File size: 5,864 Bytes
77d8010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import base64
import logging
import os
import sys
from contextlib import nullcontext

import comfy.model_management
import folder_paths
import numpy as np
import torch
import trimesh
from PIL import Image
from trimesh.exchange import gltf

sys.path.append(os.path.dirname(__file__))
from sf3d.system import SF3D
from sf3d.utils import resize_foreground

SF3D_CATEGORY = "StableFast3D"
SF3D_MODEL_NAME = "stabilityai/stable-fast-3d"


class StableFast3DLoader:
    CATEGORY = SF3D_CATEGORY
    FUNCTION = "load"
    RETURN_NAMES = ("sf3d_model",)
    RETURN_TYPES = ("SF3D_MODEL",)

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {}}

    def load(self):
        device = comfy.model_management.get_torch_device()
        model = SF3D.from_pretrained(
            SF3D_MODEL_NAME,
            config_name="config.yaml",
            weight_name="model.safetensors",
        )
        model.to(device)
        model.eval()

        return (model,)


class StableFast3DPreview:
    CATEGORY = SF3D_CATEGORY
    FUNCTION = "preview"
    OUTPUT_NODE = True
    RETURN_TYPES = ()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"mesh": ("MESH",)}}

    def preview(self, mesh):
        glbs = []
        for m in mesh:
            scene = trimesh.Scene(m)
            glb_data = gltf.export_glb(scene, include_normals=True)
            glb_base64 = base64.b64encode(glb_data).decode("utf-8")
            glbs.append(glb_base64)
        return {"ui": {"glbs": glbs}}


class StableFast3DSampler:
    CATEGORY = SF3D_CATEGORY
    FUNCTION = "predict"
    RETURN_NAMES = ("mesh",)
    RETURN_TYPES = ("MESH",)

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("SF3D_MODEL",),
                "image": ("IMAGE",),
                "foreground_ratio": (
                    "FLOAT",
                    {"default": 0.85, "min": 0.0, "max": 1.0, "step": 0.01},
                ),
                "texture_resolution": (
                    "INT",
                    {"default": 1024, "min": 512, "max": 2048, "step": 256},
                ),
            },
            "optional": {
                "mask": ("MASK",),
                "remesh": (["none", "triangle", "quad"],),
                "vertex_count": (
                    "INT",
                    {"default": -1, "min": -1, "max": 20000, "step": 1},
                ),
            },
        }

    def predict(
        s,
        model,
        image,
        mask,
        foreground_ratio,
        texture_resolution,
        remesh="none",
        vertex_count=-1,
    ):
        if image.shape[0] != 1:
            raise ValueError("Only one image can be processed at a time")

        pil_image = Image.fromarray(
            torch.clamp(torch.round(255.0 * image[0]), 0, 255)
            .type(torch.uint8)
            .cpu()
            .numpy()
        )

        if mask is not None:
            print("Using Mask")
            mask_np = np.clip(255.0 * mask[0].detach().cpu().numpy(), 0, 255).astype(
                np.uint8
            )
            mask_pil = Image.fromarray(mask_np, mode="L")
            pil_image.putalpha(mask_pil)
        else:
            if image.shape[3] != 4:
                print("No mask or alpha channel detected, Converting to RGBA")
                pil_image = pil_image.convert("RGBA")

        pil_image = resize_foreground(pil_image, foreground_ratio)
        print(remesh)
        with torch.no_grad():
            with torch.autocast(
                device_type="cuda", dtype=torch.bfloat16
            ) if "cuda" in comfy.model_management.get_torch_device().type else nullcontext():
                mesh, glob_dict = model.run_image(
                    pil_image,
                    bake_resolution=texture_resolution,
                    remesh=remesh,
                    vertex_count=vertex_count,
                )

        if mesh.vertices.shape[0] == 0:
            raise ValueError("No subject detected in the image")

        return ([mesh],)


class StableFast3DSave:
    CATEGORY = SF3D_CATEGORY
    FUNCTION = "save"
    OUTPUT_NODE = True
    RETURN_TYPES = ()

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "mesh": ("MESH",),
                "filename_prefix": ("STRING", {"default": "SF3D"}),
            }
        }

    def __init__(self):
        self.type = "output"

    def save(self, mesh, filename_prefix):
        output_dir = folder_paths.get_output_directory()
        glbs = []
        for idx, m in enumerate(mesh):
            scene = trimesh.Scene(m)
            glb_data = gltf.export_glb(scene, include_normals=True)
            logging.info(f"Generated GLB model with {len(glb_data)} bytes")

            full_output_folder, filename, counter, subfolder, filename_prefix = (
                folder_paths.get_save_image_path(filename_prefix, output_dir)
            )
            filename = filename.replace("%batch_num%", str(idx))
            out_path = os.path.join(full_output_folder, f"{filename}_{counter:05}_.glb")
            with open(out_path, "wb") as f:
                f.write(glb_data)
            glbs.append(base64.b64encode(glb_data).decode("utf-8"))
        return {"ui": {"glbs": glbs}}


NODE_DISPLAY_NAME_MAPPINGS = {
    "StableFast3DLoader": "Stable Fast 3D Loader",
    "StableFast3DPreview": "Stable Fast 3D Preview",
    "StableFast3DSampler": "Stable Fast 3D Sampler",
    "StableFast3DSave": "Stable Fast 3D Save",
}

NODE_CLASS_MAPPINGS = {
    "StableFast3DLoader": StableFast3DLoader,
    "StableFast3DPreview": StableFast3DPreview,
    "StableFast3DSampler": StableFast3DSampler,
    "StableFast3DSave": StableFast3DSave,
}

WEB_DIRECTORY = "./comfyui"

__all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS", "WEB_DIRECTORY"]