File size: 23,313 Bytes
3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 3d22019 c2b98b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# Gradio Interface for Optical Illusion Predictor
import gradio as gr
import numpy as np
import pandas as pd
import joblib
import matplotlib.pyplot as plt
from PIL import Image
import io
import os
# Define the image folder path
image_folder = "Optical Illusion Images"
# Define the enriched folder path
enriched_folder = 'Optical Illusion Enriched Data'
master_df = pd.read_csv(f'{enriched_folder}/combined_engineered_data.csv')
# Define the trained models folder path
trained_models_folder = 'Optical Illusion - Trained Models'
# Constants for image dimensions
DISPLAY_WIDTH = 1920
DISPLAY_HEIGHT = 1080
# Image descriptions for better user understanding
IMAGE_DESCRIPTIONS = {
'duck-rabbit': 'A classic ambiguous figure that can be seen as either a duck or a rabbit',
'face-vase': 'The famous Rubin\'s vase - you might see two faces in profile or a vase',
'young-old': 'This image can appear as either a young woman or an old woman',
'princess-oldMan': 'Can be perceived as either a princess or an old man',
'lily-woman': 'This ambiguous image shows either a lily flower or a woman',
'tiger-monkey': 'You might see either a tiger or a monkey in this image'
}
# Load all saved models at startup
def load_all_models():
"""Load all saved models into memory"""
models = {}
for image_name in master_df['image_type'].unique():
try:
model_path = f'{trained_models_folder}/{image_name}_models.pkl'
models[image_name] = joblib.load(model_path)
print(f"β Loaded model for {image_name}")
except:
print(f"β Could not load model for {image_name}")
return models
# Load models
all_models = load_all_models()
# Function to load and resize images
def load_illusion_images(image_folder):
"""Load optical illusion images from a folder and resize to 1920x1080"""
images = {}
for image_name in all_models.keys():
image_path = f'{image_folder}/{image_name}.png'
if os.path.exists(image_path):
# Load and resize image to 1920x1080
img = Image.open(image_path)
img_resized = img.resize((DISPLAY_WIDTH, DISPLAY_HEIGHT), Image.Resampling.LANCZOS)
images[image_name] = img_resized
print(f"β Loaded and resized image for {image_name}")
else:
print(f"β Image not found for {image_name} at {image_path}")
return images
# Load images
illusion_images = load_illusion_images(image_folder)
# Create placeholder image with correct dimensions
def create_placeholder_image(image_name):
"""Create a placeholder image with the correct dimensions"""
fig, ax = plt.subplots(figsize=(19.2, 10.8), dpi=100)
# Handle None or empty image_name
if image_name is None:
display_text = 'πΌοΈ NO IMAGE SELECTED\n\nπ Select an image from the dropdown above'
else:
display_text = f'πΌοΈ {image_name.upper()}\n\nπ Click where you first look\n\nβ οΈ (Image not found)'
ax.text(0.5, 0.5, display_text,
transform=ax.transAxes, ha='center', va='center',
fontsize=28, fontweight='bold', color='#666666')
ax.set_xlim(0, DISPLAY_WIDTH)
ax.set_ylim(0, DISPLAY_HEIGHT)
ax.axis('off')
ax.set_facecolor('#f8f9fa') # Light gray background for placeholder
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight', pad_inches=0)
buf.seek(0)
plt.close()
img = Image.open(buf)
# Ensure it's exactly 1920x1080
img_resized = img.resize((DISPLAY_WIDTH, DISPLAY_HEIGHT), Image.Resampling.LANCZOS)
return img_resized
def process_click(image_name, model_type, evt: gr.SelectData):
"""Process click on image and return prediction"""
if evt is None:
return "β Please click on the image where you first looked!", None, None
if image_name is None:
return "β Please select an image first!", None, None
# Get click coordinates (Gradio provides them in image coordinates)
click_x_img, click_y_img = evt.index
# Convert to normalized coordinates
# Gradio coordinates: (0,0) is top-left
# Our coordinates: (0,0) is center
# x range: -960 to 960, y range: -540 to 540
click_x_norm = click_x_img - (DISPLAY_WIDTH / 2) # Convert to -960 to 960
