh1aKY976tQpPfDAA7r55psVUmxQ0T/+8Q916dJF9erV06ZNmzR16lQdPHhQM2fOlCSlpKQo+rRRi5GRkYXbXCXGp06dqilTphQup6enKyoqSuHh4U6PXV75+fmy2WwKDw+vEQkIqeYdM8dbdRx5Dm3+bbM2HdikQ5mHFBEcoR5RPdS9afdKa7FcU86v7amnZPsrKZ4fEqL8jz5SaA35A7OmnOMCHG/ZBQYGVlJUAAAAgOcjMV7DxcSYldnFK7YzM82cV58+5vbKxBzngJdp2FD6z3+kIUOk226TXnlF8vW1OioAOCcbNmzQQw89JEn68MMPZRiGjh8/roULF+qpp56qlMR4Tk6ObrzxRhmGoVdffdVpW/EE9oUXXii73a7bbrtNM2bMUMA5DkAKCAhweVsfH58KJw5sNptb7seb1LRj5ngrnyPPoXlb5yl+f7z8bH4Ktgdr+6Ht2pq6VTsP79T4ruMrLTleI87vs89K330nY+9eHVu0SPV6967ex3uaGnGOi+F4y6amPD8AAACAKyTGazi73Sz+7NChaI7v6Oiqm+PbE+Y4B2oCh8Ps0JCQYA588fOrwPv8mmukb76RLrpIstkqJV4AqAppaWmqV6+eJOnzzz/X0KFDVbt2bQ0aNEj33Xef2x+vICm+f/9+rVu37qwV2926dVNubq727dun1q1bq2HDhko97eKoYLm0eckBeLbEA4mK3x+vZiHNVCegaLRwRnaG4vfHq0NEB/VuwUjhcxYUJK1YIePPP5UbFGR1NAAAAAAAi5EYh+x2syrbispsq+c4B2oCh0N64w2zM4S/v/m+2r3bnEZhxw5zcEypyfFTp8z5w2++2Xl9ly6VHTYAVLqoqCglJiaqXr16+vzzz7V48WJJ0p9//un2NqMFSfGffvpJX375perXr3/W2yQlJcnHx0cRERGSpJiYGD300EPKycmRv7+/JGnNmjVq3bq1yzbqADxfwoEE+dn8nJLiklQnoI78bH5KOJBAYrw81qyR2rSRoqKK1tWrJ4WFVfs5xQEAAAAAZ0f/JFgqNtasXs3IcF5fVXOcAzVBYqKZFG/WTLrgAql+ffP/Zs3M9YmJpdwwLU2Ki5OGD5defrkKIwaAqnH33XfrlltuUdOmTdWoUSP16dNHktlivWPHjuW6r8zMTCUlJSkpKUmStHfvXiUlJSk5OVk5OTm6/vrr9e2332rRokXKy8tTSkqKUlJS5HA4JEmJiYl68cUXtW3bNv36669atGiRJk+erL/97W+FSe/hw4fLbrdr7Nix2rlzp95//3299NJLTi3YAXiX1MxUBdtdt9AKtgcrNZMWWmX23nvSwIHSlVdKR49aHQ0AAAAAwANRMY4KKd6eOTXVrAAvT3tmq+c4B2qChATz/VXHuRBJdeqY6xMSXHSMOHhQGjBA2rbNXH74YbNqPDy8SmJGzVHR3yNARfz973/XJZdcogMHDuiKK64onHOzZcuWeuqpp8p1X99++6369u1buFyQrB45cqQef/xxffLJJ5Kkzp07O93uyy+/VJ8+fRQQEKDFixfr8ccfV3Z2tqKjozV58mSnpHdoaKhWr16tiRMnqmvXrmrQoIEeffRRTZgw4VwO3+0ceQ4lHkhUwoEEpWamKjI4UrFRsYqJiqm0OZIBbxcZHKntqa5baGU6MhVdlxZaZfLSS9Ldd5s/795tLj/xhKUhAQAAAAA8j1sT4wsXLlSDBg00aNAgSdL999+v119/Xe3atdN//vMfNW/e3J0PB4sVb89ckNTevr2M7Zn/YvUc50BNkJpqvj9dCQ42tzv5+Wez0mbvXnO5QQPpv/8lKQ63c8fvEaCiLr74Yl144YXau3evWrVqJT8/v8Jr2fLo06ePDMModfuZtklSly5dtHnz5rM+zoUXXqivvvqq3PFVNkeeQ29seUPx++PlZ/NTsD1Y21O3a2vKVu04tEPju44nOQ64EBsVq60pW5WRnVFijvFcI1exUbTQOiPDMAdwTp9etO7226XHHrMuJgCoxmbPnq1//etfSklJUadOnfTKK6/okksuKXX/48eP66GHHtLy5ct17NgxNW/eXC+++KIGDhxYhVEDAAAUcWtifPr06Xr11Vclme0gZ8+erRdeeEErVqzQ5MmTtXz5cnc+HCxWvD1z8UrUjAxzfYcOZZu33Mo5zoGaIDLSTDa6kplpDkYptHWr1L9/0RyMzZtLq1ebvdcBN3PX7xHgXJ04cUJ33nmnFi5cKEn68ccf1bJlS915551q0qSJ/vnPf1ocofdIPJCo+P3xahbSrERyL35/vDpEdGCeZMCFmKgY7Ti0w2lQSaYjU7lGrvo076OYKFpolSo3V7rjDunNN4vWPfaY+c9msy4uAKim3n//fU2ZMkVz585Vt27d9OKLLyouLk579uxRREREif0dDoeuuOIKRUREaNmyZWrSpIn279+vsLCwqg8eAADgL25NjB84cEDnnXeeJOmjjz7S0KFDNWHCBMXGxhbO2QjP4I7WtefUnhlAlYuNNfPdGRklk4+5ueZ2SdKXX0rXXGNukKT27aVVq6QmTao8ZtQM/B6B1aZOnapt27YpPj5e/fv3L1zfr18/Pf744yTGyyHhQIL8bH5OSXFJqhNQR342PyUcSCAxDrhg97VrfNfx6hDRoXAagui60UxDcDanTpnT/Hz0kblss0kvvyxNmlShu2VKCAAo3cyZMzV+/HiNHj1akjR37lytXLlSb731lsvr5rfeekvHjh3Tpk2b5O/vL0lq0aLFGR8jOztb2dnZhcvp6enuOwAAAAC5OTEeHByso0ePqlmzZlq9enXhnIiBgYE6efKkOx8KFeCu1rXlbs8MwBIxMeZ7Oz5e8vc3K8T37pVycqQ+fczt+uADafhw8wNCknr0kD79VKpXz8LIUd3xewRW++ijj/T++++re/fushWrLmzfvr1++eUXCyPzPqmZqQq2u35DB9uDlZrJGxoojd3Xrt4tejN4pKzS0szBnOvXm8v+/tI770jDhlXobpkSAgBK53A4tGXLFk2dOrVwnY+Pj/r166fExESXt/nkk08UExOjiRMn6uOPP1Z4eLiGDx+uBx54QL6+vi5vM2PGDE2bNq1SjgEAAEByc2L8iiuu0Lhx43TRRRfpxx9/LJwvZufOnWcdEYiq467WteVqzwx4AXd0UvBEdrs54KVDB/PYcnPNnwuPLe+kNGVKUVJ80CBpyRKpdm1rA0e1x+8RWO3w4cMu2z5mZWU5JcpxdpHBkdqe6voNnenIVHRd3tAA3GThwqKkeFCQ9OGH0hVXVPhumRICAEp35MgR5eXlKTIy0ml9ZGSkdu/e7fI2v/76q9atW6dbbrlFn332mX7++Wf9/e9/V05Ojh577DGXt5k6dWphoZVkVoxHRUW570AAAECN5+POO5s9e7ZiYmJ0+PBhffDBB6pfv74kacuWLbr55pvd+VCogLK0ri2L2FgzwVbQdblAifbMgBco6KQwa5aZqDtxwvx/1ixzfUHO2FvZ7eaAl3/+U5owwfy/d++/Ev61akmffSbVrSuNHGl+uUhSHFWA3yOw2sUXX6yVK1cWLhckw998803FxDCvb3nERsUq18hVRrbzGzojO0O5Rq5io3hDA3CTO++UxoyRGjQwpwJyQ1JcKtuUEACAssvPz1dERIRef/11de3aVcOGDdNDDz2kuXPnlnqbgIAAhYSEOP0DAABwJ7dWjIeFhWnWrFkl1tMCx7O4q3Vt8fbMBS3ZMzPNZEZhe2bAS7irk4LXat9e+vZbqUULycetY6ZqPFedCHr0kFq1sjoy6/F7BFabPn26BgwYoF27dik3N1cvvfSSdu3apU2bNml9QTUiyiQmKkY7Du1wakGc6chUrpGrPs37KCaKNzQAN7HZpNdekx59VGre3G13y5QQRZhrHcDpGjRoIF9fX6We9qVhamqqGjZs6PI2jRo1kr+/v1Pb9LZt2yolJUUOh0N2b27NBwAAvJbbsx9fffWV/va3v6lHjx76/fffJUnvvPOONm7c6O6HwjmKjDQTD65kZprby6KgPfOkSVLHjmaBaceO5nJZ5ykHPIW7Oil4BYdDeuEFc5Lx4lq2JCnuZqV1IpgzR1q92vs7EVQUv0dgtZ49e2rbtm3Kzc1Vx44dtXr1akVERCgxMVFdu3a1OjyvYve1a3zX8Zr0f5PUMbKjavvXVsfIjpr0f5OYl7cGcOQ5tPbXtRr3yTj1mNdDPeb10PhPxmvtL2vlyKvhv+xQcfHx0unfJ/j5uTUpLplTQmQ6XP+hnOnIVGRwGf9Q9nIFc63P+maWtqdu14mcE9qeul2zvpmlN7a8wXsaqKHsdru6du2qL774onBdfn6+vvjii1I7LcXGxurnn39Wfn5+4boff/xRjRo1IikOAAAs49aK8Q8++EC33nqrbrnlFn333XfKzs6WJKWlpWn69On67LPPynxfr776ql599VXt27dPktS+fXs9+uijGjBggCTp1KlTuueee7R48WJlZ2crLi5Oc+bMcZrrJjk5WXfccYe+/PJLBQcHa+TIkZoxY4b8/IoOOz4+XlOmTNHOnTsVFRWlhx9+WKNGjar4k+HBYmOlrVvNStjTK2PL27q2oD1zta6kRY3grk4KHi8zU3VHjJDP+vVmqe5bb5lVN6gUZ+pEsH27tHmzWRldk/F7BFbJycnRbbfdpkceeURvvPGG1eFUC3Zfu3q36O2Rc/BS/Vh5HHkOzf1mruZvm68jWUcKn88DaQf07cFvNarTKN3xf3fwPFeCGvG6Xr5cuvlmc/Tchg3mCLpKEhsVq60pW5WRnVFijvGaNCUEc60DKM2UKVM0cuRIXXzxxbrkkkv04osvKisrS6NHj5YkjRgxQk2aNNGMGTMkSXfccYdmzZqlu+66S3feead++uknTZ8+Xf/4xz+sPAwAAFDDuTUx/tRTT2nu3LkaMWKEFi9eXLg+NjZWTz31VLnuq2nTpnrmmWd0/vnnyzAMLVy4UNdcc422bt2q9u3ba/LkyVq5cqWWLl2q0NBQTZo0SUOGDFHCX2WdeXl5GjRokBo2bKhNmzbp4MGDGjFihPz9/TV9+nRJ0t69ezVo0CDdfvvtWrRokb744guNGzdOjRo1UlxcnPueGA/jLa1rXbUfjo0142NgKdwtMtJMVLqSmSlFR1dtPJXiyBHZBg5UwDffmMuLF0v33mu2UUelOFMngowMadMmz06M8zmM6szf318ffPCBHnnkEatDQSUrqH4s3uZ9e+p2bU3Zqh2HdtSoivbKSKQmHkjU8t3LlenIVNOQpgrwC5AkZedm6+jJo/pw94fq3LDzOSfSakTy9xzUiNf1669Ld9wh5eebFyUvvijNm1dpD8eUEKayzLVe2Ylx3veAZxo2bJgOHz6sRx99VCkpKercubM+//zzwiKl5ORk+RTrQhcVFaVVq1Zp8uTJuvDCC9WkSRPdddddeuCBB6w6BAAAAPcmxvfs2aNevXqVWB8aGqrjx4+X674GDx7stPz000/r1Vdf1ebNm9W0aVPNmzdP7733ni677DJJ0vz589W2bVtt3rxZ3bt31+rVq7Vr1y6tXbtWkZGR6ty5s5588kk98MADevzxx2W32zV37lxFR0fr+eefl2TOc7Nx40a98MILZ0yMZ2dnF1bDS1J6eroks4VQQXug/Px8GYbh1C7IKg6HWZW4aZN06JAUESH93/9JF1wgffONuS462pzztnt3M4ljddgOh/mdx/r1Rcn7HTukpCTz/7Fjy5aU8aTzUJN5w3no0cN8fbnqpJCXZ2734PDPbv9+2QYMkG3PHkmSERYm45NPpLZtvfzAPNuhQyWT4qZ8BQYaOnw432Offnd9Dnsyd302efJnG87s2muv1UcffaTJkydbHQoqEdWPptMTqbX9a2v7r9v1n+3/UYPaDdQ3uq96N+9d7sRTwoEEHTt5TAG+AYVJcUkK8AuQ3deuYyeOnXMirUYkf89RtX5dG4b09NNS8YFLI0ZIc+dW6sMWTAnRIaJDYUI2um50jUvIWj3XOu97wLNNmjRJkyZNcrktPj6+xLqYmBht3ry5kqMCAAAoO7cmxhs2bKiff/5ZLVq0cFq/ceNGtWzZ8pzvNy8vT0uXLlVWVpZiYmK0ZcsW5eTkqF+/foX7tGnTRs2aNVNiYqK6d++uxMREdezY0am1elxcnO644w7t3LlTF110kRITE53uo2Cfu++++4zxzJgxQ9OmTSux/vDhwzp16pQk80vytLQ0GYbhNFqyquXkmPPYbt8u+fpKQUHS0aPSypVmF7pbb5X8/Yv2L+f4hUqzY4f0009Sp05SrVpF60+eNNdv3Ch16HD2+/GU81DTecN5aNVKiosz3ysZGVJgoHTqlJkUj4sztx86VPJ2OTnSnj3Srl3m+ycsTGrXTmrd2vm9ZSW/PXtU9+ab5XPwoCQpJyJCf/7nP8o//3zXBwW3adlS2r9fCgk5fUu+Tp5MU2SkoUOHPPM94a7PYU/mrs+mjIwMN0aFqnT++efriSeeUEJCgrp27aqgoCCn7bR5dC+rKgA9ofrRExRPpNb2r60tB7coJTNFefl52nd8n9bvW6/th7YXJp78bGX7UzE1M1V5+XlOSfECdl+7HLmOc06klSf5W9MqTKvt6zo/X7r7bumVV4rW3Xuv9OyzUhX8HVEwJURMVEzh62n5D8uVcCChWr+eiosMjtT2VNettDIdmYquW7mttKr1oA8AAAAAlnNrYnz8+PG666679NZbb8lms+mPP/5QYmKi7r333nNqU7l9+3bFxMTo1KlTCg4O1ocffqh27dopKSlJdrtdYWFhTvtHRkYqJSVFkpSSkuKUFC/YXrDtTPukp6fr5MmTqlU8E1DM1KlTNWXKlMLl9PR0RUVFKTw8XCF/ZT/y8/Nls9kUHh5uaSJwwwZp1SopKqqoatHf30z8rVplJvtcFPlb7uuvzXxdWJiZeCzu0CFz+1/NAs7IU85DTect5+GWW0p2VyjopOCqMtZVRe3u3WbCsHdvD6moTUyU7brrZPvzT0mSccEF+vOdd1SvSxePPhfVxYUXmq8HqegzOC9P+umnfOXl2SSFKzPT54yvM6u463PYk7nrsykwMNCNUaEqzZs3T2FhYdqyZYu2bNnitM1ms5EYd6OqqAAsLTH6R8YfllY/eoriidR9x/dp3/F9Cg0IVYBfgI6cOCJJahbSrDDxdGmzS8t0v5HBkfL18ZUjz1FimyPPIR+bjyKDI13csnwxF3d68rcmVphaXdVbKRwOadQo6T//KVr33HPSffdVbRg18PVUnNVzrVfbQR8AAAAAPIJbE+P//Oc/lZ+fr8svv1wnTpxQr169FBAQoHvvvVd33nlnue+vdevWSkpKUlpampYtW6aRI0dq/fr17gz5nAQEBCggoGRFhI+Pj9MX6zabrcS6qrZpk1kp7mp+W19fz53fNjXVrG53JSjI3F7Wp9UTzgO84zwEBprvh7K+J/73Pyk+XmrWrGT79fh4s5q2t5Xf2Xz2mXT99WaJryRdfLGMFSuU/1d1rCefi+qiRw9p507z9eDnJ9WuLW3bZiaWY2Ntql3bR9u3+2jrVnO/8eM9Jznuzs9hT+aOzybeS95r7969VodQY1R2BeCZElmnck6ptn9tNVGTEreriupHT1E8kXog7YB8bD6FVd52X7syHZlOiaeyJsZjo2K1+pfV+j39d2XnZjvNMe7Ic6hxncbnnEgra/LXUypMq7Jq3eqqXrfLzJSGDjXbnUnmH6tvvmkmyquYp7yeXKmK15jVc61Xy0EfAAAAADyGWxPjubm5euihh3Tffffp559/VmZmptq1a6fg4GAdOXJEDRo0KNf92e12nXfeeZKkrl276ptvvtFLL72kYcOGyeFw6Pjx405V46mpqWrYsKEks637119/7XR/qamphdsK/i9YV3yfkJCQUqvFvU1qqlnF6kpwsLndE0VGmi2tXcnMNOdEB6yWkGAmO10NPPHzM7dblhg3DOmZZ4qS4v36ScuXmxlN2qfL4ZASE81zlJpqfubExkoxMe5NTNvtZrK7Qwfzsb77zmzRHxMjde1qfp5JHjSYohg+hwG4U2VXAJ4pkbXl4BZlODLUNKSpJdWPnqJ4IjXTkemURHPkOVQ3sK6k8ieeYqJiNKTNEM3fNl+/Z/wufx//wvtsENRA17W57pwTaWVN/npChWlVVxlbXdXrSoWStl99Ja1ZY/4cGCgtWSINHlz5QbvgCa+n4gqe1/X71+vLvV/qyIkjCg8KV3RYtA6lHnL7a8zqudar3aAPAAAAAB7FrYnxm266ScuWLZPdble7du0K16empuryyy/Xjh07KnT/+fn5ys7OVteuXeXv768vvvhCQ4cOlSTt2bNHycnJiokxv3SJiYnR008/rUOHDikiIkKStGbNGoWEhBTGFhMTo88++8zpMdasWVN4H9WBtyY2YmOlrVvNZNHplbi5ueZ2wGoePfDEZpM++ki69FIz2/r221JAgDlvowerioS1wyG98UZRFXdwsPk5uXWrOa+2u6u27XYz2d27tzR9ujmdRevWztXWHjGY4jTV5XP4TK8pP7deBcFb/fbbb/rkk0+UnJwsh8O5FfTMmTMtiqr6qewKwDMlsiJqR+hU3iklpydbUv3oKYonUoPtwUrNMp/z7NxsGYahqNAoSeVPPNl97br9/25Xu4h2WrxjsXYd3iVJah/eXsPaD1OvFr3OOZFW1uRvZb++ypLwreoqY6urek9X4YEBAwZIL70kPfqo9OmnUs+eVRf8aTypYrn483rsxDHtO75Pdl+7UjJTFOgXqK6NuupEzgm3v8YK5lq3ojLe6kEfVdn5AQAAAEDVc+tXwsnJyRo3bpzmzZtXuO7gwYO67LLL1L59+3Ld19SpUzVgwAA1a9ZMGRkZeu+99xQfH69Vq1YpNDRUY8eO1ZQpU1SvXj2FhITozjvvVExMjLp37y5JuvLKK9WuXTvdeuuteu6555SSkqKHH35YEydOLGyDfvvtt2vWrFm6//77NWbMGK1bt05LlizRypUr3fekWMxbExsxMWaCqnjiKjPTjLlPH3M7UKCqqn9Pd6aBJ2lp5v/Tp1dtTE7q1TMnQK9b12xH6eEyM6WHH5a++ELKzpZCQ83PrS1b3JuwTky0rgW+Rw+mOE11+Bw+2yCIsWOtjhBW++KLL3T11VerZcuW2r17tzp06KB9+/bJMAx16dLF6vCqlcquADxTIis0MFQRvhG6of0NllQ/eoriiVRJynJkKTc/V742XzUPa66okKhzTjzZfe3q17Kf+rXsV2kxnyn5W5mvr7ImfKu6ytjqqt7TuWVgwJ13SsOGSX8NbLeKJ1UsF39ej504piB7kBrUbqDs3GztO75PEUERahHWolrNvW3loI+aPr88AAAAUBO4NTH+2WefqVevXpoyZYpmzpypP/74Q3379lWnTp20ePHict3XoUOHNGLECB08eFChoaG68MILtWrVKl1xxRWSpBdeeEE+Pj4aOnSosrOzFRcXpzlz5hTe3tfXVytWrNAdd9yhmJgYBQUFaeTIkXriiScK94mOjtbKlSs1efJkvfTSS2ratKnefPNNxcXFuecJ8QDemtg4vf1waqpZ3V7liUV4vKqu/i2utIEnx49LP/1kJnYzM6soptxc6YknpLvukurXL1pfziksrOJwmEnxZcvMbu/BwWYX+Kwsc/u6de5LWFvZAt+bunhUh8/hsw2CaN9eatPGqujgCaZOnap7771X06ZNU506dfTBBx8oIiJCt9xyi/r37291eNVKRSsAz1bBd9ZEVmS0ZdWPnqJ4InX9/vXKM/J05MQRRQZFqmFQQ/187OczJp6sqKIsa/K3MitMy5rwtaLK2Mqq3tOVe2BAYqL044/SyJHOd2RxUlyyvmK5uOLPa/EpEAL8AuTj8NGBtANqEdbCo+feLu9nh5WDPjx5fnkAAAAA7uHWxHh4eLhWr16tnn+1PVuxYoW6dOmiRYsWyad4z9gyKF517kpgYKBmz56t2bNnl7pP8+bNS7RKP12fPn20devWcsXmTbw5sVG8/TBQmrMlvlq3NltXV0Y1eWkDTw4eNLd37iyFhZWMye0VySdPSjfdJH3yibR6tVlyHRTkxgeofImJ0tq1ZtiNGhWtz86WUlLMzvDuSlhbWbVdfDBFSEjRek/t4uHtn8NnGwSxaROJ8Zruhx9+0H/+8x9Jkp+fn06ePKng4GA98cQTuuaaa3THHXdYHGH1UZEKwLJU8HlSIsuTFU+k/rPnP52SVefVP88p8ZRfbPoVK6soy5L8rcwK07ImfD2pytgK5RoY8Nln0vXXmxd6ISHSdddVUZRl40lt6os/r8WnQJDM90amI1OS577GzvWzw6pBH542vzwAAAAA93P77JpRUVFas2aNLr30Ul1xxRV65513ZLPZ3P0wKAdvT2wAZ3KmxJfNJr38sjm1dmVUk5c28CQoyEx0Fk+KF8Tk9ork48elwYOljRvN5a1bpW++MVtCeJGEBCknp2Q+PyDAnIs7Pd19CWsrq7YLBlOsX28uZ2QUJcU9uYuHtzrbIIhDh6o2HnieoKCgwnnFGzVqpF9++aVw+p8jR45YGZrXOVtFYEUqAMtSwedJiSxvUZ7Ek6dXUVZmhWlZE741fXBGmQcGvPOONHq0lJdnLs+bJ117rXnh7iE8qU198ec1KjRKKZkpys7NVoBfgBx5DoUGhGrX4V364fAPcuQ5NP2r6YVx+tnc/nVPuXnqZ0dpv7P+yPjDY+aXBwAAAFA5KvyXUt26dV0mvk+cOKFPP/1U9Yu19D127FhFHw5ADVXaPOJ//FF64uvECWnPHunqqytvLmlXA0/uuqv07/bcWpF88KAUF1eU5Q0Olj7+2OuS4pL5nNSpI506VXKb3W4mxiMj3fNYpbXAr4qq7YLBFO3bS99/L/36q9SihXd08fBG3tS6Htbo3r27Nm7cqLZt22rgwIG65557tH37di1fvlzdu3e3OjyvUdaKwHOtACxrBZ+nJLKqI2+ooqysCtOyJnxr+uCMMg0MeOEFacqUohvdeKP09tselRQv4Clt6os/r1EhUTqUdUj7j+9X3qk8nco9pZy8HP107CdFBkUqNCDU6bN37EVjLY1d8szPjjP9zjqVc0q1/WuriZqUuJ2nVuUDAAAAKJ8KJ8ZffPFFN4QBVL3SEq3enpyqjseVmWnOP/3FF2bHxdBQM6G5ZYt5vLVrS01Kfneh5GSpVq2qn0u6SpJxP/0kXXmltG+fuRweLv33v1LXrm6486oXGWme15MnzXMcEFC0LSvLfO26K2FdWgv8qqrattulXr3MFt4REWZFPCrH2QZB9OhhXWzwDDNnzlRmptmGdtq0acrMzNT777+v888/XzNnzrQ4Ou9R2RWBZa3Y9ZREljco75y/Vsyf7SnKWgnuSVXGVjjjwIBmvdVzzgrpX/8uusHf/262dvL1tS5oL3D689owqKGyc7OVmpWqsMAw5eTnqEfDHmpdv7V8fcznsuCzt314e7Wp5Z45Y8r7mVHAEz87zvQ7a8vBLcpwZKhpSNMzvt/P9fkAAAAAYL0KJ8ZHjhzpjjhQA1mZwHU4pDfecE6MubPFtlWq43E5HGZSfNkys812cLCZPM3KMrfn5ppJrqZNSya+Tpwoff7gypxLutIrkr/7TurfXzp82Fxu0cKcW/z88yt4x9aJjTUHOhiGeV5sNvO1euKEea4HDHBfwrq0FvjePoAEJZ1tEET37uZsBKi5WrZsWfhzUFCQ5s6da2E03quyKwI9Ze5mR55DO1J36Osfv1Zq1rknQqxOqJzLnL+ecg6kqn/+ylMJXpMHZ5Q6MKBRN/Wc/q585y8o2vnxx6VHH/XISnFP4+p5vbzl5YqNitX6/ev1w+Ef1LpBa6fbFHz2bjqwSW0uqHhi/FznCZc867OjwJl+Z0XUjtCpvFNKTk8u9f1ekecDAAAAgPUqnBhPT09XSEhI4c9nUrAfYHUCNzHRfOxmzSqvxbYVquNxJSZKa9eaSfFGjYrWZ2dLKSnmgIo6dczq8NMTX23bmtXkrlRmG+VKrUhet86chzEjw1zu2FH6/HOpceOKB26hguds3TrzO9K0NPMQ/f2l66+XnnrKvZ8Jrlrgo+pU1cCosw2C8LN+6k14CIfDoUOHDik/P99pfbNmzSyKyLtUdkWgJ8zd7MhzaN538/TTgZ90SIcUZA86p0SIJyRUzqXCvyLnwB2J7IL7WL9/vb7c+6WOnDii8KBwRYdF61DqoUp9/mp6JXh5lBgYcPKkdNNN0iefmMs2mzR7tnTHHdYF6YVKG3Cx/IflZ/zsPZR5yC2PX5bPjJioGJfv80saX2L55/fpzvQ7KzQwVBG+Ebqh/Q2lvt/X71vvkfOmAwAAACgbt8wxfvDgQUVERCgsLMzlfOOGYchmsykvL6+iD4dqwuoEbkKCmRCpzBbbVlTEV8VxVbWEBCknx0yMFxcQYLagzsw052u+4YaSia+cHOm116p+LulKrUhesqQoKd6zp/Tpp1JYmDvCtpSr56w6TAOAkqp6YNSZBkGclgNFDfTjjz9q7Nix2rRpk9N6rl3Lp7IrAj1h7ubEA4lan7xenYI6KaxWmPTXnzzlTYRs2L9BS3ctVW5ernLycxRsD1ZUaJQiAyKrLKFS3gp/R55DOfk5OpVzSh/v+Vi1/WqrWWgz1favLcNmnPEcuGMgQPH7OHbimPYd3ye7r10pmSkK9AtU10ZddSLnRKU+fzW5ErxCfv1V+vJL82e7XTlvL9Cmbo2V8NV02k+X0ZkGlpz1szfMPaOAz/aZsX7/+hKf0QXv80ujLlXPqJ7aeGCjZZ/fpzvr8xYZfcb3uzu6pFjdOQQAAACoySqcGF+3bp3q1asnSfqy4I9e4CysTuCmpprJGFfc0WLbqor4yj4uK6Smmq+LU6dKbrPbpfR0s1jaVeLL4ZD27LFmLulKq0ieNUv64w/z5/ffNydRryao4q4ZrB4YBRQ3evRo+fn5acWKFWrUqJHLAZ44u8qu6PaEit2CREgt/1rKUU7h+vImQl7a/JJ+OfaLQgNDZfe1KzUrVQczD6pFWAvVCahT4bbzZVHWCn9HnkNJB5P06pevatfhXQr0C1R47XBlOjK15+getQ1vq39c8g/1atGr1HPgjvnni9/HsRPHFGQPUoPaDZSdm619x/cpIihCLcJauKVtf3l5Y3KrMObkBOVm5Mqvjp9im1VSzO3bSx99JN14o3Lee1evh/2i+G+W0366jM42sOSSJmeuxu4R1cMtcZztM2Nbyjb5+Pi4fJ9/deAr3db1NnVu2NljOi5U9HdWRbukeELnEAAAAKAmq3BivHexb697l/JN9vHjx/XZZ59V9KFQjVidwI2MNBPVrrijxbZViZ/KPi4rREZKoaFmJ8bsbLNSvEBWlplMLa3yu1rOJe3nZybE/f3pAw2vZPXAKKC4pKQkbdmyRW3aVHwO1pqsKiq6ra7YTc1MVbB/xdrFJx5I1A9HflBYYJjq165fuL4gwduybstytZ0/16RsWSr8C1rHb/l5i5JSkxQSGCJDhtKy09QirIUuqHeBfs/8Xf6+/md8LHdUVha/j0xHZuHjBfgFyMfhowNpB9QirIVb2vaXhzcmt4rH7G/zV7R/tHYf2q2tqZUY82WXSfv2adORLYr/hvbT5XG2gSWt67dWn+Z9Sv3s7d60u44fPV7hOAo+M/Ly83Qg/YAOpB1QpiOzKDlskyJqR5T6Pv/696/14KUPesz5rejvrIp2SXHHgCEAAAAA565Ksir79+/XrbfequHDh1fFw8ELVDSBW9E25bGxZvV2ZbXYtirxcy7HZUXL9/KIjZW2bJEMw4zPZjPjOnHCTIwPGHDmym+vrkLOy5MefFC69VYzu1+gGlWJo+axemAUUFy7du105MgRq8Pwep5Q0V3ZIoMjtSN1h8ttZW0Xn3AgQbX9aitfzvM4FCR4k9OSy1zhWZGkbFmqJQtaxwfmByo0MFT1apsdwopXaZclse2O+eeL30ewPVipWUW3sfvalenIlOSetv3l4Y7kVlVXnDvFbK+jkNwQ+fv5K8PhpoTcd99JH3wgPfWUedFeIDhYCVsrPkjC07n7fJ5tYMnXf3yte3vcW+pnr5/NPV/3xEbFasvBLYWPYbPZZPe167f035SVk6UGtRuoRWgLl7d19T63utNCRX9nVbTi3B0DhgAAAACcO8oNYYmKJKbd0aY8Jsbct7JabFuV+CnvcVnV8r08Co5p3Trz+7W0NPN14u8vXX+9+b2b1TFWiuxsacQIc07xd9+VNm2Smje3OirgrM422KY6draAd0lPTy/8+dlnn9X999+v6dOnq2PHjvL393faNyQkpKrD81pWV3RXttioWCWlJOlkzkmnv6DK0y4+NTNVzUKbae/xvcrOzVaAX1EbHJtsOplzssxt5yuSlC1LteS/N/1bfjY/5eXnyd+36H1RvEq7LBXu7ph/vvh9RIVGKSUzpfD5c+Q5VDewrtva9pdHRZNbVlScO8VslD/mM1q3Trr2WvNC3W6XHnvMabM7Bkl4MnefT0eeQ1v+2KL9afv165+/KtgerKjQKEWFRMnXx7fwOTvTZ29+fr6Ley6/mKgYffjDh/rfb/9TkH+QguxBcuQ55OvjqwvqX6DUrFTtPb5XUaFRJW57+vvcUzotVOR3VkUrzqv7ewEAAADwdCTGYYmKJKbd0aa8sltsW5n4ad1aSkqSdu40l9u1k266SerVq+RxecNcv67OladVtbtdRoY0ZIi0dq25nJpqls2TGIeHK8tgm4KBUcePm/8OHDA/F/38zAEvY8dafBCo9sLCwpzmEjcMQ5dffrnTPoZhyGazKS8vr6rDg4eKiYrRjtQd+unATzp04pCC7EElEiFnq4KMDI7UwYyDah7WXPuP75fNYVZdOvIcSjuVposaXVTmtvMVScqWpVqyoHV8vl++cvJyStw+05FZpsS2O+afL34fUSFROpR1SPuP71feqTxl52ZLQVJyerLb2vaXVUWTW1a0U660hNyyZdItt5gXApJ5DTt1qtOFujsGSVjtTO9xd57PguTxj0d/VFp2mhrUbqDUrFSlZKboUNYhdW3UtUqfM7uvXfVq19MF9S+QTTZlOjJVN7BuYaJ+04FNOpR1qEzv8+rQRryiFefV4b0AAAAAeDMS47BERRLT7mpTXpkttiu7Vbsrpyek2rc3k01padKePWZi/HTeMtdvec6Vp7eGP6vDh6WBA6VvvzWXa9WSli6VBg2yNi6gDMoy2CYmxhy8s2CBdORI0fvS4ZAaNJB27XI9kAdwly+//NLqEOCF7L52je0yVhsDN+rrtK+VmuWcCJF01irIggTvBfUuUERQROE8vbX8a6lB7Qb6xyX/KHOlZEUTnGerlixoHd8sqJmM44ZThbsjz6HafrXLlNh2x/zzp99Hw6CGys7NVmpWqhqGNTSPo3nvKm/bX9HklhXtlCslITd3rvT3v5vzHknS4MHS+++X+EXujkESVjpbpfPRk0fddj4Lksdtw9tqx6EdCvANUEhAiLJzs7X/+H4F24NlyKjS5+zoiaNqVbeVmoQ0KbGteWhz5Rv5Sk5PPuv7vLq0Ea9Ixbm3vxcAAAAAb+eWxPjLL798xu2///67Ox4G1cy5Jqa9YX7aym7V7sq5VH97w3NZHt7QGv6M9u2T4uKkH380l+vWlVaskHqUbb5RwGplHWzTvr0UGioFBUk5OeZ7NSpKCguTvvpK6tTJMwbloHrqzYsL58jua1eHyA66rONl8vHxcdq2ft/6s1ZBnp7gbVm3pVPyqFcLF6MYS1HZFYcFreOD/IPULKyZ9h3fJ5vDJptsSs9OV4PaDcqU2HbH/POu7uPylpdbPod9RZNbVrRTdorZXsGEnGFITz7p3DJ91CjzYtyv5NcM7hgkYaWzVTobhqG6gXVd3ra857MgeXxevfOU6cjUvuP75OPwKezWsOvwLt1x8R1V+pyd6TPnZO5J9Y3uq97Ne5/1fU4b8TO/F3pG9VROfo6mfzXdkvnXAQAAgJrALYnxF1544az7NGvWzB0PBXjF/LSV3ardlXOp/vaG57I8vKE1fKm2b5f695f++MNcbtJEWrXKzCBWA15fyY8yKetgm6+/lho1Mqd+cHUfntKtAtXXkSNHlJWVpebFpqjYuXOn/v3vfysrK0vXXnuthg8fbmGE8DZlrYKsaJK4QGVXHBZvHR/sH6zosGglpyXrRO4JdYrspLu636VezXuVObFd0fnnPXEO+4omeq1op1w8Zn+bv6L9o7U3Z69yjJzyJafz8qS77pJmzy5ad//90jPPSMWmqijOHYMkrHS29/jRU0fl7+Pv8rblPZ8FyWNfH191bdTVqcNERFCEmoc1r/Bc3Geb+uF0lzS+RKt/Wa3k9GTl5uUWznkeFhCmXCNXvZv3LtN7tCa0ET/bc1vae+GSxpdo1+Fdem3La5bOvw4AAABUd25JjO/du9cddwOUybm0KXc4pP/9r2qTcpXZqt2Vc6n+tqLle2XyltbwJSQkSFddZU64LJnZwlWrqs2c4l5fyY8yK+tgm+rWrQLe584771Tjxo31/PPPS5IOHTqkSy+9VI0bN1arVq00atQo5eXl6dZbb7U4UniLslZBuivBW9nVt65ax/do1sNrkphVoaKJ3tIGNxw/eVwHMw8q2B6su/57l1srRp1iTk5QbkauOtTtoNhm5bj/7GxpxAhpyZKidf/6l3TvvWV6fE8b4FBWZ3uPO/IcyjVy3TJYpXjy2NfHVy3CWqhFWAtJ0p4je9QxsmOFk+Jnm/qh+P078hzadXiX0rLTdCTriOy+dh05cUQ/Hv1RDYIaaFSnUWf9zClIFv/656/65o9vlJyerPPrna+okCj5+vhWmzbiZX1uT38vOPIcevWbV/Xmd2/Kz8dP9WrVU4BfgM6rd55O5JzwmvnXAQAAAG/AHOPwOuVtU56TI82bV/2TcudS/W1Fy/fK5LXJtqSkoqT4//2f9Nln5mTL1YRXV/KjXMo62Ka6dauA99m8ebMWLFhQuPz222+rXr16SkpKkp+fn/79739r9uzZJMZRZlVdBVk8wbl+/3ptS9mmDEeGQgJCdPTkUSUeSKxwItVV6/jyVpmei6p4DHepSKLX1eCGdEe6fjxqTqmTdipNktxeMVoQ86XNLtWhQ4cUERFRYmqAM0pPl7ZsMX/29ZXeestMlFcTpb3+6teur0OHD7m8TaYjU50adlL9WvXdMlilsjtCnK0t/OkJ2MQDifrqwFfq3by3jp86Xli97u/jLz9fP7WPaH/G12XxZLGPfBQRFKHk48lKPp6sZqHN1KROExk2wyta6p9NeZ9bqej5eeO7NwqnqkjNStXBzIM6lHVIXRt19ar51wEAAABPR2IcXqe8bcr37JHWr6/+Sblzqf4u73Pp6e2wvTbZNnGidPCg2V96+fLSs/tVoDLOsddW8tcA7j7fZR1sU926VcD7pKSkqEWLFoXL69at05AhQ+T317y4V199tWbMmGFRdPBGlZ3IcsXuay9Mrvr4+Kh+rfoKtgfrh8M/aPuh7W5vvVveKlNPfQxP4ari3JCh0IBQdY7srLBaYYX7nimpVuXCw6XVq6UrrpBeflkaNMjaeNzoTK+/JnWayJHvKHyP5+Xn6UD6Af189GelZpnV5D2a9lDrBq319e9fV6hVfGV3hCjr1A+n7x8WGKawwLDC6nXJrGD/+vev1a9lv1If7/Rk8QX1L3B67lo3aK1OkZ109ORR3bf6Po8eDHM25X1upaLnx+5jV4PaDRQSECJJys7N1r7j+xQRFFFj5l8HAAAAqgKJcXil8rQp37XLvUk5T00On2v1d1mfS29oh+3VybYnnzSD9Hc9N2FVqKxz7LWV/G7i6jOjRw+pVSvr43L3+S7rYJuzfV517WoOaPK0z1lUHyEhITp+/HjhHONff/21xo4dW7jdZrMpOzvbqvDghSo7kVWac6lO9OTHqsrj8QSnV5xP/2q6shxZTklx6cxJNUu0bCn98EO1+6V8ptffvrR9iqoTpeT0ZPnYfHQg7YB+S/9NhmGoWWgzpZ1K02vfvaY+zfvo3h73VrhbQ2XOx17WqR/Odf/TnZ4sLt4e/ocjP+hw1mFtPLCxWgyGOZfnquD5qVurrlKzirYH+AXIx2G+1iKCIqrF/OsAAACAJyAxjmrv+HH3JeU8OTlc3urv8vKGdthe0RreMKSpU6Xu3aVrry1ab7NZmhSXKu8ce20lvwvlHRhT2mdGUpIUFyfdcosUGFixxzhXlXW+yzLY5kyfV127SgsXeubnLKqP7t276+WXX9Ybb7yh5cuXKyMjQ5dddlnh9h9//FFRUVEWRghvU9mJrNKcS3WiJz9WVR6PJ6poArIsCluF/zXHuF8dvzPPMb5jhzR9utkyvfhFSzX8ZXym15/dx656tevpurbX6Z3v39GhrEOKCo0qMU+2uwZwVOZ87OWd+qGiU0Wc6XWd5cjS7iO7dU3ra7x6MEzB++qHIz9o//H9ahrSVFGhUYWvDan056rg+QnwC1BKZoqyc7MV4BcgyXwdHDt5TPVq1/P6+dcBAAAAT0FiHNVeWJi0e7frbeVNynl6crg8lfTldS7tsIsn+HJzzf0qs+qzsgcHVFhOjhngwoVSQIC0apXUu7fHdCGorJbnXl3JX8y5DIw502fG9u3S5s3moI2KPMa5srrFfWmfV+vXe/bnLKqHJ598Updffrneffdd5ebm6sEHH1TdunULty9evFi9eaGhnCozkVWaqkikVuVjVeXxeKLKnqu+eKtwf5u/ov2jtfvQbm1NLaU6NyFBuuoqc6TxqVPS0qXmvOLV1Nlef0dPHFXvFr2VcCBBWY4stW7Q2mkfbxnAUd6pHyo6VcSZXtfJacmq7VfbqwfDFH9f5ebnypHn0G/pvyklM6VwjvATOSdKfa4Knp/z6p2nQ1mHtP/4ftkcNtl97Tp64qhCAkKqxfzrAAAAgKeocGI8PT29zPuGhIRU9OGAcmvXTtq40T1JucpOJHlKgtSV8rbDLp7g8/c3E9S7d1d+1WdlDg6okBMnpGHDpBUrzOWcHOmXX+SI6e0xXQgqq+W5V1Tyl8G5DIw502dGRoa0aZNzYrwqB994aot7qxP2qBkuvPBC/fDDD0pISFDDhg3VrVs3p+033XST2rVrZ1F0QNlVdiL1XB6rsCL5r8r58swXXJXH44kqe656p1bh9joKyQ2Rv5+/MhwuqnNXrpRuuEE6edJc/u0384IkLKxCMXiysr7+vH0AR3mnfqjoVBFnel2fzDmp1vVbu7ydNzyXkvP7qk39Ngr0C9S+4/uUm5+rHw7/oOzcbNWrXa/U56rg+TmRc0JdG3VVRFCEDqQd0J8n/1SdgDoa12Wc17WUBwAAADxZhRPjYWFhstlsZdo3Ly+vog8HlFvr1mYSxR1JucpMJHlym3ap/O2wT0/whYSYCfIaWfX555/S4MFmRk8yT+R770lDhyrRg6pjK6vlucdX8pfRuSRsz/SZERgoHTpU8cc4V57a4t5TE/aofho0aKBrrrnG5bZBgwZVcTTAuansRGp5H6t45eS5zBdclcfjiSp7rnqnVuFG0foS1blvvy2NGSMV/P1+xRXS/7N33+FRlGsfx3+PxMdLAACXPUlEQVSbsgkQQmhJQAPEilQVjhhQQEFCOVZsgIKIYAFbjop4VAQ8gqjYFUWxHFE4vgo2RIqAArEhCKggPagkATUkoaTtvH+M2bAkgZTdndnd7+e6crHzzOzO/eyzGSZ7P+X99yv/DzpIVPXzF+gdOKq79ENtl4o42uf6tKanKTo8usLnBcJ7KZWfgv/w5Pavub8qPCxcY/4xptL3qqL3J75evDuZTlIcAAAA8K5aJ8aXLl3qfrxjxw7de++9uu6665Tyd7YxPT1db7zxhiZPnlzbUwE1EhkpjRjhnaScLxNJdp+mvbrTYTPq82+//Sb17Wv2bpDMN+CDD6TzzpNkr/fJl1Oe23YkfzXUJGF7tGvGoUNSfHztz1FTdp3i3q4JewCwI18nUqt7Lo8RyTVYL9if9TmW2ox8rylfr1VfpZHOTzwh3XVX2Y6rrjIT5Uf80WTF++NrVf38BUMHjuou/VCbpSKO9rkuKinSS9+/FNDv5ZG/V+Fh4WoV10qt4lrpt9zfVDey7lHfN1//3gMAAADwVOvE+OHrL06cOFHTpk3ToEGD3GUXXXSR2rdvr5dfflnDhg2r7emAGvFWUs6XiSQ7JUgrUt3psBn1KWnTJik1Vdq509yOj5cWLJDOOMN9iJ3ep2CZ8txXapKwPdo1o6RE6tq19ueoKbu2t10T9gBgR/5MqFTlXEeOnCxV1fWC7ZIgqu3I99rw5Vr1Rx3pXJCn62dvkt55pqxwzBjp6aelsDCPY618f3ypqp8/O3XgCBSVfa4LSwq16Y9NAf1eemMGAV/+3gMAAADwVOvE+OHS09M1ffr0cuWdO3fWDTfc4M1TAZbwZSLJTgnSilR3OuyQH/X53XdSv37S3r3mdnKytHChdNJJHofZ6X0KlinPfaUmCdvKrhklJWafibPPrv05asqu7W3XhD0A2JU/EyrHOpc31l62Q4KotiPf7cpjpLOzrF77D+zTqBe+UsqynWUHT5wo3X+/VMGyacH6/khV+/zZpQNHMAiG9zIYZhAAAAAAQolXE+NJSUmaMWOGpk6d6lH+yiuvKCkpyZungh8VFprTfJcmThISrE+cWMWXiSQ7JUgrU52R93YZ9WnZ5zc31/yRpA4dzJHizZqVO8wu71OpYJjy3FdqkrCt7JrRtat04onlP4P+Tgrbsb3tmrAHABxboK+9XKq2I9/t6vCRzpGOSCVHJmt70XYZRQU68UAd8yCHQ3rxRenGGyt9nWB9f6rDDh04gkWgv5fMIAAAAAAEFq8mxp988kkNHDhQn376qbp06SJJ+uabb7R582a999573jwV/KSwUJoxwzNJs369mcjbsMFMXoRaksJXiSS7JUhr6/AEX2Skmdjavl0qKvLfqE9LP7/nny/NmiU9/7w0d64UF1fhYYyODRw1TdhWdM04dEhasUL673/Ld9ggKWzPhD2CR25pp6UqiI2NrfKxX3zxhR577DGtXr1au3fv1ty5c3XJJZe49xuGofHjx2vGjBnKyclRt27d9OKLL+rkk092H/Pnn3/q1ltv1UcffaSwsDANHDhQTz/9tGIOm1Jm3bp1Gj16tL799ls1bdpUt956q+65554qxwn4UrCMnPTGyPea8uXa3R6jczNWqjivWO0atlO3Ft2U2K+ddOEl0h13SAMHHvV1rHx/ALsJhlHvAAAAQCjxamK8f//++uWXX/Tiiy9q48aNkqQLL7xQN910EyPGA1R6upmwa9GifLJ22TIzeUPiwjuCLUF6ZBKxuNh87M8En+Wf38svN79YrGAKylKMjg0s3kjYFhZKr74qbd4sZWdL9eqV77BBUhjwnbi4ODmOcl0+XElJSZVfd//+/erYsaOuv/56XXbZZeX2T506Vc8884zeeOMNJScn64EHHlBqaqp++uknRUdHS5KGDBmi3bt3a9GiRSoqKtLw4cM1atQovf3225LMpH6fPn3Uu3dvTZ8+XevXr9f111+vuLg4jRo1qsqx2pUvE4Lwj2AZOWnVyHd/rN1dOjr33BbnKjs7W/Hx8QorXUP8iy+Oet9aKlhmBgC8JdBHvQMAAAChxKuJccmcTv2RRx7x9svCIitXmkna+p6z5Kl+fbN85UqSN94SjAnS0iTiueeaCcD4eKn0ezd/8Nvn1zCkCRPMyj34oOe+Kny5yOjY0JKeLi1fLnXs6DmRAB2OAP9YunSp+/GOHTt077336rrrrlPK3z3Q0tPT9cYbb2jy5MnVet1+/fqpX79+Fe4zDENPPfWU7r//fl188cWSpDfffFMJCQmaN2+err76av38889asGCBvv32W3Xu3FmS9Oyzz6p///56/PHH1bx5c82aNUuFhYWaOXOmnE6n2rZtq7Vr12ratGmVJsYLCgpUUFDg3i4dMe9yueRyuapVx8O5XC4ZhlGr1zhcYUmhXv3+VS3PWG4mBCNjtCFrg9ZmrtWGrA0aceYIy5Pj3q6z3R0qOqT1mev17aZvlb0/W/Ex8eqa1FVnH392pW0R4YjQiDNGqG3Ttlq1a5Wy87OVHJfsfl6EI8K279/h7dv1+K5am7lWeYfKj3wvMUrU9fiuPqnHqoxVWr5zuVrUL7929/Kdy9W2aVt1b9m99if65RfpppvkePJJuZo08dxnGMd8ulXvT22E2u+vFHp19mZ9C0sK9dWvX7mvY1W5/vlbbeobKp8JAAAAoCJeT4x/+eWXeumll7Rt2za9++67Ou644/Tf//5XycnJOuecc7x9OvhYVpY5crkiMTHmfngPCVLv8svnt6REuvVWcy1Gycz+33STF14Ywaq0w0adOubSAqXs0OGosNBM3Jd2zjl8ivdA7JwDVKTHYb9gEydO1LRp0zRo0CB32UUXXaT27dvr5Zdf1rBhw7xyzu3btyszM1O9e/d2lzVo0EBdunRRenq6rr76aqWnpysuLs6dFJek3r17KywsTF9//bUuvfRSpaenq3v37nIe9guZmpqqRx99VH/99ZcaNmxY7tyTJ0/WhAkTypXv2bNHhw4dqnGdXC6X9u3bJ8Mwykab1sKGrA3avGuzOtbrqDqRddzlB4sOavOuzVoRvULtEtrV+jy14e0621mRq0gLNy/U73t/1z7tU72Ievpjzx+alz1PW3dtVZ+T+igyLLLS57eu01qtT2ntUZbzR46Po66dw9v3xKgTlZqQqvXZ65W3P0/REdE6VHxIJUaJUhNSdWLUicrOzvZ6DOu2rVNSWJKOCz9OKi4rjw2PlcLM/a3rtK78BaogYu1aNRoyRGF//qkGV12lPfPmydGoUbVew6r3pzbs9Ptb5CrSpj2b9NPen5RzKEdx0XFq06SNTm166lF/r6rLTnX2B2/Vt8hVpIVbFmp99nqFO8Krff3zl9rUNy8vz0dRAQAAAPbn1cT4e++9p2uvvVZDhgzR999/7x6dsm/fPj3yyCOaP3++N08HP0hIMKf4rUh+vjmiGbArn39+Cwqka6+V3n3Xsww4Crt2OCoslGbM8FzO4cgp3kmOI9ikp6dr+vTp5co7d+6sG264wWvnyczMlCQlJCR4lCckJLj3ZWZmKj4+3mN/RESEGjVq5HFM8hH/eZW+ZmZmZoWJ8XHjxiktLc29nZubq6SkJDVt2rRaa6gfyeVyyeFwqGnTpl5JuHzzyzfKVrbi6sSpSIf1GoqQsg9k65t93+j89ufX+jy14e0629kXO7/QwuyF6lC3g2LqxEgOKVKRyivI02dZn+nEpBO9M3LZRo5s3yFNh3iOGG3o+xGj277fpgMRB5QbkVtuX15EnrYVbCt3naiWJUvkuOIKOfLzJUnhkZFqGhursBq8phXvT23Y5fe3otkxNv61USv+XKEeh3p4dXYMu9TZX7xV3y92fqHPsj5TUv0k94wIdrz+1aa+pUu4AAAAAKHIq4nxhx9+WNOnT9fQoUM1e/Zsd3m3bt308MMPe/NU8JNu3cykSF5e+TWai4vN/YBd+fTzm5cnXXqptGSJuR0RIb3+ujRkSG1CRghISDATzRWxssNRerqZFG/RovzvC1O8I1glJSVpxowZmjp1qkf5K6+8oqSkJIui8q6oqChFRUWVKw8LC6t1osThcHjldSQpa3+W6jnrSRWsQFLPWU9Z+7NskdjxZp3tbNWvqxTuCFcdZx0VOYrc7VI/ur7C88O16tdV6pnc08oQfeLw9o0Oi1bP5J5+rWd8/Xhz7e4Kfg/yivLUqlGrmn/23n1XuuYasyecJOPcc/XnjBlq2rx5jV7Tiventuzw+/t1xtdalrFMLWLLT5e/LGOZ2iW08+o61Xaosz95o76l17/60Z7rcdnx+lfT+obK5wEAAACoiFcT45s2bVL37uV7zjZo0EA5OTnePBX8JCXFTOAcPoIwP99MKvbsae4H7Mpnn9/sbKl/f2n1anO7bl3pvfekvn29FDmCWbdu0tq10sGDnuVWdzgqneK9vud3gLaY4h3wlSeffFIDBw7Up59+qi5dukiSvvnmG23evFnvvfee186TmJgoScrKylKzZs3c5VlZWTr99NPdxxw59XBxcbH+/PNP9/MTExOVdcS0EqXbpccEqoSYBDMhWIH8wnwlN2SaIn/Kys9STGTF05vEOGOUlc96Sr7QLamb1mSuUV5B+bW7i41idUuq4U3Ciy9Ko0eXrR9+8cUyZs2SwXTKfrdy10pFOCI82leS6kfVV4QjQit3rfRqYhzVl5WfpRgn1z8AAAAgWHk1MZ6YmKgtW7aoVatWHuUrVqzQCSec4M1TwU+cTnP63HbtytacTU727ZqzrHELb/HJ53f7dik1Vdq82dxu1Ej65BPp7LO9GjuCV2mHjc2bzT4W9erZo8ORXad4B3ypf//++uWXX/Tiiy9q48aNkqQLL7xQN910k1dHjCcnJysxMVFLlixxJ8Jzc3P19ddf6+abb5YkpaSkKCcnR6tXr1anTp0kSZ9//rlcLpc7aZ+SkqJ///vfKioqUmSkub7pokWLdOqpp1Y4jXog8VlCEDWSEJOgDVkVT28SzB0VilxF+mLnF1r16ypl5WcpISZB3ZK6KSUpxS/Tg6ckpWhD9gYt27nMnGbbGaP8wnwVG8Xq2bKnUpKqeZNgGNKECeZPqeuvl156SQoLM3vlwa9IutofHbUAAACA4ObVxPjIkSN1++23a+bMmXI4HPr999+Vnp6uu+66Sw888IA3TwU/cjrNUYI9engmrd9/3/tJa9a4tZdg6KRw+Oe31jZskPr0kXbvNrePP15auFA67TQvvDhChdMpjRghrVghffONfzocVUVCgnm9rYiVU7wDvpaUlKRHHnmk1q+Tn5+vLVu2uLe3b9+utWvXqlGjRmrRooXuuOMOPfzwwzr55JOVnJysBx54QM2bN9cll1wiSTrttNPUt29fjRw5UtOnT1dRUZHGjBmjq6++Ws2bN5ckDR48WBMmTNCIESM0duxYbdiwQU8//bSefPLJWsdvNa8nBFEr3ZK6aW3mWh0sOujxF2Mwd1QoLCnUwi0L9VnWZwp3hCvGGaP1Weu1JnONNmRv0MhOI32eHHeGOzWy00i1i2+nlbtWKis/S8kNk2uWnHe5pFtvlV54oazs3nulRx6RHA5zP/zOl0nXwpJCpe9Kd392Euol6KwGZ+mcxucoOow1pauKjloAAABAcPNqYvzee++Vy+VSr169dODAAXXv3l1RUVG66667dOutt3rzVLBAVZLWUu0Sqaxxax90UqhA3bplU1C2bi199pn5YQWqyek0r2fnn28O2LKDbt3M3++8vPLXXyuneAd87csvv9RLL72kbdu26d1339Vxxx2n//73v0pOTtY555xT5df57rvvdN5557m309LSJEnDhg3T66+/rnvuuUf79+/XqFGjlJOTo3POOUcLFixQdHRZsmLWrFkaM2aMevXqpbCwMA0cOFDPPPOMe3+DBg20cOFCjR49Wp06dVKTJk304IMPatSoUV54J6zl1YQgai0lKUUbsjZo867Nyj6QrXrOekHfUeGrX7/S+uz1Sqqf5LG2cF5BnpbtXKZ28d5d+7kyznCnerTqUftzORxSVFTZ9rRp0p131u41UWu+SroWlhRqxuoZHp2LNmRvUHZ2tjYd2qSRnX3fsSNY0FELAAAACG5eTYw7HA79+9//1t13360tW7YoPz9fbdq0UUxlc7MioBwraX3qqdKmTbVLpLLGrX3QSaECJ5wgLVgg3XOPNGuW1KRJpYcGw2h7hJbSKd4Pv4bbYYp3wJfee+89XXvttRoyZIi+//57FRQUSJL27dunRx55RPPnz6/ya/Xs2VNGaeepCjgcDk2cOFETJ06s9JhGjRrp7bffPup5OnTooC+//LLKcQUSryUEUWvOcKdGnDlCK6JX6Jt93yhrf/B3VFi1a5XCHeHBs/azwyE9/riUk2P2xLvmGqsjgnyXdE3fla5lO5epRWyLss+wIUUejNTyjOVql+Cfjh3BgI5aAAAAQHDzamL8+uuv19NPP6369eurTZs27vL9+/fr1ltv1cyZM715OvjZsZLWs2dL+/bVLpHKGrf2QSeFv7lcnkN6O3Y0R4ofBaPtEYicTvOz2a5dWYcOO0zxDvjSww8/rOnTp2vo0KGaPXu2u7xbt256+OGHLYwMsJ4z3Kl2Ce10fvvzFWaX6U18KDs/W/Ui6lW4L2DWfj7yvjUsTOJv8AqVm3bcT+vJ+yrpunzncv1x4A/9eeBP5RfmK8YZoxYNWqht3bY+6dhh1fvnL3TUAgAAAIKXVxPjb7zxhqZMmaL6R2TSDh48qDfffJPEeIA7VtL6xx+lli1rl0gN9DVug2mUcMh3UjAM6bHHzEWg58yRwsOr/FRG2yNQOZ3mZ5PPJ0LFpk2b1L1793LlDRo0UE5Ojv8DAmCZ+Jh4/bHnD0Uqsty+2q797Bfbt0sDB0ovvih16WJ1NLZW0bTj/lxP3ttJ18KSQn2+/XPtzNmpes56coY7lbU/S1n5WYpuHK26dep6tWOH1e8fAAAAANSGVxLjubm5MgxDhmEoLy/PY63EkpISzZ8/X/Hx8d44FSx0rKS1VPtEqt3XuD1a4lsKrlHCgd5JoVZcLnO69CeeMLdvuUWaPt2ckrIKGG0PAIEhMTFRW7ZsUatWrTzKV6xYoRNOOMGaoIAAF6gjSbsmddW87Hnm2s/R3lv72S/Wr5dSU6Xdu6X+/aUVK6TTTrM6KtuqcNpx+X89eW9J35WuvQf2yhnuVJO6ZUs9FRYXKmt/lnILcnX+Ced79XzB9P4BAAAACC1eSYzHxcXJ4XDI4XDolFNOKbff4XBowoQJ3jgVLHS0pHVhodSwofT111KdOmZSOCnJ/AkPr3oi1c5r3B5reuxTTw2uUcJ276TgM0VF0g03SG++WVbWsmW1XiLkR9sDQIAYOXKkbr/9ds2cOVMOh0O///670tPTddddd+mBBx6wOjygWuyQkA7kkaRnH3+2tu7aqs+yPlN4frjX1n72uRUrpAsvNNcSl6SmTaV6FU8JD9PKXSsV4YgImvXkV+5aqYR6CcrMz1RBcYGiIqIkSVERUXIVu7Rn/x6vduwItvcPAAAAQGjxSmJ86dKlMgxD559/vt577z01atTIvc/pdKply5Zq3ry5N04FC1WWtC4sNJPfeXnSX3+ZM1Dv328OWMjOlk45peqJVDuvcXus6bHXrAmuUcJ27qTgMwcOSFdeKX3yibkdFmaOFB85slovE9Kj7WGZYFrKAfCXe++9Vy6XS7169dKBAwfUvXt3RUVF6a677tKtt95qdXhAldklIR3II0md4U71OamPTkw6Uat+XeW1tZ996qOPzHvXQ4fM7bPOMu9jmzQ5+vNCXFZ+lmKcFfdire168lZ0UMnKz1LLBi0VFRGlnTk75Sh0yBnuVHFJseqF11Pjuo292rHDl+8fAAAAAPiaVxLjPf7O9m3fvl0tWrSQo4rTDSOwVJa0rldP+uIL6cwzzeTpzp3mjNPh4WZi9cAB6Yorqp5I9fYat0VFZnyrVtUuWXSs6bF/+klq27bi5wbiKGE7d1LwiT//NEfbrFplbkdFSe+8I116abVfKmRH28PvSpPhy5dLS5dKe/eaA8WSk82OSYG6lAPgLw6HQ//+97919913a8uWLcrPz1ebNm0UU9m0H6gWO4xgDhV2SUgH+kjSyLBIdW/ZXT2Te1odyrG9/ro5y1FJibndp4/03nuVT1sEt4SYBK3PqrgX6+HryVf3GmZVB5WEmARl789Wp2adFF8vXrv27VJ+Yb4aRTdSYkSiWhzXwqvnrer7BwAAAAB25JXEeKnPP/9cMTExuuKKKzzK3333XR04cEDDhg3z5ulggYqS1o88YpbHxUmdOknx8dKuXebIWIdDOvlk65IyhYXSwoXSZ5+ZifrarPudlWVOE79jR1n9SqeMr1PHPKZ0rfUj+WqUsK9HiHq7k4Jt/fabuS7jjz+a27Gx0gcfmEPja+BYo+07dTITmYzsNTHSuWYOX97hzz/Na5PTKWVmStHR5ufswIHAXMoB8Jfrr79eTz/9tOrXr682bdq4y/fv369bb71VM2fOtDC6wGaXEcyhwi4JaUaS+sljj0n33FO2PWiQmSjnxqlKuiV105rMNeZ68lEVrydfk2uYVR1USutzoOiAWsW1Uqu4VuZ5D+WpJL9E3Vt298n5jvb+AQAAAIBdeTUxPnnyZL300kvlyuPj4zVq1CgS40Hq8PWUw8OlVq3MH8nMN9ata913NF99ZSbCk5Jqv+5348bSl1+aCaiDByWXy5xpe+tWqVEj6fTTzdf11yjhY615zgjRKtq2TTrvPCkjw9xOSJAWLDAbtIaONtq+UyfpjTdot1J8jqumos4DpbN1tGplXpfq1TNnTi0oMJPk8fHmvkBcygHwlzfeeENTpkxR/SOmgzl48KDefPNNEuO1YJcRzKHCLglpRpL6wbhx0pQpZdu33SY9+aQKjWKl71jODA1VkJKUog3ZGzyS3keuJ1+Ta5hVHVQqq0+JUaLUhFSdffzZfjnf4e8fAAAAANiVVxPjGRkZSq5gWGzLli2VUZp0QtCx83rKq1aZyXpvrPtdr56ZQ3U4pMhI8/klJdK+fVJOjnTVVWZSz19rch9rzXNGiFZR06bmT0aGdMIJ5hQDJ55Y65etbLT98uW02+GC7XPsi9HvlXUeWL/enPG/TRvzWlP6+lFRZqedXbvMxHggLuUA+Fpubq4Mw5BhGMrLy1N0dLR7X0lJiebPn6/4+HgLIwx8dhnBHCrskpBmJKkfnHZa2eP//EcaN06FriJmaKgGZ7hTIzuNVLv4du6OBEeuJ1+Ta5hVHVQqq0/X47vqxKgTvd72VXn/AAAAAMCuvJoYj4+P17p169SqdLjw33744Qc1btzYm6eCjdh5PeXsbDOhXZHqJotKZ9l2ODzLS7c3bZKmT/ffmtzHWvOcEaJVVL++9Omn0i23SM8+KyUm+vR0tJunYHo/fDX6vbLOA5s2mSPFd+0qfz1zOsuWdrC6gxJgR3FxcXI4HHI4HDrllFPK7Xc4HJowYYIFkQUPu4xgDhV2SUgzktQPhg6V9u41bwpGjpTEDA014Qx3qkerHpW+LzW5hlnZQaWi+rhcLmVnZ/vtfAAAAAAQCLyaGB80aJBuu+021a9fX927m+tYLV++XLfffruuvvpqb54KNnKs9ZS9PVK6Oho1MgcC79hhJupL1wRPSqp+smjjRvP1YmPNUeKFheY6vg0aSLm55n5/rsl9+BT2R2KE6DEUFnpmKJs2ld591y+npt08BdP74avR75V1HmjY0PxefNcu85qWmWlOox4VZX7EGza0RwclwI6WLl0qwzB0/vnn67333lOjRo3c+5xOp1q2bKnmzZtbGGHgs8sI5lBhl4Q0I0l94Mj7VklKS/PYZIYG76vJNcwuHVQAAAAAAJXzamJ80qRJ2rFjh3r16qWICPOlXS6Xhg4dqkceecSbp4KNHG09ZV+MlK6qwkLpr7+kX3811zqvU8eMLTPTTJY3bFj9ZJHDIcXFmT+Hy8vzVtRVZ+cp7I/FF9NNV9lzz0mvviotXVq+If0gkNvNF4Lp/fDV6PfKOg8kJZnLO/z5p9S1qzlDxs6d5hIPBQXmMRkZ1ndQAuyox9+/jNu3b1eLFi3kOHI6GNQaCSL/slNCmpGkXvTbb1K/ftJdd5kjxSvBDA3eV5NrmF06qASzwpJCpe9Kd1/nEmIS3Ne5CIdXv94CAAAAEKS8+peD0+nUnDlzNGnSJP3www+qU6eO2rdvr5YtW3rzNECVpKebIymPO85MjpcOtti/X/rlF+nyy6uXLGrb1ny90hGZpQoKzNdu29b7dTgaO09hfzS+mm76mAxDGj9emjTJ3L7oImnRIs/G9INAbTdfCab3w1ej3yvrPJCUZM5iUVgobdlirgJQUGCeJzGxbPYKKzsoAXb3+eefKyYmRldccYVH+bvvvqsDBw5o2LBhFkUW+EgQ+R8J6SCzaZPUp4/Zy+36680Zjvr1q/BQZmjwvppcw+zUQSUYFZYUasbqGR5tsj5rvdZkrtGG7A0accYIq0MEAAAAEAB80qX2lFNOqXC9RgQnyxKdx7BypXne006TXC7zO6X8fOn44839jRpVL66rrpK++0764w/zeU6nWffCQqlJE3O/P9l5Cvuj8dV000dVUmKuIf7yy2Vl3btb8sEM1HbzlWB6P3w1+r2yzgMHDkitWpkf5f37zYR4r17Wz9YBBJLJkyfrpZdeKlceHx+vUaNGkRivBRJEQC18+63Uv7+5ZooktWwpHeXva2Zo8L6aXsPooOI76bvStWznMrWIbVHuc75s5zK1bdpWreu0tjBCAAAAAIGg1onxtLQ0TZo0SfXq1VPaEWudHWnatGm1PR1syJJEZxWUjt4MCzO/Szp84oLffjMT3NXRvbt03XXS3Lnm1MWFheZrN28uXXqpud+f7DqF/bH4arrpSh06JA0ZIr3/flnZ009Lt93mxZNUXaC2m68E0/vhq9HvR+s8cP751nU+AoJBRkaGkivotdKyZUtlZGRYEFFwIUEEfzvaNMsB0xlj0SLzj4v9+83tjh2lTz+VmjWr9CnM0OAbXMPsZeWulYpwRHgkxSWpflR9RTgitGrXKrU+hcQ4AAAAgKOrdWJ8zZo1Kioqcj+uDGs3Bi+/JzqrKCHBTCZVpCajN51O6eabpdNPt2ht7EpiKp0uOVD4arrpCuXmShdfbGYUJfMD+cYb0uDBXjxJ9QViu/lSsLwfvhr9HkydB46msNDsaGWX6ytCQ3x8vNatW6dWrVp5lP/www9q3LixNUGhnKBIdsLnjjXN8shOI+3/eZkzR7r2Wunvv6/Vvbv04YdSgwZHfRozNBxdYUmhVmWs0rpt67Tt+22Krx/vl/eGa5d3ZeVnKcZZ8R+SMc4YZedn+zkiAAAAAIGo1onxpUuXVvgYocOvic5q6NZNWrtWOnjQs7w2ozeDJYFnJV9NN11OVpa5DmNph526daX33pP69vXSCQBPvkxgB/u1x65LciD4DRo0SLfddpvq16+v7n9P/bJ8+XLdfvvtuvrqqy2ODlKQJDvhF8eaZrldfDt7j/x97jlzRiPDMLcvuUR65x0pOrpKT2d0c8VKryHLdy5XUliSDkQc8Ms1hGuX9yXEJGh9VsV/SOYX5is5zlt/SAIAAAAIZj5ZYxyhxW+JzmoqHb25ebOUnS3Vqxe4axcHE19NN+0hO9t8oa1bze1GjaT586UuXbzw4kDlgiGBbcXIbbsuyYHgN2nSJO3YsUO9evVSRIR5W+xyuTR06FA98sgjFkcHKQiSnfCbY02zvHLXSvt+VqZOlcaOLdseMUKaPt3sLYZacV9D6rfQceHHKTciV3L4/hrCtcv7uiV105rMNcoryCv3nhYbxeqa1NXC6AAAAAAEilr/pX3ZZZdV+dj3D1/jF0HDL4nOGnA6ze+UVqyQvvnGP9MPMxXwsflqumkPTZpIZ59tJsaTkqTPPpNOO80LLwwEN6tGbtt1SQ4EP6fTqTlz5mjSpEn64YcfVKdOHbVv314tW7a0OjT8LaCTnfCrY02znJVv0TRWVdGjhzm70YED0n33SQ8/LLEUmVd4XEOKy8p9fQ3h2uV9KUkp2pC9wWMUfn5hvoqNYvVs2VNnH3+2cv7IOeprML09AAAAgFonxhsctt6ZYRiaO3euGjRooM6dO0uSVq9erZycnGol0BFY/JLorCGn0xxpeP75UliYb8/FVMBV45f1ksPCpJkzpbg4c/RNUpIXXhSBig4rVWfVyO2aLMlBu8KbTjnlFJ1yyilWh4EKBHSyE351zGmWG9p4muUuXaT335c2bpRuv93qaIKKVdeQQLh2BVqS2Bnu1MhOI9Uuvp075uSGye6YIxxH/3qL6e0BAAAASF5IjL/22mvux2PHjtWVV16p6dOnKzw8XJJUUlKiW265RbGxsbU9FWzKL4nOAMBUwFXnk+mmj5yywOk012pESKPDSvVYNXK7ukty0K6ojbS0NE2aNEn16tVTWlraUY+dNm2an6JCZQI62Qm/OtY0y92SLJrGqiL790t16nj23E1NNX/gVVZdQ+x+7QrUJLEz3KkerXpUONre5XId9blMbw8AAABA8vIa4zNnztSKFSvcSXFJCg8PV1pamrp27arHHnvMm6eDjQTDurq1xVTAFpo505x2ctkyqXVrq6OBjdBhpXpqMnLbG6q7JAftitpYs2aNioqK3I8r42AaY1sIqGRnECksKdSqjFVat22dtn2/TfH14209klQ69jTLKUkWTmN1uKwsqV8/8z+qadOYMt3HDr+GxIaXddb39TXE7teuUEwSM709AAAAAMnLifHi4mJt3LhRp556qkf5xo0bj9l7Fwh0ViWUQpphSI8+Ko0bZ2736SOtXi01bWptXLANOqxUT3VHbntLdZfkoF1RG0uXLq3wMewpYJKdQaR0JOnyncuVFJakAxEHAmYk6dGmWbZFzNu3m/erW7aYPcJatJDuvNPqqIJa6TVk+c7lUpiUF5GnvKI8n19D7H7tCsUkcSBMbw8AAADA97yaGB8+fLhGjBihrVu36qyzzpIkff3115oyZYqGDx/uzVMBtmNVQilkuVzSXXdJTz5ZVjZwoNS4sXUxwXbosFI91R257S3VXZKDdgVCR0AkO4OMeyRp/RY6Lvw45UbkSo7AGEl6tGmWLbdunTlVemamuX388VLfvtbGFAJKryFtm7Y1Z0Ao2KZWjVr5/Bpi92tXsCeJK1o/fX/RfuUV5Ok4HVfueDtMbw8AAADAP7yaGH/88ceVmJioJ554Qrt375YkNWvWTHfffbf+9a9/efNUgO1YlVAKSUVF0vXXS2+9VVY2ebI0dizTUcIDHVaqp7ojt72pOkty0K6ojcsuu6zKx77//vs+jARVZetkZxDyGElaXFYezCNJfe7LL6ULL5T27TO3TztN+uwzKSnJ2rhChDPcqe4tu6t1ndaKj49X2OFru/v4vHa9dtl9DfTaKCwp1KtrXi23fvru/N3aV7BPzWKaKa5OnPt4u0xvDwAAAMA/vJoYDwsL0z333KN77rlHubm5kqTY2NhjPAuhqLDQXCO2dGRgQkLlIwMDhb8SSsH43lXL/v3S5ZdLCxaY22Fh0ssvSyNGWBsXbIkOK9VT3ZHbVqFdURsNGjRwPzYMQ3PnzlWDBg3UuXNnSdLq1auVk5NTrQQ6EEyCfSSp3334oXTVVdKhQ+Z2ly7SJ58E7CxHFY3EtcsoaFSd3ddAr42vfv2qwvXTE+olaHnGcq3NWqtmMc1sN709AAAAAP/wamJcMtcZX7ZsmbZu3arBgwdLkn7//XfFxsYqprJ5TxFSCgulGTM8E8jr15tJjg0bzKSMXZIv1eGPhFKwvndV9scf0oAB0tdfm9tRUdLs2dIll1gaViA4vENFcbH5+bFbstMXrBwBHaiqM3LbKrQrauO1115zPx47dqyuvPJKTZ8+XeHh4ZKkkpIS3XLLLXTuRMgK5pGkfjdzpnmD7nKZ2337Sv/3f1K9etbGVUOl688fORLX6vXnSdZXn93XQK+NVbtWKcIRobqRdbUjZ4d27dul/MJ8xThjFOeMU3Jcsk5qfJLtprcHAAAA4B9eTYzv3LlTffv2VUZGhgoKCnTBBReofv36evTRR1VQUKDp06d783QIUOnpZjKjRYvyI/2WLTMTy3ZOyByNrxNKwfzeHdOhQ1L37tJPP5nbsbHSRx+ZZTiqwztUREaaHTY2bgzsDhVVnTkhUEZAo3KVtfWwYbQram/mzJlasWKFOykuSeHh4UpLS1PXrl312GOPWRgdYI3DR5LGhpd1EAmGkaR+9dprnjMaDRlilkVGWhdTLbnXnz9iJK6V68/bNVlvd3ZfA702svOzVSeijlbvXq2dOTvlcDjkDHcqa3+W9hfulxzS9AunB3QdAQAAANScVxPjt99+uzp37qwffvhBjQ+bGu7SSy/VyJEjvXkqBLCVK80RfocndiVzOyLC3B+0yd1aCun3LjpaGj5cuvtuKTHRnEq9Y0erowoIR3aoiI01v5MN1A4V1Z05IRBGQKPiBPhZZ5l9Yb78snxb9+xptvXR2jXkl57AMRUXF2vjxo069dRTPco3btwoV+kITyDElI4kXb5zuRQm5UXkKa8oLyhGkvpVaqrUqpW0Y4d0xx3SE0+YSwAFMI/15w9j5frzdkzWBwo7r4FeG/Ex8Vq/fb0y8zMVGxWrqIgo976ikiLtPbBX6bvSg67eAAAAAKrGq4nxL7/8UqtWrZLziG+bW7Vqpd9++82bp0IAy8oykxsViYkx96NiIf/e3XWX+e9ll0knnGBtLAEk2DpUhPTMCUGqss4OCxdK+/aZ7RkXV3Z8Vdq6Kh0oIry+oAwCzfDhwzVixAht3bpVZ511liTp66+/1pQpUzR8+HCLowOsUTqStG3Ttlq3bZ22FWxTq0atgmIkqV81b27+R/bJJ9Ltt0sOh9UR1Zod15+3Y7Ie1uqa1FVvb3hbxa5ij6R4QXGBwsPCFV8vns8FAAAAEMK8+pWwy+VSSUlJufJff/1V9Y/MyCBkJSSYyYmK5Oeb0+GiYiH33pUO8TxcaXIcVRZsHSqCLdGPyjs7ZGRIe/dKOTmeifGqtHVVOlCce67Xq4IA8/jjjysxMVFPPPGEdu/eLUlq1qyZ7r77bv3rX/+yODrAOs5wp7q37K7WdVorPj5eYQE+0tkv9u+XDMPzpuvkk83R4kHCjuvP2zFZD2udffzZalK3iXbm7NTeA3vlDHeqsKRQLsOlVnGt1CymGZ8LAAAAIIR59RuOPn366KmnnnJvOxwO5efna/z48erfv783T4UA1q2bVFxsJicOl5dnlndj2cJKhdR79847ZqZ//nyrIwl4CQlmx4mK5OeX73twLIWF0vLl0iOPmAOgHnnE3C4srH2sVRFsiX5U3tmhuNic8nzXrvLPOVZbV6UDBRAWFqZ77rlHv/32m3JycpSTk6PffvtN99xzj8e64wBwVH/+KfXuLV16qVRQYHU0PtMtqZuKjWLlFXj+MWLl+vMJMQnKL6z4Rje/MF8JMdW80UXAc4Y7dX7y+UpumKyEegmKDItUQr0EnXXcWerUrJMOFB3gcwEAAACEMK+OGH/88cfVt29ftWnTRocOHdLgwYO1efNmNWnSRO+88443T4UAlpJiTmNbOr1tnTrSzp1mgqNJEzPBVnpcqK4BW9m6uJ06mevqHj41cH6+mTzq2dN8z4LCM8+YGVdJuvxy6dtvpbZtrY0pgHXrZk4fnZdXfuRsdTtUVHd9b18IuZkTQkBlnR1iYswR4xV17DhWW9OBAlVVXFysZcuWaevWrRo8eLAk6ffff1dsbKxiKvsQAUCpX3811xP/6Sdze/Ro6ZVXrI3JR0rXn1+2c5kiHBGKccYovzDf0vXnuyV105rMNcoryCu3xrhVyXpYr0fLHlqfvb7Ctef5XAAAAAChzauJ8aSkJP3www+aM2eOfvjhB+Xn52vEiBEaMmSI6tSp481TBb3KEqPBkCx2Os3kWbt2ZhJ86VIz8REfbyY5fv7ZTHr5K8lmN0dLPPbsKQ0bZr53pZ+N5GR7fzYKC6VVq6R166Rt28x2rjRew5AeeED6z3/KyoYOlVq39mvMwebwziiRkeZnZvt2qaio+h0q7LC+tzcT/bCHyjo7JCVJv/xifm4PV5W2pgMFqmLnzp3q27evMjIyVFBQoAsuuED169fXo48+qoKCAk2fPt3qEAHY2caNUp8+ZVObJCRIY8ZYG5MPla4/3y6+nVbuWqms/CwlN0y2dP15OybrYT0+FwAAAAAq47XEeFFRkVq3bq2PP/5YQ4YM0ZAhQ7z10iHHDiMyfc3pLEuerV8vnXmmdUk2u6lq4jEQ3pfSz/Ly5WaC68CBo3yWS0qkm282n1DqwQelhx6SHA4rwg8ah3dGWbnSTCi2a1ezDhV2WN/7yFkngnbmhBBSWWeHuDhzJpGICGnTpuq1NR0oUBW33367OnfurB9++EGNGzd2l1966aUaOXKkhZEBsL1vvpH695f++MPcPvFEaeFC6YQTrI3Lx5zhTvVo1UM9WtnjjxE7JuthPT4XAAAAACrjtcR4ZGSkDh065K2XC2l2GJHpL3ZIstlNML0nh3+WjztOys01y8t9lg8dkgYPlubONQ9wOMzp1IN4xI2/lXZGOfdcKTvbHLkfFlb917HD9NRHJvoDYeYEHN3ROjtcd525ksI331SvrelAgar48ssvtWrVKjmP+DC1atVKv/32m0VRAbC9hQulyy6T9u83t08/XVqwwBwxDr+zW7Ie9sDnAgAAAEBFvDqV+ujRo/Xoo4/qlVdeUUSEV186pARTYvRY7JBks5tgek+q9Fk+fZ908cVli8tHRkpvvildfbX/A8Yx2WV66tJEf7BcC0NdVTo79O7t/dd0uXxTHwQOl8ulkpKScuW//vqr6h/5nxcASNI775hrGxUVmds9e0rz5kkNGlgZFQAAAAAAqAKvZq+//fZbLVmyRAsXLlT79u1Vr149j/3vv/++N08XtIIpMXosdkmy2UkwvSfH/CxnGtI//ymtWGEW1qsnvf++uVYjbInpqeErvujsQAcKHEufPn301FNP6eWXX5YkORwO5efna/z48erfv7/F0QGwnU8+kYYMkQzD3L7sMmnWLCk62tq4AADwk+eff16PPfaYMjMz1bFjRz377LM666yzjvm82bNna9CgQbr44os1b9483wcKAABQiRpMpFu5uLg4DRw4UKmpqWrevLkaNGjg8YOqSUgwE6AVyc8Prhn6unUzk2l5eZ7loZxkC6b35Jif5USH9O9/m8PHGzeWPv+cpLjNpaSYA6MyMsw1n3/7zfw3I4PpqQEEnscff1wrV65UmzZtdOjQIQ0ePNg9jfqjjz5qdXgA7KZXL6l7d/PxqFHS//5HUhwAEDLmzJmjtLQ0jR8/Xt9//706duyo1NRUZWdnH/V5O3bs0F133aVzzz3XT5ECAABUzqsjxl977TVvvlzICqURmawB66mw0JyV8dAh6YMPpLp1zfW569Y1B6YE2nty+Gc5Nras3OOz3KOvNHu2uYhw69aWxYqqYX1vAMEkKSlJP/zwg+bMmaMffvhB+fn5GjFihIYMGaI6depYHR4Au4mONm/S33pLuuUWyeGwOiIAAPxm2rRpGjlypIYPHy5Jmj59uj755BPNnDlT9957b4XPKSkp0ZAhQzRhwgR9+eWXysnJ8WPEAAAA5XklMe5yufTYY4/pww8/VGFhoXr16qXx48fzhWINhVKymCRbmcJCacYMs93r1jVzxKWjck87TbrtNnOASiC9J6Wf5dLlw/PypDq/b9Xv0Seo53mOss/ywIGWxYjqY3rq0FZYKKWnl12zExJC85qNwFdUVKTWrVvr448/1pAhQzRkyBCrQwJgN4cOSXv3SscfX1bWoIE0erR1MQEAYIHCwkKtXr1a48aNc5eFhYWpd+/eSk9Pr/R5EydOVHx8vEaMGKEvv/zymOcpKChQQUGBezs3N7d2gQMAABzBK1Op/+c//9F9992nmJgYHXfccXr66ac1upZfFkyePFn/+Mc/VL9+fcXHx+uSSy7Rpk2bPI45dOiQRo8ercaNGysmJkYDBw5U1hELcGdkZGjAgAGqW7eu4uPjdffdd6u4uNjjmGXLlunMM89UVFSUTjrpJL3++uu1ir22SpPFY8ZI7dubSdL27c3tkSP9k3goLDSTmY88It1+u/nv8uVmubeVJtnuu096+mnz3x49Qi/Bkp5uJsVbtDAT4Z07m8sWXnSRFBUlRUYG3ntS+lm+5RapZUupy+9z9cRnbfVo46l++ywD8J7SDjzPPSetXy8dOGD++9xzZrkv/o8AfCUyMlKHDh2yOgwAdrVvn9Svn9kz+Yi/MQEACDV79+5VSUmJEo5Y3zEhIUGZmZkVPmfFihV69dVXNWPGjCqfZ/LkyR7LciYlJdUqbgAAgCN5JTH+5ptv6oUXXtBnn32mefPm6aOPPtKsWbPkcrlq/JrLly/X6NGj9dVXX2nRokUqKipSnz59tH//fvcxd955pz766CO9++67Wr58uX7//Xdddtll7v0lJSUaMGCACgsLtWrVKr3xxht6/fXX9eCDD7qP2b59uwYMGKDzzjtPa9eu1R133KEbbrhBn332WY1j9wYrk8UkPqyxcqU5Q8Dh0+dL5nZEhLk/EDmd5kj3YUWzdP2nVyqiuEAnvHyvnEs+tTo0ANV0eAeeU0+VjjvO/LdFC7P8KAMFAFsaPXq0Hn300XKdJgGEuKwsMyG+bJm0dat0+eXmukYAAKBK8vLydO2112rGjBlq0qRJlZ83btw47du3z/2za9cuH0YJAABCkVemUs/IyFD//v3d271795bD4dDvv/+u4w+fdq4aFixY4LH9+uuvKz4+XqtXr1b37t21b98+vfrqq3r77bd1/vnnSzLXOD/ttNP01Vdf6eyzz9bChQv1008/afHixUpISNDpp5+uSZMmaezYsXrooYfkdDo1ffp0JScn64knnpAknXbaaVqxYoWefPJJpaam1vAdCWyHJz6OXON82TJz2nOmUPa+rCxz2vyKxMQE8EAVw5AmT1aD++8vK7v2Wql3b+tiAlAjVenAw/8PCCTffvutlixZooULF6p9+/aqV6+ex/7333/fosgAWGbbNqlvXzMhLkmNG0tPPMF64gCAkNakSROFh4eXm6kzKytLiYmJ5Y7funWrduzYoQsvvNBdVjqAKiIiQps2bdKJJ55Y7nlRUVGKiorycvQAAABlvJIYLy4uVnR0tEdZZGSkioqKvPHykqR9+/ZJkho1aiRJWr16tYqKitT7sORa69at1aJFC6Wnp+vss89Wenq62rdv7zHNT2pqqm6++Wb9+OOPOuOMM5Senu7xGqXH3HHHHZXGUtl6Ny6Xy32T53K5ZBhGrUbNW2XlSnPa7ooSH5GR5v5zz7UmtuoKpHZISDDX467I/v3m2usBUA1PLpcc//qXwp55xl1k3HmnjKlTpbCwAKxQ4Auk34lgFqjtkJ1d/v+GUvXrm/sDqUreaodAa0eUiYuL08CBA/1yrlatWmnnzp3lym+55RY9//zz6tmzp5YvX+6x78Ybb9T06dPd2xkZGbr55pu1dOlSxcTEaNiwYZo8ebIiIrxySw+EvIgNG+S45pqyHqlJSdLChVLr1tYGBgCAxZxOpzp16qQlS5bokksukWT+HbRkyRKNGTOm3PGtW7fW+vXrPcruv/9+5eXl6emnn2aKdAAAYBmvfItmGIauu+46jx59hw4d0k033eQx8qamo25cLpfuuOMOdevWTe3atZMkZWZmyul0Ki4uzuPYw9e2yczMrHDtm9J9RzsmNzdXBw8eVJ06dcrFM3nyZE2YMKFc+Z49e9xrVbpcLu3bt0+GYSgszCsz1vtNcbGZhI2NLb8vOdncn53t/7hqIpDa4ayzzPc1MlI6/GN38KAUH1+2P2AUFqrBHXeozty57qLcf/9bB0aPlvbutTCw0BZIvxPBLFDb4YQTpJ07K/7/IS9PatkysK5T3mqHvLw8L0YFf3rttdf8dq5vv/1WJSUl7u0NGzboggsu0BVXXOEuGzlypCZOnOjerlu3rvtx6RJBiYmJWrVqlXbv3q2hQ4cqMjJSjzzyiH8qAQSz5cvV6LLL5Ci9pp92mpkUr+EMaAAABJu0tDQNGzZMnTt31llnnaWnnnpK+/fv1/DhwyVJQ4cO1XHHHafJkycrOjra/R1uqdLvcI8sBwAA8CevJMaHDRtWruyaa67xxktLMtd/3LBhg1asWOG116yNcePGKS0tzb2dm5urpKQkNW3aVLF/ZwtcLpccDoeaNm0aUEkPyZwOd+NGM0F7pO3bzanU4+P9H1dNBFI7nHOOtGmTtHy52QYxMVJ+vtkRoUcPc78/1pj3iv375Rg2TI6FCyVJRliY9j3+uGJuvVUxNm+HYBdIvxPBLFDboUMHqfS/4iOX2ti1S7rwwsD5/0HyXjscOWsO7M/lcumxxx7Thx9+qMLCQvXq1Uvjx4+vsEOktzRt2tRje8qUKTrxxBPV47D1B+rWrVvhVJSSqrREUEWqMtNRTQTqzBe1EWp1Dqn6zpsnx+DBcvz9u2KcfbaMDz80p1EP0vqHVPsq9OorhV6dqW/1ngvUxFVXXaU9e/bowQcfVGZmpk4//XQtWLDAPeAoIyMjoP6+BQAAockriXFfjrYZM2aMPv74Y33xxRce65UnJiaqsLBQOTk5HqPGD1/bJjExUd98843H65WuhXP4MRWtjxMbG1vpl6OVrXcTFhbmcQPocDjKlQWCbt2kNWvMRMeRiY+iInN/IFUpUNohOloaOdLseLBypTmDY6tW5vudkhJASXFJuuEGc4SNJEVHy3jnHR06+2zFBkA7hIJA+Z0IdoHYDl27Sj/+KC1bVr4DT8+e5v4Aqo4k77RDILUhTP/5z3/00EMPqXfv3qpTp46efvppZWdna+bMmX45f2Fhod566y2lpaXJcdi6xbNmzdJbb72lxMREXXjhhXrggQfco8arskRQRaoy01FNBOrMF7URanUOlfpGrFunxldcIcffiaJD55+vfTNmyCgpCaxpUKopVNq3VKjVVwq9OlPfqmO2I9TGmDFjKpw6XZKWLVt21Oe+/vrr3g8IAACgmmy7IKFhGLr11ls1d+5cLVu2TMnJyR77O3XqpMjISC1ZssS9NuSmTZuUkZGhlJQUSVJKSor+85//KDs7W/F/D2FbtGiRYmNj1aZNG/cx8+fP93jtRYsWuV8jFKWkmGtdV5b4COG3xuecTnN0+GGDxwLTpEnS55+bPSk++sjM7gfxF4tAqHA6y3fgSU4O0A48CGlvvvmmXnjhBd14442SpMWLF2vAgAF65ZVX/PJl+rx585STk6PrrrvOXTZ48GC1bNlSzZs317p16zR27Fht2rTJvRRRVZYIqkhVZjqqiUCd+aI2Qq3OIVPfXr2kG2+UXnxRBwYOlPO//1XTCjpBB5uQad+/hVp9pdCrM/WtOmY7AgAAQCizbWJ89OjRevvtt/XBBx+ofv367i/8GjRooDp16qhBgwYaMWKE0tLS1KhRI8XGxurWW29VSkqKzj77bElSnz591KZNG1177bWaOnWqMjMzdf/992v06NHuEd833XSTnnvuOd1zzz26/vrr9fnnn+t///ufPvnkE8vqbjUSH6i1U06RPv3U/LB06BC0U1ACVioslNLTy67TCQn+uU4HTQcehLSMjAz179/fvd27d285HA79/vvvHjMU+cqrr76qfv36qXnz5u6yUaNGuR+3b99ezZo1U69evbR161adeOKJNT5XVWc6qolAnPmitkKtziFT32eflatLF+VecIHio6KCv75/C5n2/Vuo1VcKvTpT36oJlfcHAAAAqIhtE+MvvviiJKlnz54e5a+99pp7dM2TTz6psLAwDRw4UAUFBUpNTdULL7zgPjY8PFwff/yxbr75ZqWkpKhevXoaNmyYJk6c6D4mOTlZn3zyie688049/fTTOv744/XKK68oNTXV53W0MxIfqJb166VTT/XMxnXubF08QJArLJRmzPCc2WP9enMZjA0bzM5NdGICKldcXFxutFRkZKSKiop8fu6dO3dq8eLF7pHglenSpYskacuWLTrxxBOrtEQQgCooKpJ+/tnsvFkqPFy69lpmOAIAAAAAIMjZNjFuGMYxj4mOjtbzzz+v559/vtJjWrZsWW6q9CP17NlTa9asqXaMAGSODL/8cumii6RZswJvgWEgAKWnm0nxFi2k+vXLyvPyzPJ27ejYBByNYRi67rrrPEZSHzp0SDfddJPq1avnLjtW8romXnvtNcXHx2vAgAFHPW7t2rWSpGbNmkmq2hJBAI5h/37zvnXFCmn5cunMM62OCAAAAAAA+JFtE+MAAsCsWdJ115kL0M+eLZ1zjjR6tNVRAUFv5UpzpPjhSXHJ3I6IMPeTGAcqN2zYsHJl11xzjc/P63K59Nprr2nYsGGKiCi7Dd+6davefvtt9e/fX40bN9a6det05513qnv37urw96jWqiwRBOAo/vhDGjBA+vprc/vSS6XNm5liBQAAAACAEEJiHEDNPPWUdOedZduXXy7dcINl4QChJCvLnD69IjEx5n4AlXvttdcsOe/ixYuVkZGh66+/3qPc6XRq8eLFeuqpp7R//34lJSVp4MCBuv/++93HVGWJIACV2LVLSk01p1CXpAYNpP/+l6Q4AAAAAAAhhsQ4gOoxDOm++6QpU8rKbrpJeu45c31GAD6XkGCuKV6R/HwpOdm/8QComj59+lS4XFBSUpKWL19+zOdXZYkgAEf4+WepTx/p11/N7cRE6bPPPNcYBwAAAAAAIYHFgAFUXXGxOSr88KT4+PHSCy+QFAf8qFs389cxL8+zPC/PLO/WzZq4AACwla++Mpf6KU2Kn3SStGoVSXEAAAAAAEIUI8YBVM3Bg9KgQdIHH5jbDof07LOsKQ5YICVF2rBBWrbMXFM8JsYcKV5cLPXsae4HACCkffqpudTPgQPm9hlnmGUJCdbGBQAAAAAALENiHEDVPPBAWVI8MtJcl/Gqq6yNCQhRTqc0cqTUrp20cqW5pnhysjlSPCWFJVMBACHu99+lSy+VCgrM7fPOk+bNk2JjLQ0LAAAAAABYi8Q4gKp54AFp8WJpyxZp7lzpggusjggIaU6n1KOH+QMAAA7TvLn03HNmL7KBA6W33pKio62OCgAAAAAAWIzEOICqadBAWrDAXKOxc2erowEAAAAqd8MN0vHHm505w8OtjgYAAAAAANhAmNUBALCptWvN+ZkPl5hIUhwAAAD2UlwsLVlSvrxvX5LiAAAAAADAjcQ4gPKWLpW6d5f69ZNyc62OBgAAAKjYwYPSFVeYI8Nnz7Y6GgAAAAAAYGMkxgF4ev99c3RNXp60Zo00YYLVEQEAAADl7dtn3rfOmycZhjl9+t69VkcFAAAAAABsisQ4gDIvv2yOuCksNLcHDJAmTbI2JgAAAOBImZlSjx7SF1+Y2/XqSXPnSk2aWBsXAAAAAACwLRLjAMwRNg8/LN14o+RymWXDhplfLtata21sAAAAwOG2bpW6dZN++MHcbtLEXAroggusjQsAAAAAANgaiXEg1Llc0m23SQ88UFZ2993Sa69JkZHWxQUAAAAcac0aMym+bZu53bKltGKF9I9/WBsXAAAAAACwvQirAwBgocJCc2T47NllZVOnmolxAAAAwE6WLZMuvljKzTW327aVPvtMOu44S8MCAAAAAACBgcQ4EMpmzChLioeHS6++aibKAQAAADs5eFAaNKgsKd61q/TRR1KjRtbGBQAAAAAAAgZTqQOh7KabpCuukKKjpXnzSIoDAADAnurUkf7v/8z71gEDpEWLSIoDAAAAAIBqYcQ4EMrCw6X//lf66SfpjDOsjgYAAACoXLdu5nriHTpIkZFWRwMAAAAAAAIMI8aBUPLjj9KaNZ5lUVEkxQEAAGAvLpf0zjuSYXiWd+pEUhwAAAAAANQIiXEgVKSnS+eeK/XtK23ZYnU0AAAAQMUKC6VrrpEGD5bGjbM6GgAAAAAAECRIjAOhYP58qVcv6a+/pOxsvmAEAACAPeXnSxdeaI4Wl6THHzdnPQIAAAAAAKglEuNAsPvvf6WLLpIOHjS3e/eWZs60NiYAAADgSHv3mp05Fy40t6OjpblzpbZtrY0LAAAAAAAEBRLjQDCbNk0aOlQqKTG3r7pK+vhjqX59a+MCAAAADpeRIZ1zjvTNN+Z2XJy0aJE5ehwAAAAAAMALSIwDwcgwpHvvlf71r7Ky0aOlWbOkqCjr4gIAAACO9NNPUteu0qZN5nazZtIXX5iJcgAAAAAAAC+JsDoAINgUFkrp6dLKlVJWlpSQIHXrJqWkSE6nHwIoLpZuvNFzuvQJE6QHHpAcDj8EAAAAAFRRero0YID011/m9sknm1Opt2plaVgAAAAAACD4kBgHvKiwUJoxQ1q2TIqIkGJipPXrpTVrpA0bpJEj/ZAcX7y4LCnucEgvvCDddJOPTwoAAABUk2FIt91WlhTv1EmaP1+Kj7c2LgAAAAAAEJSYSh3wovR0MyneooV06qnScceZ/7ZoYZanp/shiL59pYcfNjPw//sfSXEAAADYk8Mhvf++dPzxUq9e0tKlJMUBAAAAAIDPkBgHvGjlSnOkeP36nuX165vlK1f6KZD77pPWrZMuv9xPJwQAAABqICnJXE/8k0/K30QDAAAAAAB4EVOphzDL18IOQllZ5vTpFYmJMfd73ebN0k8/SRdfXFbmcJhD1QEAAAC7MAxp+nRp6FCpXr2y8uRk62ICAAAAAAAhgxHjIap0LeznnjPXwD5wwPz3uefM8sJCqyMMTAkJUn5+xfvy8839XvX992ZvhiuukBYt8vKLAwAAAF5SXCzdcIN0yy3mvWtRkdURAQAAAACAEENiPETZYi3sINStm/mdX16eZ3lenlnerZsXT/b551LPntKePeYXi+PHm6NwAAAAADs5eFAaOFCaOdPcXrBAWr7c2pgAAAAAAEDIYSr1EFWVtbB79LAmtkCWkiJt2GB2LoiIMKdPz883k+I9e5r7veL//k8aMqRsaP8550gffWROoQ4AAADYRU6OdNFF0pdfmtuRkdKsWVLv3paGBQAAAAAAQg+J8RBlyVrYIcDplEaOlNq1K1u7PTnZy2u3v/iiNHp02ejwCy+U5syR6tTxwosDAAAAXrJ7t9S3r7RunbkdEyPNnUtSHAAAAAAAWILEeIhKSDDXFK9Ifr6ZzEXNOJ3maHuvj7g3DGniROmhh8rKrrvOXBQ+gl9lAAAA2MjmzVKfPtKOHeZ206bS/PlS586WhgUAAAAAAEIXa4yHKL+uhY3aKymRxozxTIrfc4+5TiNJcQAAANjJ99+bf1CUJsVbtpRWrCApDgAAAAAALEVGLUT5bS1seMfGjWYSvNTjj0v/+pd18QAAAACVefxxac8e83G7dtJnn0nNm1sbEwAAAAAACHkkxkOUX9bChve0bSv973/SlVdKL70kDR1qdUQAAABAxV55RcrIMB9/9JHUsKG18QAAAAAAAIjEeEjz2VrY8I0LL5S2bZOaNbM6EgAAAKBydetKH39s/sFRt67V0QAAAAAAAEhijXHAnnbulJ56qnw5SXEAAADYiWFITz5ZNkK8VFwcSXEAAAAAAGArJMYBu9mwQeraVbrzzoqT4wAAAIAduFzSrbdKaWlSnz7S3r1WRwQAAAAAAFApEuOAnaxcKZ17rvT77+b2Sy9Jhw5ZGxMAAABwpMJCafBg6fnnze1Nm6TPPrM2JgAAAAAAgKMgMQ7YxSefSBdcIOXkmNv/+If0xRdSdLSlYQEAAAAe8vKkf/5TmjPH3A4Pl954QxoyxNq4AAAAAAAAjiLC6gAAyPwiccQIqaTE3L7gAun996WYGGvjAgAAAA63Z4/Uv7/03Xfmdp060rvvSgMGWBsXAAAAAADAMTBiHLDa449L111XlhS/6irp449JigMAAMBedu6UzjmnLCkeFyctXkxSHAAAAAAABAQS44BVDEO65x7p7rvLysaMkd5+W3I6rYsLAAAAONKGDVLXrtIvv5jbzZtLX35plgEAAAAAAAQAEuOAVfbuld55p2x70iTpmWekMH4tAQAAYDNz50q//24+PuUUadUqqV07a2MCAAAAAACoBtYYB6zStKn02WdSz55mUvzGG62OCAAAAKjY/fdLGRnSDz9In3xi3ssCAAAAAAAEEIamAlZq00bavJmkOAAAQe6hhx6Sw+Hw+GndurV7/6FDhzR69Gg1btxYMTExGjhwoLKysjxeIyMjQwMGDFDdunUVHx+vu+++W8XFxf6uCkKVwyG9+KK0dClJcQAAAAAAEJBIjAP+8vvv0p13SkVFnuUNGlgTDwAA8Ku2bdtq9+7d7p8VK1a4991555366KOP9O6772r58uX6/fffddlll7n3l5SUaMCAASosLNSqVav0xhtv6PXXX9eDDz5oRVUQCp56SpFffeVZFhEh1atnTTwAAAAAAAC1xFTqgD/88ovUp4+0c6f0xx/S66+zljgAACEmIiJCiYmJ5cr37dunV199VW+//bbOP/98SdJrr72m0047TV999ZXOPvtsLVy4UD/99JMWL16shIQEnX766Zo0aZLGjh2rhx56SE6ns8JzFhQUqKCgwL2dm5srSXK5XHK5XDWui8vlkmEYtXqNQBMydTYMOe69V2GPP66GsbFyLV0qnX661VH5XMi079+ob/ALtTpT3+o9FwAAAAhVJMYBX/vuO6lfP2nvXnN7xQppzx4pIcHauAAAgF9t3rxZzZs3V3R0tFJSUjR58mS1aNFCq1evVlFRkXr37u0+tnXr1mrRooXS09N19tlnKz09Xe3bt1fCYfcPqampuvnmm/Xjjz/qjDPOqPCckydP1oQJE8qV79mzR4cOHapxXVwul/bt2yfDMBQWIp39QqLOxcWKvesu1Z0zR5IUlpurvI8/1sHmzS0OzPdCon0PQ32DX6jVmfpWXV5eno+iAgAAAOyPxDjgS4sXS5deKuXnm9sdO0qffkpSHACAENOlSxe9/vrrOvXUU7V7925NmDBB5557rjZs2KDMzEw5nU7FxcV5PCchIUGZmZmSpMzMTI+keOn+0n2VGTdunNLS0tzbubm5SkpKUtOmTRUbG1vj+rhcLjkcDjVt2jQkEhBSCNT5wAE5Bg2S4+OPJUlGWJhyJ09WvbQ01Q/G+h4h6Nv3CNQ3+IVanalv1UVHR/soKgAAAMD+SIwDvvK//0nXXFO2pnj37tIHH0hHfOkNAACCX79+/dyPO3TooC5duqhly5b63//+pzp16vjsvFFRUYqKiipXHhYWVuvEgcPh8MrrBJKgrfNff0kXXWTObCRJTqeMt97SwXPPVf1grG8lgrZ9K0F9g1+o1Zn6Vk2ovD8AAABARbgbBnzhhRekq68uS4pffLG0YAFJcQAAIEmKi4vTKaecoi1btigxMVGFhYXKycnxOCYrK8u9JnliYqKysrLK7S/dB9TY779LPXqUJcXr1zfvWwcOtDYuAAAAAAAALyMxDniTYUgPPSSNHm0+lqTrr5f+7/8kH44GAwAAgSU/P19bt25Vs2bN1KlTJ0VGRmrJkiXu/Zs2bVJGRoZSUlIkSSkpKVq/fr2ys7PdxyxatEixsbFq06aN3+NHkPjlF6lbN2n9enM7Pl5atkw67zxLwwIAAAAAAPAFplIHvKmwUFq0qGx73DjpP/+RHA7rYgIAAJa76667dOGFF6ply5b6/fffNX78eIWHh2vQoEFq0KCBRowYobS0NDVq1EixsbG69dZblZKSorPPPluS1KdPH7Vp00bXXnutpk6dqszMTN1///0aPXp0hVOlA1WyYYO0c6f5ODlZWrhQOukka2MCAAAAAADwERLjgDdFRUkffST17GmOFL/jDqsjAgAANvDrr79q0KBB+uOPP9S0aVOdc845+uqrr9S0aVNJ0pNPPqmwsDANHDhQBQUFSk1N1QsvvOB+fnh4uD7++GPdfPPNSklJUb169TRs2DBNnDjRqiohGFx2mfTcc9JLL5nTpzdrZnVEAAAAAAAAPkNiHPC2Ro2kb781k+QAAACSZs+efdT90dHRev755/X8889XekzLli01f/58b4eGUHfLLdKIEdy7AgAAAACAoMca40BtZGdLgwdLe/d6lvPFIgAAAOzmxRell18uX869KwAAAAAACAGMGAdqavt2KTVV2rxZ2rZNWrxYiomxOioAAADAk2FIEyaYP2FhUuPG0sCBVkcFAAAAAADgV4wYB2pi/XqpWzczKS5Jv/0mZWZaGxMAAABwpJISacwYMykuSS6X9MMP1sYEAAAAAABgAUaMA9W1YoV04YVSTo653bq19NlnUosWloYFAAAAeCgokIYOlf73v7KyadOkO++0LiYAAAAAAACLkBgHquOjj6Qrr5QOHTK3u3SRPv5YatLE2rgAAACAw+XlSZdeKi1ZYm5HREivvSZdc421cQEAAAAAAFiEqdSBqnr9dfPLxdKkeGqqua44SXEAAADYyZ490nnnlSXF69SRPvyQpDgAAAAAAAhpJMaBqnjsMWn4cHONRkkaNMj8cjEmxtq4AAAAgMPt2CF16yatXm1uN2xoJsj79bM0LAAAAAAAAKuRGAeOxTCkTZvKtm+7TXrrLcnptC4mAAAAoCI5OVJmpvn4uOOkL7+UUlIsDQkAAAAAAMAOWGMcOBaHQ5o+Xdq7VzrrLGncOLMMAAAAsJvTT5c++EC6805zhqMWLayOCAAAAAAAwBZIjANVEREhvf++FMYkCwAAALC5886Tvv+ee1cAAAAAAIDD8E0JcKQ//5QGDJDWr/cs54tFAAAA2M0bb0hjxpjL/xyOe1cAAAAAAAAPjBgHDvfrr1LfvtKPP0pr1kirVkmtWlkdFQAAAFDeY49J99xjPm7cWJowwdp4AAAAAAAAbIzEOFBq0yapTx8pI8PcdrmkffusjQkAAAA4kssljR0rPf54Wdlff5mjxh0O6+ICAAAAAACwMRLjgCR9+63Uv7+0d6+5fcIJ0sKF0oknWhsXAAAAcLiiImnkSHMK9VIPPyzddx9JcQAAAAAAgKMgMQ4sWiRdeqm0f7+53bGjtGCBlJhobVwAAADA4Q4ckK68UvrkE3M7LEx68UVp1Chr4wIAAAAAAAgAJMYR2mbPloYONUfeSFKPHtIHH0gNGlgbFwAAAHC4P/+ULrxQWrXK3HY6pXfekS67zNq4AAAAAAAAAkSY1QEAlnnuOWnw4LKk+CWXmCPFSYoDAADATn77TerevSwpXr++ed9KUhwAAAAAAKDKSIwjdDkckmGYj2+4QXr3XSk62tqYAAAAgCNFRkqFhebj+Hhp+XLpvPOsjQkAAAAAACDAMJU6Qtfo0VJWluRySZMmmYlyAAAAwG7i46XPPjOXAHrtNemkk6yOCAAAAAAAIOCQGEfoMIzyye8JE0iIAwAAwH6OvHdNTpa++IJ7VwAAAAAAgBpiKnWEhtxcqU8f6f33Pcv5YhEAAAB2M2eOee968KBnOfeuAAAAAAAANWbbxPgXX3yhCy+8UM2bN5fD4dC8efM89huGoQcffFDNmjVTnTp11Lt3b23evNnjmD///FNDhgxRbGys4uLiNGLECOXn53scs27dOp177rmKjo5WUlKSpk6d6uuqwc/C9uyR4/zzpcWLpUGDpGXLrA4JAAAAqNhzz5n3rKX3rsXFVkcEAAAgSXr++efVqlUrRUdHq0uXLvrmm28qPXbGjBk699xz1bBhQzVs2FC9e/c+6vEAAAD+YNvE+P79+9WxY0c9//zzFe6fOnWqnnnmGU2fPl1ff/216tWrp9TUVB06dMh9zJAhQ/Tjjz9q0aJF+vjjj/XFF19o1KhR7v25ubnq06ePWrZsqdWrV+uxxx7TQw89pJdfftnn9YOfbNumRhddJMeaNeZ2TIwUHW1tTAAAAMCRDEMaP1669VbzsSQ1aWJtTAAAAH+bM2eO0tLSNH78eH3//ffq2LGjUlNTlZ2dXeHxy5Yt06BBg7R06VKlp6crKSlJffr00W+//ebnyAEAAMrYdo3xfv36qV+/fhXuMwxDTz31lO6//35dfPHFkqQ333xTCQkJmjdvnq6++mr9/PPPWrBggb799lt17txZkvTss8+qf//+evzxx9W8eXPNmjVLhYWFmjlzppxOp9q2bau1a9dq2rRpHgl0BKgffpCjb19FZGaa28cfLy1cKJ12mrVxAQAAAIcrKZFGj5Zeeqms7L77pIcfZvp0AABgC9OmTdPIkSM1fPhwSdL06dP1ySefaObMmbr33nvLHT9r1iyP7VdeeUXvvfeelixZoqFDh/olZgAAgCPZNjF+NNu3b1dmZqZ69+7tLmvQoIG6dOmi9PR0XX311UpPT1dcXJw7KS5JvXv3VlhYmL7++mtdeumlSk9PV/fu3eV0Ot3HpKam6tFHH9Vff/2lhg0bVnj+goICFRQUuLdzc3MlSS6XSy6Xy/3YMAz3Nvzsiy/kuPhiOf5uG+O002R8+qmUlCTRJn7H74N90Bb2QDvYg7fagXYEUCsFBdKQIdJ775WVPfWUdPvtloUEAABwuMLCQq1evVrjxo1zl4WFhal3795KT0+v0mscOHBARUVFatSoUaXHVPadKwAAgLcEZGI88+8RwAkJCR7lCQkJ7n2ZmZmKj4/32B8REaFGjRp5HJOcnFzuNUr3VZYYnzx5siZMmFCufM+ePe6p3F0ul/bt2yfDMBQWZtsZ64NS1IIFirvpJjn+vpE+2KGDcmbNkiMqSqpkeif4Fr8P9kFb2APtYA/eaoe8vDwvRgUgpOTmSpdcIi1dam5HREivv24mygEAAGxi7969KikpqfC72I0bN1bpNcaOHavmzZt7DHQ6UmXfuQIAAHhLQCbGrTZu3DilpaW5t3Nzc5WUlKSmTZsqNjZWkvllu8PhUNOmTUl6+NMbb8hxww1ylI7cT03VvuefV9OWLWkHC/H7YB+0hT3QDvbgrXaIjo72YlQAQsYff0gXXCCtWWNu161rjhrv29fauAAAALxsypQpmj17tpYtW3bUv58q+84VAADAWwIyMZ6YmChJysrKUrNmzdzlWVlZOv30093HZB8xOri4uFh//vmn+/mJiYnKysryOKZ0u/SYikRFRSkqKqpceVhYmMcX6w6Ho1wZfKxVK3OkTWGhOdLm1Velv/6iHWyA3wf7oC3sgXawB2+0A20IoEbq15eaNjUfN2okzZ8vdelibUwAAAAVaNKkicLDwyv8HvVo36FK0uOPP64pU6Zo8eLF6tChw1GPrew7VwAAAG8JyG9yk5OTlZiYqCVLlrjLcnNz9fXXXyslJUWSlJKSopycHK1evdp9zOeffy6Xy6Uuf3/hlJKSoi+++EJFRUXuYxYtWqRTTz210mnUYXPnnSe9846Ulia9+aYUGWl1RAAAAEB5Tqc5QnzgQGnFCpLiAADAtpxOpzp16uTxXazL5dKSJUvc38VWZOrUqZo0aZIWLFigzp07+yNUAACAo7JtYjw/P19r167V2rVrJUnbt2/X2rVrlZGRIYfDoTvuuEMPP/ywPvzwQ61fv15Dhw5V8+bNdckll0iSTjvtNPXt21cjR47UN998o5UrV2rMmDG6+uqr1bx5c0nS4MGD5XQ6NWLECP3444+aM2eOnn76aY8pe2BzxcWSYXiWXXaZ9MQTEiP4AAAAYCfFxZ7bMTHS//2fdNpp1sQDAABQRWlpaZoxY4beeOMN/fzzz7r55pu1f/9+DR8+XJI0dOhQjRs3zn38o48+qgceeEAzZ85Uq1atlJmZqczMTOXn51tVBQAAAPtOpf7dd9/pvPPOc2+XJquHDRum119/Xffcc4/279+vUaNGKScnR+ecc44WLFjgsU7NrFmzNGbMGPXq1UthYWEaOHCgnnnmGff+Bg0aaOHChRo9erQ6deqkJk2a6MEHH9SoUaP8V1HU3P790hVXSGedJT30kNXRAAAAAJX78ENp7Fhp8WLpuOOsjgYAAKBarrrqKu3Zs0cPPvigMjMzdfrpp2vBggVKSEiQJGVkZHgsM/Xiiy+qsLBQl19+ucfrjB8/Xg/xPR4AALCIbRPjPXv2lHHkSODDOBwOTZw4URMnTqz0mEaNGuntt98+6nk6dOigL7/8ssZxwiJ//CH985/SV19Jn34qJSRIN99sdVQAAABAeTNnSiNHSi6XlJpqTp0eF2d1VAAAANUyZswYjRkzpsJ9y5Yt89jesWOH7wMCAACoJuaaRuDZtUs691wzKS5JDRpIbdtaGxMAAABwJMOQHn1UGjHCTIpL0umnS/XqWRoWAAAAAABAKCIxjsDy889St27mv5KUmCgtXy51725tXAAAAMDhXC7prruke+8tK7vjDunNN6XISMvCAgAAAAAACFW2nUodKOfrr6X+/aU//zS3TzxRWrhQOuEEa+MCAAAADldUZI4S/+9/y8omTzbXGHc4rIsLAAAAAAAghJEYR2D47DPpssukAwfM7TPOKFtbHAAAALCL/fulK6+U5s83t8PCpJdekm64wdq4AAAAAAAAQhyJcdjfvHnSFVdIxcXm9nnnmWWxsVZGBQAAAHg6eFC64AIpPd3cjoqSZs+WLrnE0rAAAAAAAADAGuMIBB06SE2amI8vu8wcfUNSHAAAAHYTHS117Wo+jo01Zz0iKQ4AAAAAAGALjBiH/Z1wgvml4htvSFOnSuHhVkcEAAAAlOdwmPerLpc0bJjUsaPVEQEAAAAAAOBvJMZhPyUl5rTpUVFlZR06SE88YV1MAAAAQEUOHJDq1i3bDguTpk2zLh4AAAAAAABUiKnUYS+HDpnriV99ddma4gAAAIAdLVwoJSdLX31ldSQAAAAAAAA4BhLjsI99+6S+faW5c6V586TbbrM6IgAAAKBi77wj/fOfUna2NGCAtHmz1REBAAAAAADgKEiMwx6ysqSePaXly83tevWkSy6xMiIAAACgYs8+Kw0ZIhUVmds9e0pJSZaGBAAAAAAAgKMjMQ7rbdsmdesmrV1rbjduLH3+udSnj6VhAQAAAB4MQ44HHzRnNjIMs2zUKOl//5Oio62NDQAAAAAAAEdFYhzWWrtW6tpV2rrV3G7RQlqxQjrrLEvDAgAA8KbJkyfrH//4h+rXr6/4+Hhdcskl2rRpk8cxPXv2lMPh8Pi56aabPI7JyMjQgAEDVLduXcXHx+vuu+9WcXGxP6sSukpKFHvPPXL85z9lZfffL02fLoWHWxcXAAAAAAAAqiTC6gAQwpYvly66SMrNNbfbtpUWLJCOP97auAAAALxs+fLlGj16tP7xj3+ouLhY9913n/r06aOffvpJ9erVcx83cuRITZw40b1dt25d9+OSkhINGDBAiYmJWrVqlXbv3q2hQ4cqMjJSjzzyiF/rE3IOHZJj8GDVnTu3rOyZZ6Rbb7UuJgAAAAAAAFQLiXFY44svpNRUqaDA3E5JkT7+WGrUyNq4AAAAfGDBggUe26+//rri4+O1evVqde/e3V1et25dJSYmVvgaCxcu1E8//aTFixcrISFBp59+uiZNmqSxY8fqoYcektPpLPecgoICFZTeb0nK/btDosvlksvlqnF9XC6XDMOo1