click_y_norm = (DISPLAY_HEIGHT / 2) - click_y_img # INVERTED: Convert to -540 to 540
# Get model data
if image_name not in all_models:
return f"β No model found for {image_name}", None, None
model_data = all_models[image_name]
# Calculate features
centroid_left = np.array([model_data['centroid_left_x'], model_data['centroid_left_y']])
centroid_right = np.array([model_data['centroid_right_x'], model_data['centroid_right_y']])
fixation = np.array([click_x_norm, click_y_norm])
dist_left = np.linalg.norm(fixation - centroid_left)
dist_right = np.linalg.norm(fixation - centroid_right)
bias = dist_right - dist_left
# Make prediction
X = pd.DataFrame([[dist_left, dist_right, bias]],
columns=['dist_to_left', 'dist_to_right', 'bias_to_left'])
model = model_data[f'{model_type}_model']
prediction = model.predict(X)[0]
probability = model.predict_proba(X)[0]
# Decode prediction
predicted_class = model_data['label_classes'][prediction]
confidence = probability[prediction]
# Create confidence level description
if confidence >= 0.8:
confidence_level = "Very High π’"
elif confidence >= 0.65:
confidence_level = "High π‘"
elif confidence >= 0.5:
confidence_level = "Moderate π "
else:
confidence_level = "Low π΄"
# Create detailed message
message = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1.5rem; border-radius: 10px; color: white; margin: 0.5rem 0;">
<h2 style="color: white; margin-top: 0;">π Prediction Results</h2>
<p><strong>π Click Location:</strong> ({click_x_img}, {click_y_img}) pixels from top-left<br>
<strong>π― Normalized Position:</strong> ({click_x_norm:.1f}, {click_y_norm:.1f}) from center</p>
<hr style="border-color: rgba(255,255,255,0.3);">
<p><strong>π Distance to Left Region:</strong> {dist_left:.1f} pixels<br>
<strong>π Distance to Right Region:</strong> {dist_right:.1f} pixels<br>
<strong>βοΈ Bias Score:</strong> {bias:.1f}</p>
<hr style="border-color: rgba(255,255,255,0.3);">
<h3 style="color: white;">π§ Prediction: You likely see the {predicted_class.upper()} interpretation</h3>
<h3 style="color: white;">π Confidence: {confidence:.1%} ({confidence_level})</h3>
"""
# Create visualization
viz = create_visualization(image_name, click_x_norm, click_y_norm,
predicted_class, confidence, model_type)
# Get example interpretations
interpretations = {
'duck-rabbit': {'left': 'Duck π¦', 'right': 'Rabbit π°'},
'face-vase': {'left': 'Two Faces π₯', 'right': 'Vase πΊ'},
'young-old': {'left': 'Young Woman π©', 'right': 'Old Woman π΅'},
'princess-oldMan': {'left': 'Princess πΈ', 'right': 'Old Man π΄'},
'lily-woman': {'left': 'Lily πΈ', 'right': 'Woman π©'},
'tiger-monkey': {'left': 'Tiger π
', 'right': 'Monkey π'}
}
if image_name in interpretations:
specific = interpretations[image_name][predicted_class]
message += f"<p><strong>π¨ What you see:</strong> {specific}</p>"
message += "</div>"
return message, viz, create_stats_table(image_name, model_type)
def create_visualization(image_name, click_x, click_y, prediction, confidence, model_type='rf'):
"""Create a visualization showing the click point, centroids, and prediction"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6), facecolor='#f8f9fa')
# Get model data
model_data = all_models[image_name]
centroid_left = np.array([model_data['centroid_left_x'], model_data['centroid_left_y']])
centroid_right = np.array([model_data['centroid_right_x'], model_data['centroid_right_y']])
# Left plot: Decision boundary with proper axis range
resolution = 100
x_range = np.linspace(-960, 960, resolution) # Full x range
y_range = np.linspace(-540, 540, resolution) # Full y range
xx, yy = np.meshgrid(x_range, y_range)
# Calculate features for grid
points = np.c_[xx.ravel(), yy.ravel()]
features = []
for point in points:
dist_left = np.linalg.norm(point - centroid_left)
dist_right = np.linalg.norm(point - centroid_right)
bias = dist_right - dist_left
features.append([dist_left, dist_right, bias])
X = pd.DataFrame(features, columns=['dist_to_left', 'dist_to_right', 'bias_to_left'])
model = model_data[f'{model_type}_model']
Z = model.predict(X)
Z = Z.reshape(xx.shape)
# Plot decision boundary
from matplotlib.colors import ListedColormap
colors = ListedColormap(['#a8d5ff', '#ffb3b3']) # Softer blue and red
ax1.contourf(xx, yy, Z, alpha=0.7, cmap=colors)
# Plot centroids
ax1.scatter(centroid_left[0], centroid_left[1],
c='blue', marker='*', s=500, edgecolors='black', label='Left centroid')
ax1.scatter(centroid_right[0], centroid_right[1],
c='red', marker='*', s=500, edgecolors='black', label='Right centroid')
# Plot user's click
ax1.scatter(click_x, click_y, c='green', marker='X', s=300,
edgecolors='black', linewidth=2, label='Your fixation', zorder=10)
# Draw lines to centroids
ax1.plot([click_x, centroid_left[0]], [click_y, centroid_left[1]],
'b--', alpha=0.5, linewidth=2)
ax1.plot([click_x, centroid_right[0]], [click_y, centroid_right[1]],
'r--', alpha=0.5, linewidth=2)
ax1.set_xlabel('X (pixels from center)')
ax1.set_ylabel('Y (pixels from center)')
ax1.set_title(f'Decision Space - {model_type.upper()} Model')
ax1.grid(True, alpha=0.3)
ax1.legend(loc='upper right', framealpha=0.9)
ax1.set_xlim(-960, 960) # Full width range
ax1.set_ylim(-540, 540) # Full height range
ax1.set_aspect('equal')
ax1.set_facecolor('#f8f9fa') # Light background
# Right plot: Statistics
image_df = master_df[master_df['image_type'] == image_name]
# Create bar chart of choices
choice_counts = image_df['choice'].value_counts()
bars = ax2.bar(choice_counts.index, choice_counts.values,
color=['#4b86db' if x == 'left' else '#db4b4b' for x in choice_counts.index])
# Add values on top of bars
for bar in bars:
height = bar.get_height()
ax2.text(bar.get_x() + bar.get_width()/2., height + 0.5,
f'{height:.0f}',
ha='center', va='bottom', fontsize=10)
# Add prediction annotation
ax2.text(0.5, 0.95, f'Your Predicted Choice: {prediction.upper()}',
transform=ax2.transAxes, ha='center', va='top',
fontsize=16, fontweight='bold',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#c2f0c2' if prediction == 'left' else '#f0c2c2',
alpha=0.9, edgecolor='gray'))
ax2.text(0.5, 0.85, f'Confidence: {confidence:.1%}',
transform=ax2.transAxes, ha='center', va='top', fontsize=14)
ax2.set_xlabel('Interpretation')
ax2.set_ylabel('Number of Participants')
ax2.set_title(f'Overall Distribution for {image_name}')
# Add model accuracy info
ax2.text(0.5, 0.05, f'Model CV Accuracy: {model_data[f"cv_accuracy_{model_type}"]:.1%}',
transform=ax2.transAxes, ha='center', va='bottom', fontsize=12,
style='italic', alpha=0.7)
ax2.set_facecolor('#f8f9fa') # Light background
plt.tight_layout()
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
plt.close()
return Image.open(buf)
def create_stats_table(image_name, model_type):
"""Create a statistics table for the selected image"""
model_data = all_models[image_name]
image_df = master_df[master_df['image_type'] == image_name]
stats = {
'Metric': ['π₯ Total Participants', 'β¬
οΈ Left Choices', 'β‘οΈ Right Choices',
f'π― {model_type.upper()} Accuracy', 'βοΈ Class Balance', 'π Majority Choice'],
'Value': [
len(image_df),
model_data['class_distribution'].get('left', 0),
model_data['class_distribution'].get('right', 0),
f"{model_data[f'cv_accuracy_{model_type}']:.1%}",
f"{min(model_data['class_distribution'].values()) / len(image_df):.1%}",
f"{image_df['choice'].mode()[0].title()} ({image_df['choice'].value_counts().max()}/{len(image_df)})"
]
}
return pd.DataFrame(stats)
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
padding: 1.5rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 15px;
color: white;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
.instruction-box {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
padding: 1rem;
border-radius: 10px;
color: white;
margin: 1rem 0;
}
.stats-highlight {
background-color: #f8f9fa;
border-left: 4px solid #007bff;
padding: 1rem;
margin: 0.5rem 0;
}
"""
# Create Gradio Interface
with gr.Blocks(title="π§ Optical Illusion First Fixation Predictor",
theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-header">
<h1>π§ Optical Illusion First Fixation Predictor</h1>
<h3>Can we predict what you see based on where you look?</h3>
<p>This AI-powered tool analyzes your first fixation point to predict which interpretation of an ambiguous image you'll perceive!</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
# Image selection with description
available_images = list(all_models.keys()) if all_models else []
default_image = available_images[0] if available_images else None
image_choice = gr.Dropdown(
choices=available_images,
value=default_image,
label="πΌοΈ Select Optical Illusion",
info="Choose which ambiguous image to analyze"
)
# Display image description
image_description = gr.Markdown(
value=IMAGE_DESCRIPTIONS.get(default_image, "Select an image to see its description.") if default_image else "Select an image to see its description.",
label="π Image Description"
)
# Model selection with enhanced info
model_type = gr.Radio(
choices=[("Random Forest (Recommended)", "rf"), ("Logistic Regression", "lr")],
value="rf",
label="π Prediction Model",
info="Random Forest typically provides better accuracy for this task",
container=True
)
# Display image with better styling
image_display = gr.Image(
label="π Click where your eyes first landed on the image",
interactive=True,
type="pil",
height=540, # Reduced for better mobile compatibility
width=960,
elem_classes="main-image"
)
with gr.Column(scale=1):
# Results section with enhanced styling
prediction_output = gr.Markdown(
label="π§ Prediction Results",
value="""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>π Click on the image to get your prediction!</strong><br><br>
The AI will analyze where you looked first and predict what you're likely to see.
</div>""",
elem_classes="stats-highlight"
)
stats_table = gr.DataFrame(label="π Image Statistics")
# Visualization output with better layout
with gr.Row():
visualization_output = gr.Image(
label="π Analysis Visualization",
type="pil"
)
# Enhanced information sections
with gr.Accordion("βΉοΈ How It Works", open=False):
gr.Markdown("""
### π€ The Science Behind the Prediction
**π― Feature Extraction:**
- We calculate the distance from your click point to the centroid of each interpretation region
- A "bias score" measures which region you're closer to
**π§ Machine Learning Models:**
- **Random Forest:** Uses multiple decision trees for robust predictions
- **Logistic Regression:** A linear approach that's fast and interpretable
**π Training Process:**
- Trained on eye-tracking data from multiple participants
- Uses Leave-One-Participant-Out Cross-Validation for unbiased evaluation
- Ensures the model generalizes to new users
**π¨ Coordinate System:**
- Center of image = (0, 0)
- X-axis: -960 to +960 pixels (left to right)
- Y-axis: -540 to +540 pixels (bottom to top)
""")
with gr.Accordion("π Model Performance", open=False):
if all_models:
summary_data = []
for img_name, model_data in all_models.items():
summary_data.append({
'Image': img_name.replace('-', ' ').title(),
'RF Accuracy': f"{model_data['cv_accuracy_rf']:.1%}",
'LR Accuracy': f"{model_data['cv_accuracy_lr']:.1%}",
'Participants': model_data['total_samples'],
'Best Model': 'RF' if model_data['cv_accuracy_rf'] > model_data['cv_accuracy_lr'] else 'LR'
})
gr.DataFrame(
value=pd.DataFrame(summary_data),
label="Cross-Validation Performance Summary"
)
# Function to update image and description
def update_image_and_description(image_name):
# Handle None case
if image_name is None:
empty_stats = pd.DataFrame({
'Metric': ['Select an image to see statistics'],
'Value': ['']
})
return (create_placeholder_image(None),
"Select an image to see its description.",
"""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>π Please select an image first!</strong>
</div>""",
empty_stats)
# Update description
description = IMAGE_DESCRIPTIONS.get(image_name, "Description not available.")
# Use real images if available, otherwise use placeholder
if image_name in illusion_images:
# Create initial stats table with proper data
model_data = all_models[image_name]
image_df = master_df[master_df['image_type'] == image_name]
stats = {
'Metric': ['π₯ Total Participants', 'β¬
οΈ Left Choices', 'β‘οΈ Right Choices',
'π― RF Accuracy', 'βοΈ Class Balance', 'π Majority Choice'],
'Value': [
len(image_df),
model_data['class_distribution'].get('left', 0),
model_data['class_distribution'].get('right', 0),
f"{model_data['cv_accuracy_rf']:.1%}",
f"{min(model_data['class_distribution'].values()) / len(image_df):.1%}",
f"{image_df['choice'].mode()[0].title()} ({image_df['choice'].value_counts().max()}/{len(image_df)})"
]
}
return (illusion_images[image_name],
f"**{description}**",
"""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>π Click on the image to get your prediction!</strong><br><br>
The AI will analyze where you looked first and predict what you're likely to see.
</div>""",
pd.DataFrame(stats))
else:
empty_stats = pd.DataFrame({
'Metric': ['Image not found'],
'Value': ['']
})
return (create_placeholder_image(image_name),
f"**{description}**",
"""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>β οΈ Image file not found!</strong>
</div>""",
empty_stats)
# Connect events
image_choice.change(
fn=update_image_and_description,
inputs=[image_choice],
outputs=[image_display, image_description, prediction_output, stats_table]
)
# Handle click event
image_display.select(
fn=process_click,
inputs=[image_choice, model_type],
outputs=[prediction_output, visualization_output, stats_table]
)
# Load initial image
demo.load(
fn=update_image_and_description,
inputs=[image_choice],
outputs=[image_display, image_description, prediction_output, stats_table]
)
# Enhanced examples section
if available_images:
gr.Markdown("## π Quick Examples")
with gr.Row():
example_list = []
for img in ["duck-rabbit", "face-vase", "young-old", "tiger-monkey"]:
if img in available_images:
example_list.append([img, "rf"])
if example_list:
gr.Examples(
examples=example_list,
inputs=[image_choice, model_type],
label="Try these popular illusions"
)
# Enhanced footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1.5rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; color: white;">
<h4>π¬ WID2003 Cognitive Science Group Assignment - OCC 2 Group 2</h4>
<p><strong>Universiti Malaya</strong> | 2025</p>
<p style="font-size: 0.9em; opacity: 0.8;">Vote for Us!</p>
</div>
""")
# Debug info
print(f"\nImage folder: {image_folder}")
print(f"Images loaded: {list(illusion_images.keys())}")
print(f"Models loaded: {list(all_models.keys())}")
print(f"Image dimensions: {DISPLAY_WIDTH}x{DISPLAY_HEIGHT}")
# Launch the app
if __name__ == "__main__":
demo.launch(
# share=True,
# debug=True
) |