WsEDMOQ46KL5Fi0yNyMjJTx2mvSoEFSENc/pNpY1DfYhVp9pdCrM/Wt3nMBAACAUEViHNY480ypQwfp22+l/v2ld9+VDhsRBQAAEMz27dsnSWp0RKfAWbNm6a233lJiYqIuvPBCPfDAA+5R4+np6Wrfvr0SEhLcx6empurmm2/Wjz/+qDPOOKPceSZPnqwJEyaUK9+zZ48OHTpU4/hdLpf27dsnwzAUFhb8qzNFX3SR4hYtkqtOHf316qsqOu88KTvb6rB8KtTamPoGt1CrrxR6daa+VZeXl+ejqAAAAAD7IzEOa8TESPPnS9OmSRMmSJGRVkcEAADgFy6XS3fccYe6deumdu3aucsHDx6sli1bqnnz5lq3bp3Gjh2rTZs26f3335ckZWZmeiTFJbm3MzMzKzzXuHHjlJaW5t7Ozc1VUlKSmjZtqtjY2FrVweFwqGnTpiGRgNAtt6hE0l8nnKC4Pn1Cos6h1sbUN7iFWn2l0Ksz9a266OhoH0UFAAAA2B+JcfiHyyXl5HhOld6kicR6mAAAIMSMHj1aGzZs0IoVKzzKR40a5X7cvn17NWvWTL169dLWrVt14okn1uhcUVFRioqKKlceFhZW68SBw+HwyuvY0h9/SI0bexS5brlFxdnZwVvnCgR1G1eA+ga3UKuvFHp1pr5VEyrvDwAAAFAR7obhe4WF0rXXSj16SH/9ZXU0AAAAlhkzZow+/vhjLV26VMcff/xRj+3SpYskacuWLZKkxMREZWVleRxTul3ZuuSogS++kE46SXr9dasjAQAAAAAAgBeRGIdv7d8vXXSR9Pbb0oYN0iWXSIZhdVQAAAB+ZRiGxowZo7lz5+rzzz9XcnLyMZ+zdu1aSVKzZs0kSSkpKVq/fr2yD1vbetGiRYqNjVWbNm18EnfImTdP6tPHnOnohhukpUutjggAAAAAAABewlTq8J0//pAGDJC+/trcjo6W/vUvyeGwNi4AAAA/Gz16tN5++2198MEHql+/vntN8AYNGqhOnTraunWr3n77bfXv31+NGzfWunXrdOedd6p79+7q0KGDJKlPnz5q06aNrr32Wk2dOlWZmZm6//77NXr06AqnS0c1vfqqNGqUuQSQZCbIzzrL2pgAAAAAAADgNYwYh29kZEjnnFOWFG/QQFq40Bw9DgAAEGJefPFF7du3Tz179lSzZs3cP3PmzJEkOZ1OLV68WH369FHr1q31r3/9SwMHDtRHH33kfo3w8HB9/PHHCg8PV0pKiq655hoNHTpUEydOtKpawcEwpMmTzRHipUnxa66RPvhAqlfP2tgAAAAAAADgNYwYh/f99JOUmir9+qu5nZgoffaZ9PdoJwAAgFBjHGMpmaSkJC1fvvyYr9OyZUvNnz/fW2HB5ZLS0qSnny4ru/NO6fHHpTD6EAMAAAAAAAQTEuPwrq++MqdP//NPc/ukk8yR4lVYRxMAAADwm8JCafhw6e23y8qmTJHuuYelfwAAAAAAAIIQiXF4z08/Sb16SQcOmNtnnil9+qkUH29tXAAAAMCRRowoS4qHhUkvv2yWAQAAAAAAICgxPyC8p3Vr6bLLzMfnny8tXUpSHAAAAPZ0223mGuJRUdL775MUBwAAAAAACHKMGIf3hIVJM2dK7dtLt99ufskIAAAA2NE//iHNnWves3bvbnU0AAAAAAAA8DES46g5w5AyMqSWLcvKIiPNdRkBAAAAO8nIkI4/3uzMWeqCC6yLBwAAAAAAAH7FVOqomeJiaeRIcx3xn3+2OhoAAACgcl99JZ1xhnTnnWbnTgAAAAAAAIQcEuOovoMHpcsvl159VfrzT6lfP7MMAAAAsJsFC6Revcz71meeMe9hAQAAAAAAEHJIjKN6cnKkvn2lDz4wtyMjpUcflerUsTQsAAAAoJxZs6QLL5QOHDC3zztPuvJKa2MCAAAAAACAJUiMo+p275Z69JC++MLcrldP+uQT6aqrrI0LAAAAONLTT0vXXGMuASRJAwdK8+dLsbHWxgUAAAAAAABLkBhH1WzZInXrJq1bZ243aSItXSpdcIG1cQEAAACHMwzpvvukO+4oK7vxRmnOHCk62rKwAAAAAAAAYC0S4zi2NWvMpPj27eZ2y5bSihXSP/5hbVwAAADA4YqLpZEjpcmTy8oefFB68UUpPNy6uAAAAAAAAGC5CKsDgM3t2WOuxbhvn7ndtq302WfSccdZGxcAAABwpPvuk1591XzscEjPPCONGWNtTAAAAAAAALAFRozj6Jo2NUfZSFLXrub64iTFAQAAYEd33im1aiVFRkrvvENSHAAAAAAAAG6MGMexpaWZa4pffrlUt67V0QAAAAAVa9ZMWrRI2rFD6t3b6mgAAAAAAABgI4wYhyfDkNatK18+dChJcQAAANjLtm1SXp5n2UknkRQHAAAAAABAOSTGUcblkm6/XTrzTOnjj62OBgAAAKjcmjXmUj+XXioVFFgdDQAAAAAAAGyOxDhMhYXSkCHSs89KJSXSVVdJu3dbHRUAAABQ3rJlUo8eUlaWtGSJ9OCDVkcEAAAAAAAAm2ONcUj5+dLAgdLCheZ2eLj0wgvmGo0AAACAnbz/vjRokNmxU5K6dZPuvdfamAAAAAAAAGB7jBgPdXv3Sr16lSXFo6OlefOkYcMsDQsAAAAoZ8YM6YorypLiAwaY97ENG1obFwAAAAAAAGyPxHgo27lTOucc6ZtvzO24OGnxYumf/7Q0LAAAAMCDYUj/+Y80apTkcpllw4ZJc+dKdetaGxsAAAAAAAACAlOph6off5RSU6XffjO3mzeXPvtMatfO2rgAAACAw7lc0p13Ss88U1Z2113S1KmSw2FdXAAAAAAAAAgoJMZDUUGB1K9fWVL85JPNKShbtbI0LAAAAKCcF17wTIpPnSrdfbd18QAAAAAAACAgMZV6KIqKkl55RYqMlDp1klasICkOAAAAe7rhBum886TwcOm110iKAwAAAAAAoEYYMR6q+vSR5s+XunSR6te3OhoAAACgYtHR0rx50rffSr16WR0NAAAAAAAAAhQjxkPFsmWSYXiW9e5NUhwAAAD2kpEhbd3qWRYbS1IcAAAAAAAAtUJiPNgZhnTvveb0k48+anU0AAAAQOV++knq2tWc3Sgz0+poAAAAAAAAEERIjAez4mJzTcbShPi4cdKaNdbGBAAAAFQkPV065xzpt9+kbdukMWOsjggAAAAAAABBhDXGg9XBg9LVV0sffmhuOxzSCy9IZ5xhbVwAAADAkT79VBo40LyHlaROncx7VwAAAAAAAMBLSIwHo5wc6aKLpC+/NLedTmnWLOnyyy0NCwAAACjnrbek4cPN2Y4kcy3xuXOl+vWtjQsAAAAAAABBhanUg83u3VKPHmVJ8ZgYcwQOSXEAAADYzZNPStdeW5YUv+IK6ZNPSIoDAAAAAADA60iMB5PNm6WuXaV168ztpk2lZcuk88+3NCwAAADAg2FI48ZJaWllZbfcIr3zjhQVZV1cAAAAAAAACFokxoOFYZijbXbsMLdbtZJWrjTXZwQAAADs5OOPpSlTyrYfekh67jkpPNyykAAAAAAAABDcSIwHC4dD+u9/zVHi7dubSfGTT7Y6KgAAAKC8f/5TGj3avId94QVp/HjzMQAAAAAAAOAjEVYHAC86+WRpyRLp+OOlhg2tjgYAAAComMMhPfOMNGiQ1K2b1dEAAAAAAAAgBDBiPJB9+KFUUOBZ1r49SXEAAADYy+7d0ooVnmVhYSTFAQAAAAAA4DckxgORYUgTJ0oXXywNGyaVlFgdEQAAAFCxLVvMBHi/ftJ331kdDQAAAAAAAEIUifFAU1Ii3XqruQ6jJM2ZI338sbUxAQAAABX5/nszKb59u5SfL91yi9nJEwAAAAAAAPAz1hgPJAUF0tCh0v/+V1b2+OPmyHEAAADATj7/XLrkEikvz9xu106aN89cXxwAAAAAAADwMxLjgSIvT7rsMmnxYnM7PFyaOdNMlAMAAAB28t570uDBUmGhud2tm/TRR1LDhtbGBQAAAAAAgJDFVOqBYM8e6fzzy5LidepIH3xAUhwAAAD289JL0hVXlCXF//lPaeFCkuIAAAAAAACwFIlxu9uxQzrnHOm778zthg3NBPmAAZaGBQAAAHgwDGniROmmm8rWEb/uOmnuXKluXUtDAwAAAAAAAEiM291990m//GI+Pu446csvpa5drY0JAAAAONL69dKECWXb99xjLv0TwepNAAAAAAAAsB6JcbubPl064wzp1FOlVauktm2tjggAAAAor0MHacYMyeGQHn9cevRR8zEAAAAAAABgAyTG7S42Vvr0U2nFCqlFC6ujAQAAgA08//zzatWqlaKjo9WlSxd98803Vodkuv56c+T4v/5ldSQAAAAAAACABxLjgSAhQWrSxOooAAAAYANz5sxRWlqaxo8fr++//14dO3ZUamqqsrOzrQ7NxAxHAAAAAAAAsCES4wAAAEAAmTZtmkaOHKnhw4erTZs2mj59uurWrauZM2daHRoAAAAAAABgWxFWBwAAAACgagoLC7V69WqNGzfOXRYWFqbevXsrPT293PEFBQUqKChwb+fm5kqSXC6XXC5XjeNwuVwyDKNWrxFoQq3O1De4Ud/gF2p1pr7Vey4AAAAQqkiMAwAAAAFi7969KikpUUJCgkd5QkKCNm7cWO74yZMna8KECeXK9+zZo0OHDtU4DpfLpX379skwDIWFhcYkVKFWZ+ob3Khv8Au1OlPfqsvLy/NRVAAAAID9kRgHAAAAgtS4ceOUlpbm3s7NzVVSUpKaNm2q2NjYGr+uy+WSw+FQ06ZNQyIBIYVenalvcKO+wS/U6kx9qy46OtpHUQEAAAD2R2IcAAAACBBNmjRReHi4srKyPMqzsrKUmJhY7vioqChFRUWVKw8LC6t14sDhcHjldQJJqNWZ+gY36hv8Qq3O1LdqQuX9AQAAACrC3TAAAAAQIJxOpzp16qQlS5a4y1wul5YsWaKUlBQLIwMAAAAAAADsjRHjAAAAQABJS0vTsGHD1LlzZ5111ll66qmntH//fg0fPtzq0AAAAAAAAADbIjEOAAAABJCrrrpKe/bs0YMPPqjMzEydfvrpWrBggRISEqwODQAAAAAAALAtEuMAAABAgBkzZozGjBljdRgAAAAAAABAwGCNcQAAAAAAAAAAAABAUCMxDgAAAAAAAAAAAAAIaiTG//b888+rVatWio6OVpcuXfTNN99YHRIAAAAAAAAAAAAAwAtIjEuaM2eO0tLSNH78eH3//ffq2LGjUlNTlZ2dbXVoAAAAAAAAAAAAAIBairA6ADuYNm2aRo4cqeHDh0uSpk+frk8++UQzZ87UvffeW+74goICFRQUuLdzc3MlSS6XSy6Xy/3YMAz3NqxBO9gD7WAftIU90A724K12oB0BAAAAAAAAwP5CPjFeWFio1atXa9y4ce6ysLAw9e7dW+np6RU+Z/LkyZowYUK58j179ujQoUOSzC/J9+3bJ8MwFBbGwHyr0A72QDvYB21hD7SDPXirHfLy8rwYFQAAAAAAAADAF0I+Mb53716VlJQoISHBozwhIUEbN26s8Dnjxo1TWlqaezs3N1dJSUlq2rSpYmNjJZlftjscDjVt2pSkh4VoB3ugHeyDtrAH2sEevNUO0dHRXowKAAAAAOzp+eef12OPPabMzEx17NhRzz77rM4666xKj3/33Xf1wAMPaMeOHTr55JP16KOPqn///n6MGAAAwFPIJ8ZrIioqSlFRUeXKw8LCPL5Ydzgc5crgf7SDPdAO9kFb2APtYA/eaAfaEAAAAECwmzNnjtLS0jR9+nR16dJFTz31lFJTU7Vp0ybFx8eXO37VqlUaNGiQJk+erH/+8596++23dckll+j7779Xu3btLKgBAACAFPLf5DZp0kTh4eHKysryKM/KylJiYqJFUQEAAAAAAACAPUybNk0jR47U8OHD1aZNG02fPl1169bVzJkzKzz+6aefVt++fXX33XfrtNNO06RJk3TmmWfqueee83PkAAAAZUJ+xLjT6VSnTp20ZMkSXXLJJZLMqVWXLFmiMWPGVOk1DMOQZE6pXsrlcikvL0/R0dGMJLMQ7WAPtIN90Bb2QDvYg7faofT//9L7AcDOKrpvrYlQvI6FWp2pb3CjvsEv1OpMfauOe1fURGFhoVavXq1x48a5y8LCwtS7d2+lp6dX+Jz09HSPpSglKTU1VfPmzav0PAUFBSooKHBv79u3T1Lt710BAEDg8dV9a8gnxiUpLS1Nw4YNU+fOnXXWWWfpqaee0v79+zV8+PAqPT8vL0+SlJSU5MswAQCAjeXl5alBgwZWhwEcFfetAABA4t4V1bN3716VlJQoISHBozwhIUEbN26s8DmZmZkVHp+ZmVnpeSZPnqwJEyaUK+feFQCA0PXHH3949b6VxLikq666Snv27NGDDz6ozMxMnX766VqwYEG5m7fKNG/eXLt27VL9+vXlcDgkmT0ZkpKStGvXLsXGxvoyfBwF7WAPtIN90Bb2QDvYg7fawTAM5eXlqXnz5l6MDvCNiu5bayIUr2OhVmfqG9yob/ALtTpT36rj3hV2Nm7cOI9R5jk5OWrZsqUyMjLoyGEjoXbNDSS0jX3RNvZF29jXvn371KJFCzVq1Mirr0ti/G9jxoyp8tTpRwoLC9Pxxx9f4b7Y2Fh+mWyAdrAH2sE+aAt7oB3swRvtwJc0CBRHu2+tiVC8joVanalvcKO+wS/U6kx9q4Z7V1RXkyZNFB4erqysLI/yrKwsJSYmVvicxMTEah0vSVFRUYqKiipX3qBBg5D63Q4UoXbNDSS0jX3RNvZF29iXt5dKCv6FlwAAAAAAAAAANeJ0OtWpUyctWbLEXeZyubRkyRKlpKRU+JyUlBSP4yVp0aJFlR4PAADgD4wYBwAAAAAAAABUKi0tTcOGDVPnzp111lln6amnntL+/fs1fPhwSdLQoUN13HHHafLkyZKk22+/XT169NATTzyhAQMGaPbs2fruu+/08ssvW1kNAAAQ4kiM+0hUVJTGjx9f4fQ/8B/awR5oB/ugLeyBdrAH2gGouVD8/Qm1OlPf4EZ9g1+o1Zn6Ar531VVXac+ePXrwwQeVmZmp008/XQsWLFBCQoIkKSMjw2Oq065du+rtt9/W/fffr/vuu08nn3yy5s2bp3bt2lX5nHzW7Yl2sS/axr5oG/uibezLV23jMAzD8OorAgAAAAAAAAAAAABgI6wxDgAAAAAAAAAAAAAIaiTGAQAAAAAAAAAAAABBjcQ4AAAAAAAAAAAAACCokRgHAAAAAAAAAAAAAAQ1EuM+8Pzzz6tVq1aKjo5Wly5d9M0331gdUkD74osvdOGFF6p58+ZyOByaN2+ex37DMPTggw+qWbNmqlOnjnr37q3Nmzd7HPPnn39qyJAhio2NVVxcnEaMGKH8/HyPY9atW6dzzz1X0dHRSkpK0tSpU31dtYAyefJk/eMf/1D9+vUVHx+vSy65RJs2bfI45tChQxo9erQaN26smJgYDRw4UFlZWR7HZGRkaMCAAapbt67i4+N19913q7i42OOYZcuW6cwzz1RUVJROOukkvf76676uXsB48cUX1aFDB8XGxio2NlYpKSn69NNP3ftpA2tMmTJFDodDd9xxh7uMtvCPhx56SA6Hw+OndevW7v20A+AbwXK/W5X7m549e5a7ztx0000ex1TlOmIH/rpm2kWrVq3K1dfhcGj06NGSAr9tQ+3vpKPVt6ioSGPHjlX79u1Vr149NW/eXEOHDtXvv//u8RoVfSamTJnicYxd6isdu42vu+66cvXp27evxzHB0saSKvx9djgceuyxx9zHBFIb8zc2YKrufeW7776r1q1bKzo6Wu3bt9f8+fP9FGloqU67zJgxQ+eee64aNmyohg0bqnfv3gH790EgqOnfYrNnz5bD4dAll1zi2wBDWHXbJicnR6NHj1azZs0UFRWlU045hWuaj1S3bZ566imdeuqpqlOnjpKSknTnnXfq0KFDfoo2dBzr/r8iXrmvNeBVs2fPNpxOpzFz5kzjxx9/NEaOHGnExcUZWVlZVocWsObPn2/8+9//Nt5//31DkjF37lyP/VOmTDEaNGhgzJs3z/jhhx+Miy66yEhOTjYOHjzoPqZv375Gx44dja+++sr48ssvjZNOOskYNGiQe/++ffuMhIQEY8iQIcaGDRuMd955x6hTp47x0ksv+auatpeammq89tprxoYNG4y1a9ca/fv3N1q0aGHk5+e7j7npppuMpKQkY8mSJcZ3331nnH322UbXrl3d+4uLi4127doZvXv3NtasWWPMnz/faNKkiTFu3Dj3Mdu2bTPq1q1rpKWlGT/99JPx7LPPGuHh4caCBQv8Wl+7+vDDD41PPvnE+OWXX4xNmzYZ9913nxEZGWls2LDBMAzawArffPON0apVK6NDhw7G7bff7i6nLfxj/PjxRtu2bY3du3e7f/bs2ePeTzsA3hdM97tVub/p0aOHMXLkSI/rzL59+9z7q3IdsQt/XDPtJDs726OuixYtMiQZS5cuNQwj8Ns21P5OOlp9c3JyjN69extz5swxNm7caKSnpxtnnXWW0alTJ4/XaNmypTFx4kSPNj/8991O9TWMY7fxsGHDjL59+3rU588///Q4Jlja2DAMj3ru3r3bmDlzpuFwOIytW7e6jwmkNuZvbKD695UrV640wsPDjalTpxo//fSTcf/99xuRkZHG+vXr/Rx5cKtuuwwePNh4/vnnjTVr1hg///yzcd111xkNGjQwfv31Vz9HHvxq+rfY9u3bjeOOO84499xzjYsvvtg/wYaY6rZNQUGB0blzZ6N///7GihUrjO3btxvLli0z1q5d6+fIg19122bWrFlGVFSUMWvWLGP79u3GZ599ZjRr1sy48847/Rx58DvW/f+RvHVfS2Lcy8466yxj9OjR7u2SkhKjefPmxuTJky2MKngc+cvhcrmMxMRE47HHHnOX5eTkGFFRUcY777xjGIZh/PTTT4Yk49tvv3Uf8+mnnxoOh8P47bffDMMwjBdeeMFo2LChUVBQ4D5m7NixxqmnnurjGgWu7OxsQ5KxfPlywzDM9z0yMtJ499133cf8/PPPhiQjPT3dMAzzQhcWFmZkZma6j3nxxReN2NhY93t/zz33GG3btvU411VXXWWkpqb6ukoBq2HDhsYrr7xCG1ggLy/POPnkk41FixYZPXr0cCfGaQv/GT9+vNGxY8cK99EOgG8E8/3ukfc3hmF4XN8rUpXriF3445ppZ7fffrtx4oknGi6XyzCM4GrbUPs7qSpfmnzzzTeGJGPnzp3uspYtWxpPPvlkpc+xa30No+I6Dxs27Khfbgd7G1988cXG+eef71EWyG3M39gIRdW9r7zyyiuNAQMGeJR16dLFuPHGG30aZ6ip7f1+cXGxUb9+feONN97wVYghqyZtU1xcbHTt2tV45ZVXjnnvgJqrbtu8+OKLxgknnGAUFhb6K8SQVd22GT16dLl7zLS0NKNbt24+jTPUVeX+31v3tUyl7kWFhYVavXq1evfu7S4LCwtT7969lZ6ebmFkwWv79u3KzMz0eM8bNGigLl26uN/z9PR0xcXFqXPnzu5jevfurbCwMH399dfuY7p37y6n0+k+JjU1VZs2bdJff/3lp9oEln379kmSGjVqJElavXq1ioqKPNqidevWatGihUdbtG/fXgkJCe5jUlNTlZubqx9//NF9zOGvUXoMv0PllZSUaPbs2dq/f79SUlJoAwuMHj1aAwYMKPd+0Rb+tXnzZjVv3lwnnHCChgwZooyMDEm0A+ALwX6/e+T9TalZs2apSZMmateuncaNG6cDBw6491XlOmInvr5m2lVhYaHeeustXX/99XI4HO7yYGrbw/F3kvn77HA4FBcX51E+ZcoUNW7cWGeccYYee+wxjymnA7G+y5YtU3x8vE499VTdfPPN+uOPP9z7grmNs7Ky9Mknn2jEiBHl9gVqG/M3NkJNTe4r+Tz7njfu9w8cOKCioqJy99SonZq2zcSJExUfH1/h/5nwjpq0zYcffqiUlBSNHj1aCQkJateunR555BGVlJT4K+yQUJO26dq1q1avXu2ebn3btm2aP3+++vfv75eYUTlv3QdEeDOoULd3716VlJR4/EEiSQkJCdq4caNFUQW3zMxMSarwPS/dl5mZqfj4eI/9ERERatSokccxycnJ5V6jdF/Dhg19En+gcrlcuuOOO9StWze1a9dOkvk+OZ3Ocl88HdkWFbVV6b6jHZObm6uDBw+qTp06vqhSQFm/fr1SUlJ06NAhxcTEaO7cuWrTpo3Wrl1LG/jR7Nmz9f333+vbb78tt4/fB//p0qWLXn/9dZ166qnavXu3JkyYoHPPPVcbNmygHQAfCOb73YrubyRp8ODBatmypZo3b65169Zp7Nix2rRpk95//31JVbuO2IU/rpl2NW/ePOXk5Oi6665zlwVT2x4p1P9OOnTokMaOHatBgwYpNjbWXX7bbbfpzDPPVKNGjbRq1SqNGzdOu3fv1rRp0yQFXn379u2ryy67TMnJydq6davuu+8+9evXT+np6QoPDw/qNn7jjTdUv359XXbZZR7lgdrG/I2NUFST+8rKPs92/385kHjjfn/s2LFq3rx5ueQFaqcmbbNixQq9+uqrWrt2rR8iDF01aZtt27bp888/15AhQzR//nxt2bJFt9xyi4qKijR+/Hh/hB0SatI2gwcP1t69e3XOOefIMAwVFxfrpptu0n333eePkHEU3rqvJTEOoNpGjx6tDRs2aMWKFVaHEpJOPfVUrV27Vvv27dP//d//adiwYVq+fLnVYYWUXbt26fbbb9eiRYsUHR1tdTghrV+/fu7HHTp0UJcuXdSyZUv973//40s+ANVS2f3NqFGj3I/bt2+vZs2aqVevXtq6datOPPFEf4dZK6F8zXz11VfVr18/NW/e3F0WTG2LMkVFRbryyitlGIZefPFFj31paWnuxx06dJDT6dSNN96oyZMnKyoqyt+h1trVV1/tfty+fXt16NBBJ554opYtW6ZevXpZGJnvzZw5U0OGDCl3Lx6obczf2ACCxZQpUzR79mwtW7aM70sslpeXp2uvvVYzZsxQkyZNrA4HR3C5XIqPj9fLL7+s8PBwderUSb/99psee+wxEuMWW7ZsmR555BG98MIL6tKli7Zs2aLbb79dkyZN0gMPPGB1ePACplL3oiZNmig8PFxZWVke5VlZWUpMTLQoquBW+r4e7T1PTExUdna2x/7i4mL9+eefHsdU9BqHnwOmMWPG6OOPP9bSpUt1/PHHu8sTExNVWFionJwcj+OPbItjvc+VHRMbGxv0X9hWldPp1EknnaROnTpp8uTJ6tixo55++mnawI9Wr16t7OxsnXnmmYqIiFBERISWL1+uZ555RhEREUpISKAtLBIXF6dTTjlFW7Zs4XcC8IFgvd+t7P6mIl26dJEkbdmyRVJg30f64pppRzt37tTixYt1ww03HPW4YGrbUP07qTQpvnPnTi1atMhjtHhFunTpouLiYu3YsUNS4NX3SCeccIKaNGni8RkOtjaWpC+//FKbNm065u+0FBhtzN/YCFU1ua+s7PNs1+tVIKrN/f7jjz+uKVOmaOHCherQoYMvwwxJ1W2brVu3aseOHbrwwgvd3129+eab+vDDDxUREaGtW7f6K/SgV5Pfm2bNmumUU05ReHi4u+y0005TZmamCgsLfRpvKKlJ2zzwwAO69tprdcMNN6h9+/a69NJL9cgjj2jy5MlyuVz+CBuV8NZ9LYlxL3I6nerUqZOWLFniLnO5XFqyZIlSUlIsjCx4JScnKzEx0eM9z83N1ddff+1+z1NSUpSTk6PVq1e7j/n888/lcrncX36lpKToiy++UFFRkfuYRYsW6dRTT7Xt1HH+ZhiGxowZo7lz5+rzzz8vN/1cp06dFBkZ6dEWmzZtUkZGhkdbrF+/3uPLmdIvrNq0aeM+5vDXKD2G36HKuVwuFRQU0AZ+1KtXL61fv15r1651/3Tu3FlDhgxxP6YtrJGfn6+tW7eqWbNm/E4APhBs97vHur+pSOk0hM2aNZNUteuIXfnimmlHr732muLj4zVgwICjHhdMbRuKfyeVJsU3b96sxYsXq3Hjxsd8ztq1axUWFuaebjyQ6luRX3/9VX/88YfHZziY2rjUq6++qk6dOqljx47HPNbObczf2Ah1Nbmv5PPsezW93586daomTZqkBQsWqHPnzv4INeRUt21at25d7ruriy66SOedd57Wrl2rpKQkf4Yf1Grye9OtWzdt2bLFI9H6yy+/qFmzZnI6nT6POVTUpG0OHDigsDDP1GlpBwbDMHwXLI7Ja/cBBrxq9uzZRlRUlPH6668bP/30kzFq1CgjLi7OyMzMtDq0gJWXl2esWbPGWLNmjSHJmDZtmrFmzRpj586dhmEYxpQpU4y4uDjjgw8+MNatW2dcfPHFRnJysnHw4EH3a/Tt29c444wzjK+//tpYsWKFcfLJJxuDBg1y78/JyTESEhKMa6+99v/bu/egqqo2juM/VDiA3CIwQwUF0SwzpRStRig1Fc1r3qYU06ik0hpv2GQIpWNZY1ZWmqSlZVmZmpV5SdCQUiu0piI11GakVFKSTAV83j+czrxH8kIhwvH7mTl/nH3WWvtZrGHPc/bD2th3331nb7/9tvn6+tqcOXOqfL7V1ahRoywwMNAyMzOtoKDA+Tp69Kizzf3332/h4eH22Wef2datW61Dhw7WoUMH5+elpaXWsmVLu+222yw3N9dWrVploaGhNmnSJGebn3/+2Xx9fW38+PH2ww8/2OzZs6127dq2atWqKp1vdZWSkmJZWVmWn59v27dvt5SUFPPw8LDVq1ebGWtwMcXFxdmYMWOc71mLqjF27FjLzMy0/Px8y87Ots6dO1tISIjt37/fzFgH4EJwp3z3XPnNzp07LT093bZu3Wr5+fm2fPlyi4yMtI4dOzrHOJ/rSHVRFdfM6qasrMzCw8Nt4sSJLsfdYW0vte9JZ5vviRMnrFevXtawYUPLzc11+X0+fvy4mZlt2rTJZs6cabm5ubZr1y5btGiRhYaG2rBhw6rlfM815yNHjti4ceMsJyfH8vPzbe3atRYTE2PR0dF27Ngx5xjussZ/KyoqMl9fX3v55ZfL9a9pa8x3bODceeXQoUMtJSXF2T47O9vq1KljzzzzjP3www+Wmppqnp6e9u23316sKbiliq7L9OnTzcvLy9577z2X69mRI0cu1hTcVkXX5nSJiYnWu3fvKor20lLRtdm7d6/5+/vbgw8+aHl5ebZy5UqrV6+ePfnkkxdrCm6romuTmppq/v7+tnjxYvv5559t9erVFhUVZQMHDrxYU3Bb58r/U1JSbOjQoc72lZXXUhi/AF544QULDw83Ly8va9eunX3xxRcXO6Qabf369Sap3CsxMdHMzE6ePGmTJ0+2K664whwOh3Xq1Mny8vJcxigsLLQhQ4aYn5+fBQQE2N13310uOdu2bZvdfPPN5nA4rEGDBjZ9+vSqmmKN8E9rIMnmz5/vbPPXX39ZcnKyXXbZZebr62t9+/a1goICl3F2795t3bt3Nx8fHwsJCbGxY8daSUmJS5v169db69atzcvLyyIjI13OcakbMWKERUREmJeXl4WGhlqnTp2cRXEz1uBiOr0wzlpUjUGDBtmVV15pXl5e1qBBAxs0aJDt3LnT+TnrAFwY7pLvniu/2bt3r3Xs2NGCg4PN4XBY06ZNbfz48VZUVOQyzvlcR6qDqrpmVieffvqpSSr3/cAd1vZS+550tvnm5+ef8fd5/fr1Zmb21VdfWWxsrAUGBpq3t7e1aNHCpk2b5lJENqs+8zU7+5yPHj1qt912m4WGhpqnp6dFRERYUlJSuT9Scpc1/tucOXPMx8fHDh8+XK5/TVtjvmMDp5wtr4yLi3O5BpiZLVmyxJo1a2ZeXl52zTXX2EcffVTFEV8aKrIuERER/3g9S01NrfrALwEV/Z35fxTGL6yKrs2mTZssNjbWHA6HRUZG2tSpU620tLSKo740VGRtSkpKbMqUKRYVFWXe3t7WqFEjS05OtkOHDlV94G7uXPl/YmKixcXFlevzX/NaDzP2/gMAAAAAAAAAAAAA3Bf/YxwAAAAAAAAAAAAA4NYojAMAAAAAAAAAAAAA3BqFcQAAAAAAAAAAAACAW6MwDgAAAAAAAAAAAABwaxTGAQAAAAAAAAAAAABujcI4AAAAAAAAAAAAAMCtURgHAAAAAAAAAAAAALg1CuMAAAAAAAAAAAAAALdGYRwA/iMPDw8tW7asUvrv3r1bHh4eys3NrZTYAAAAcGn6rzlqZY0BAAAAAEB1QWEcQI2Rk5Oj2rVrq0ePHhXu27hxYz333HOVH9R5GD58uPr06XPGzwsKCtS9e/eqCwgAAACVpqbmqAcOHNCoUaMUHh4uh8Oh+vXrq2vXrsrOzr4o8QAAAAAAcKFRGAdQY2RkZOihhx7Shg0btG/fvosdTqWpX7++HA7HxQ4DAAAA/0JNzVH79++vb775Rq+//rp++uknrVixQvHx8SosLLyg5z1x4sQFHR8AAAAAgDOhMA6gRiguLtY777yjUaNGqUePHlqwYEG5Nh9++KHatm0rb29vhYSEqG/fvpKk+Ph47dmzR4888og8PDzk4eEhSZoyZYpat27tMsZzzz2nxo0bO99v2bJFXbp0UUhIiAIDAxUXF6evv/66Uud2tkdUlpWVacSIEbrqqqu0d+9eSdLy5csVExMjb29vRUZGKi0tTaWlpZIkM9OUKVOcO3/CwsI0evToSo0XAAAAp9TUHPXw4cPauHGjnnrqKd1yyy2KiIhQu3btNGnSJPXq1cul7cGDB9W3b1/5+voqOjpaK1ascH5WVlamkSNHqkmTJvLx8VHz5s01a9Ysl/5/Pz1p6tSpCgsLU/PmzSVJv/zyiwYOHKigoCAFBwerd+/e2r17t7NfZmam2rVrp7p16yooKEg33XST9uzZc95zBAAAAADgdBTGAdQIS5Ys0VVXXaXmzZvrrrvu0muvvSYzc37+0UcfqW/fvkpISNA333yjdevWqV27dpKkpUuXqmHDhkpPT1dBQYEKCgrO+7xHjhxRYmKiPv/8c33xxReKjo5WQkKCjhw5UulzPN3x48c1YMAA5ebmauPGjQoPD9fGjRs1bNgwjRkzRt9//73mzJmjBQsWaOrUqZKk999/XzNnztScOXO0Y8cOLVu2TNdee+0FjxUAAOBSVFNzVD8/P/n5+WnZsmU6fvz4WdumpaVp4MCB2r59uxISEnTnnXfq999/lySdPHlSDRs21Lvvvqvvv/9ejz/+uB599FEtWbLEZYx169YpLy9Pa9as0cqVK1VSUqKuXbvK399fGzduVHZ2tvz8/NStWzedOHFCpaWl6tOnj+Li4rR9+3bl5OTo3nvvdf7xAAAAAAAA/0adix0AAJyPjIwM3XXXXZKkbt26qaioSFlZWYqPj5ckTZ06VYMHD1ZaWpqzz3XXXSdJCg4OVu3ateXv76/69etX6Ly33nqry/u5c+cqKChIWVlZ6tmz53+Y0dkVFxerR48eOn78uNavX6/AwEBJp25MpqSkKDExUZIUGRmpJ554QhMmTFBqaqr27t2r+vXrq3PnzvL09FR4eLjz5isAAAAqV03NUevUqaMFCxYoKSlJr7zyimJiYhQXF6fBgwerVatWLm2HDx+uIUOGSJKmTZum559/Xps3b1a3bt3k6enpMrcmTZooJydHS5Ys0cCBA53H69atq3nz5snLy0uStGjRIp08eVLz5s1zFrvnz5+voKAgZWZm6oYbblBRUZF69uypqKgoSVKLFi0q9DMCAAAAAOB07BgHUO3l5eVp8+bNzhtyderU0aBBg5SRkeFsk5ubq06dOlX6uX/77TclJSUpOjpagYGBCggIUHFxsfOx5hfKkCFD9Oeff2r16tXOorgkbdu2Tenp6c5dPn5+fkpKSlJBQYGOHj2qAQMG6K+//lJkZKSSkpL0wQcfOB+zDgAAgMpT03PU/v37a9++fVqxYoW6deumzMxMxcTElHsc/P8XyuvWrauAgADt37/feWz27Nm6/vrrFRoaKj8/P82dO7dcHNdee62zKC6dyml37twpf39/Z04bHBysY8eOadeuXQoODtbw4cPVtWtX3X777Zo1a1aFdtQDAAAAAPBP2DEOoNrLyMhQaWmpwsLCnMfMTA6HQy+++KICAwPl4+NT4XFr1arl8qhLSSopKXF5n5iYqMLCQs2aNUsRERFyOBzq0KGDTpw48e8mc54SEhK0aNEi5eTkuOwIKi4uVlpamvr161euj7e3txo1aqS8vDytXbtWa9asUXJysmbMmKGsrCx5enpe0JgBAAAuJe6Qo3p7e6tLly7q0qWLJk+erHvuuUepqakaPny4s83pOaSHh4dOnjwpSXr77bc1btw4Pfvss+rQoYP8/f01Y8YMffnlly596tat6/K+uLhY119/vd58881yMYWGhko6tYN89OjRWrVqld555x099thjWrNmjdq3b1+hOQIAAAAA8Dd2jAOo1kpLS/XGG2/o2WefVW5urvO1bds2hYWFafHixZJO7WRZt27dGcfx8vJSWVmZy7HQ0FD9+uuvLjcec3NzXdpkZ2dr9OjRSkhI0DXXXCOHw6GDBw9W3gTPYNSoUZo+fbp69eqlrKws5/GYmBjl5eWpadOm5V61ap26pPv4+Oj222/X888/r8zMTOXk5Ojbb7+94DEDAABcKtw1R7366qv1559/nnf77Oxs3XjjjUpOTlabNm3UtGlT7dq165z9YmJitGPHDtWrV69cTvv/T0tq06aNJk2apE2bNqlly5Z66623/tW8AAAAAACQ2DEOoJpbuXKlDh06pJEjR7rcJJNOPf4xIyND999/v1JTU9WpUydFRUVp8ODBKi0t1ccff6yJEydKkho3bqwNGzZo8ODBcjgcCgkJUXx8vA4cOKCnn35ad9xxh1atWqVPPvlEAQEBznNER0dr4cKFuuGGG/THH39o/Pjx/2rnT1FRUbkbmpdffrkaNWp0xj4PPfSQysrK1LNnT33yySe6+eab9fjjj6tnz54KDw/XHXfcoVq1amnbtm367rvv9OSTT2rBggUqKytTbGysfH19tWjRIvn4+CgiIqLCMQMAAOCf1fQctbCwUAMGDNCIESPUqlUr+fv7a+vWrXr66afVu3fv8x4nOjpab7zxhj799FM1adJECxcu1JYtW9SkSZOz9rvzzjs1Y8YM9e7dW+np6WrYsKH27NmjpUuXasKECSopKdHcuXPVq1cvhYWFKS8vTzt27NCwYcPOOzYAAAAAAE7HjnEA1VpGRoY6d+5c7oajdOqm49atW7V9+3bFx8fr3Xff1YoVK9S6dWvdeuut2rx5s7Ntenq6du/eraioKOfjGVu0aKGXXnpJs2fP1nXXXafNmzdr3Lhx5c5/6NAhxcTEaOjQoRo9erTq1atX4XlkZmaqTZs2Lq+0tLRz9nv44YeVlpamhIQEbdq0SV27dtXKlSu1evVqtW3bVu3bt9fMmTOdhe+goCC9+uqruummm9SqVSutXbtWH374oS6//PIKxwwAAIB/VtNzVD8/P8XGxmrmzJnq2LGjWrZsqcmTJyspKUkvvvjieY9z3333qV+/fho0aJBiY2NVWFio5OTkc/bz9fXVhg0bFB4ern79+qlFixYaOXKkjh07poCAAPn6+urHH39U//791axZM91777164IEHdN999513bAAAAAAAnM7DTv/nZQAAAAAAAAAAAAAAuBF2jAMAAAAAAAAAAAAA3BqFcQAAAAAAAAAAAACAW6MwDgAAAAAAAAAAAABwaxTGAQAAAAAAAAAAAABujcI4AAAAAAAAAAAAAMCtURgHAAAAAAAAAAAAALg1CuMAAAAAAAAAAAAAALdGYRwAAAAAAAAAAAAA4NYojAMAAAAAAAAAAAAA3BqFcQAAAAAAAAAAAACAW6MwDgAAAAAAAAAAAABwa/8Dgb+fhD5KdWMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Enhanced Visualization for Both Targets\n", "\n", "# Create comprehensive visualization\n", "fig = plt.figure(figsize=(20, 12))\n", "\n", "# 1. Model Performance Comparison - Likes\n", "ax1 = plt.subplot(2, 3, 1)\n", "x_pos = np.arange(len(comparison_likes_df))\n", "colors = plt.cm.Blues(np.linspace(0.5, 1, len(comparison_likes_df)))\n", "bars = ax1.bar(x_pos, comparison_likes_df['R² Score'], color=colors, alpha=0.8)\n", "ax1.set_xlabel('Models')\n", "ax1.set_ylabel('R² Score')\n", "ax1.set_title('Likes Prediction - R² Score Comparison')\n", "ax1.set_xticks(x_pos)\n", "ax1.set_xticklabels(comparison_likes_df['Model'], rotation=45, ha='right')\n", "ax1.grid(True, alpha=0.3)\n", "\n", "for bar, value in zip(bars, comparison_likes_df['R² Score']):\n", " ax1.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.01,\n", " f'{value:.3f}', ha='center', va='bottom')\n", "\n", "# 2. Model Performance Comparison - Shares\n", "ax2 = plt.subplot(2, 3, 2)\n", "colors = plt.cm.Greens(np.linspace(0.5, 1, len(comparison_shares_df)))\n", "bars = ax2.bar(x_pos, comparison_shares_df['R² Score'], color=colors, alpha=0.8)\n", "ax2.set_xlabel('Models')\n", "ax2.set_ylabel('R² Score')\n", "ax2.set_title('Shares Prediction - R² Score Comparison')\n", "ax2.set_xticks(x_pos)\n", "ax2.set_xticklabels(comparison_shares_df['Model'], rotation=45, ha='right')\n", "ax2.grid(True, alpha=0.3)\n", "\n", "for bar, value in zip(bars, comparison_shares_df['R² Score']):\n", " ax2.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.01,\n", " f'{value:.3f}', ha='center', va='bottom')\n", "\n", "# 3. Actual vs Predicted - Best Model for Likes\n", "ax3 = plt.subplot(2, 3, 4)\n", "best_likes_preds = results_likes[best_model_likes]['predictions']\n", "ax3.scatter(y_likes_test, best_likes_preds, alpha=0.5, s=30, color='blue')\n", "ax3.plot([y_likes_test.min(), y_likes_test.max()],\n", " [y_likes_test.min(), y_likes_test.max()], 'r--', lw=2)\n", "ax3.set_xlabel('Actual Likes')\n", "ax3.set_ylabel('Predicted Likes')\n", "ax3.set_title(f'{best_model_likes}: Actual vs Predicted Likes')\n", "ax3.grid(True, alpha=0.3)\n", "\n", "# 4. Actual vs Predicted - Best Model for Shares\n", "ax4 = plt.subplot(2, 3, 5)\n", "best_shares_preds = results_shares[best_model_shares]['predictions']\n", "ax4.scatter(y_shares_test, best_shares_preds, alpha=0.5, s=30, color='green')\n", "ax4.plot([y_shares_test.min(), y_shares_test.max()],\n", " [y_shares_test.min(), y_shares_test.max()], 'r--', lw=2)\n", "ax4.set_xlabel('Actual Shares')\n", "ax4.set_ylabel('Predicted Shares')\n", "ax4.set_title(f'{best_model_shares}: Actual vs Predicted Shares')\n", "ax4.grid(True, alpha=0.3)\n", "\n", "# 5. Feature Importance Comparison\n", "ax5 = plt.subplot(2, 3, 3)\n", "ax6 = plt.subplot(2, 3, 6)\n", "\n", "# Get feature importances if using tree-based models\n", "if best_model_likes in ['Random Forest', 'Gradient Boosting']:\n", " model_likes = results_likes[best_model_likes]['model']\n", " feature_importance_likes = pd.DataFrame({\n", " 'feature': X.columns,\n", " 'importance': model_likes.feature_importances_\n", " }).sort_values('importance', ascending=False).head(10)\n", "\n", " y_pos = np.arange(len(feature_importance_likes))\n", " ax5.barh(y_pos, feature_importance_likes['importance'], alpha=0.8, color='blue')\n", " ax5.set_yticks(y_pos)\n", " ax5.set_yticklabels(feature_importance_likes['feature'])\n", " ax5.set_xlabel('Importance')\n", " ax5.set_title('Top 10 Features for Likes Prediction')\n", " ax5.invert_yaxis()\n", "\n", "if best_model_shares in ['Random Forest', 'Gradient Boosting']:\n", " model_shares = results_shares[best_model_shares]['model']\n", " feature_importance_shares = pd.DataFrame({\n", " 'feature': X.columns,\n", " 'importance': model_shares.feature_importances_\n", " }).sort_values('importance', ascending=False).head(10)\n", "\n", " y_pos = np.arange(len(feature_importance_shares))\n", " ax6.barh(y_pos, feature_importance_shares['importance'], alpha=0.8, color='green')\n", " ax6.set_yticks(y_pos)\n", " ax6.set_yticklabels(feature_importance_shares['feature'])\n", " ax6.set_xlabel('Importance')\n", " ax6.set_title('Top 10 Features for Shares Prediction')\n", " ax6.invert_yaxis()\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "zD-f-jht29dv" }, "source": [ "# Export Results" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hE-Y9pfB2_Me", "outputId": "760c5421-c56d-4a84-bd44-2420fff5acbe" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All results exported successfully!\n", "\n", "Files created:\n", "- virality_analysis_results.json\n", "- likes_model_comparison.csv\n", "- shares_model_comparison.csv\n", "- virality_summary_report.txt\n" ] } ], "source": [ "# Export Results for Both Targets\n", "\n", "import json\n", "import os\n", "\n", "# Create results directory if it doesn't exist\n", "os.makedirs('results', exist_ok=True)\n", "\n", "# Prepare results dictionary\n", "virality_results = {\n", " 'dataset_info': {\n", " 'total_samples': len(df),\n", " 'features': X.shape[1],\n", " 'likes_mean': float(y_likes.mean()),\n", " 'likes_median': float(y_likes.median()),\n", " 'likes_std': float(y_likes.std()),\n", " 'shares_mean': float(y_shares.mean()),\n", " 'shares_median': float(y_shares.median()),\n", " 'shares_std': float(y_shares.std()),\n", " 'likes_shares_correlation': float(y_likes.corr(y_shares))\n", " },\n", " 'likes_model_comparison': comparison_likes_df.to_dict('records'),\n", " 'shares_model_comparison': comparison_shares_df.to_dict('records'),\n", " 'best_models': {\n", " 'likes': best_model_likes,\n", " 'shares': best_model_shares\n", " }\n", "}\n", "\n", "# Save to JSON\n", "with open('results/virality_analysis_results.json', 'w') as f:\n", " json.dump(virality_results, f, indent=2)\n", "\n", "# Save comparison tables as CSV\n", "comparison_likes_df.to_csv('results/likes_model_comparison.csv', index=False)\n", "comparison_shares_df.to_csv('results/shares_model_comparison.csv', index=False)\n", "\n", "# Create a summary report\n", "summary_report = f\"\"\"\n", "VIRALITY PREDICTION MODEL SUMMARY\n", "================================\n", "\n", "Dataset Overview:\n", "- Total samples: {len(df)}\n", "- Features used: {X.shape[1]}\n", "- Correlation between Likes and Shares: {y_likes.corr(y_shares):.3f}\n", "\n", "Best Models:\n", "- Likes Prediction: {best_model_likes} (R² = {comparison_likes_df.iloc[0]['R² Score']:.3f})\n", "- Shares Prediction: {best_model_shares} (R² = {comparison_shares_df.iloc[0]['R² Score']:.3f})\n", "\n", "Key Insights:\n", "1. Both likes and shares show similar patterns in terms of model performance\n", "2. Tree-based models (Random Forest, Gradient Boosting) tend to perform better\n", "3. Technical features (generation time, GPU usage) and temporal features are important predictors\n", "4. Platform-specific patterns exist and should be considered for optimization\n", "\n", "Recommendations:\n", "1. Use separate models for likes and shares predictions\n", "2. Consider ensemble methods for improved accuracy\n", "3. Regular retraining with new data is recommended\n", "4. Monitor feature importance to understand changing virality patterns\n", "\"\"\"\n", "\n", "with open('results/virality_summary_report.txt', 'w') as f:\n", " f.write(summary_report)\n", "\n", "print(\"All results exported successfully!\")\n", "print(\"\\nFiles created:\")\n", "print(\"- virality_analysis_results.json\")\n", "print(\"- likes_model_comparison.csv\")\n", "print(\"- shares_model_comparison.csv\")\n", "print(\"- virality_summary_report.txt\")" ] }, { "cell_type": "markdown", "metadata": { "id": "gS9BH1XudOXW" }, "source": [ "# Gradio Demo App" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "NKTUM0p6lAq_" }, "outputs": [], "source": [ "# Install Gradio\n", "!pip install gradio --quiet" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 611 }, "id": "xVXYa7sNaxF8", "outputId": "40619f46-ca16-4cfb-b4e7-db36efbc137a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7860\n", "* Running on public URL: https://7c935c360252e34bec.gradio.live\n", "\n", "This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Gradio Demo App for Predicting Both Likes and Shares\n", "\n", "import gradio as gr\n", "import pandas as pd\n", "import numpy as np\n", "\n", "# Best models (update based on your results)\n", "BEST_MODEL_LIKES = 'Random Forest'\n", "BEST_MODEL_SHARES = 'Random Forest'\n", "\n", "def predict_virality_gradio(generation_time, gpu_usage, file_size_kb,\n", " width, height, style_accuracy_score,\n", " is_hand_edited, ethical_concerns_flag,\n", " day_of_week, month, hour, platform):\n", " \"\"\"\n", " Gradio wrapper for the prediction function.\n", " Returns formatted outputs for both likes and shares.\n", " \"\"\"\n", " if not models_loaded:\n", " error_msg = \"Models are not loaded. Please check the console for errors.\"\n", " return 0, 0, error_msg, error_msg, error_msg\n", "\n", " # Get predictions\n", " likes_preds, shares_preds, error = predict_virality_all_models(\n", " generation_time, gpu_usage, file_size_kb,\n", " width, height, style_accuracy_score,\n", " is_hand_edited, ethical_concerns_flag,\n", " day_of_week, month, hour, platform\n", " )\n", "\n", " if error:\n", " return 0, 0, error, error, error\n", "\n", " # Get best model predictions\n", " best_likes = likes_preds.get(BEST_MODEL_LIKES, 0)\n", " best_shares = shares_preds.get(BEST_MODEL_SHARES, 0)\n", "\n", " # Create comparison tables\n", " likes_df = pd.DataFrame(list(likes_preds.items()), columns=['Model', 'Predicted Likes'])\n", " likes_df = likes_df.sort_values('Predicted Likes', ascending=False)\n", " likes_table = likes_df.to_markdown(index=False)\n", "\n", " shares_df = pd.DataFrame(list(shares_preds.items()), columns=['Model', 'Predicted Shares'])\n", " shares_df = shares_df.sort_values('Predicted Shares', ascending=False)\n", " shares_table = shares_df.to_markdown(index=False)\n", "\n", " # Create summary statistics\n", " summary = f\"\"\"\n", " ### Prediction Summary\n", "\n", " **Average Predictions Across All Models:**\n", " - Likes: {np.mean(list(likes_preds.values())):.0f}\n", " - Shares: {np.mean(list(shares_preds.values())):.0f}\n", " \"\"\"\n", "\n", " return best_likes, best_shares, likes_table, shares_table, summary\n", "\n", "# Create Gradio interface\n", "with gr.Blocks(theme=gr.themes.Soft(), title=\"AI Image Virality Predictor\") as demo:\n", " gr.Markdown(\"# 🎨 AI Ghibli Image Virality Predictor\")\n", " gr.Markdown(\"Predict both **Likes** and **Shares** for your AI-generated Ghibli-style images!\")\n", "\n", " with gr.Row():\n", " # Input Column\n", " with gr.Column(scale=2):\n", " gr.Markdown(\"### 📝 Input Features\")\n", "\n", " with gr.Accordion(\"Image Properties\", open=True):\n", " width = gr.Slider(minimum=256, maximum=2048, value=1024, step=64,\n", " label=\"Width (px)\")\n", " height = gr.Slider(minimum=256, maximum=2048, value=1024, step=64,\n", " label=\"Height (px)\")\n", " file_size_kb = gr.Slider(minimum=100, maximum=5000, value=1500, step=100,\n", " label=\"File Size (KB)\")\n", " style_accuracy_score = gr.Slider(minimum=0, maximum=100, value=85, step=1,\n", " label=\"Style Accuracy Score (%)\")\n", "\n", " with gr.Accordion(\"Technical Details\", open=True):\n", " generation_time = gr.Slider(minimum=1, maximum=30, value=8, step=0.5,\n", " label=\"Generation Time (seconds)\")\n", " gpu_usage = gr.Slider(minimum=10, maximum=100, value=70, step=5,\n", " label=\"GPU Usage (%)\")\n", " is_hand_edited = gr.Checkbox(label=\"Hand Edited?\", value=False)\n", " ethical_concerns_flag = gr.Checkbox(label=\"Ethical Concerns?\", value=False)\n", "\n", " with gr.Accordion(\"Posting Details\", open=True):\n", " platform = gr.Radio([\"Instagram\", \"Twitter\", \"TikTok\", \"Reddit\"],\n", " label=\"Platform\", value=\"Instagram\")\n", " day_of_week = gr.Slider(minimum=0, maximum=6, value=4, step=1,\n", " label=\"Day of Week (0=Mon, 6=Sun)\")\n", " month = gr.Slider(minimum=1, maximum=12, value=7, step=1,\n", " label=\"Month (1-12)\")\n", " hour = gr.Slider(minimum=0, maximum=23, value=18, step=1,\n", " label=\"Hour of Day (0-23)\")\n", "\n", " predict_btn = gr.Button(\"🚀 Predict Virality\", variant=\"primary\", size=\"lg\")\n", "\n", " # Output Column\n", " with gr.Column(scale=3):\n", " gr.Markdown(\"### 📊 Prediction Results\")\n", "\n", " # Main predictions\n", " with gr.Row():\n", " best_likes_output = gr.Number(\n", " label=f\"❤️ Predicted Likes ({BEST_MODEL_LIKES})\",\n", " interactive=False\n", " )\n", " best_shares_output = gr.Number(\n", " label=f\"🔄 Predicted Shares ({BEST_MODEL_SHARES})\",\n", " interactive=False\n", " )\n", "\n", " # Summary\n", " summary_output = gr.Markdown(label=\"Summary\")\n", "\n", " # Detailed predictions (continued)\n", " with gr.Row():\n", " with gr.Accordion(\"All Models - Likes\", open=False):\n", " likes_table_output = gr.Markdown(label=\"Likes Predictions\")\n", "\n", " with gr.Accordion(\"All Models - Shares\", open=False):\n", " shares_table_output = gr.Markdown(label=\"Shares Predictions\")\n", "\n", " # Connect the button to the function\n", " predict_btn.click(\n", " fn=predict_virality_gradio,\n", " inputs=[\n", " generation_time, gpu_usage, file_size_kb,\n", " width, height, style_accuracy_score,\n", " is_hand_edited, ethical_concerns_flag,\n", " day_of_week, month, hour, platform\n", " ],\n", " outputs=[\n", " best_likes_output,\n", " best_shares_output,\n", " likes_table_output,\n", " shares_table_output,\n", " summary_output\n", " ]\n", " )\n", "\n", "# Launch the app\n", "if __name__ == \"__main__\":\n", " if not models_loaded:\n", " print(\"\\nCannot launch Gradio app because models failed to load.\")\n", " else:\n", " demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "8l4uctal3YF0" }, "outputs": [], "source": [] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }