File size: 21,655 Bytes
a342aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import json
import os
import os.path as osp
from glob import glob
from typing import Any, Dict, List, Optional, Tuple

import cv2
import imageio.v3 as iio
import numpy as np
import torch

from seva.geometry import (
    align_principle_axes,
    similarity_from_cameras,
    transform_cameras,
    transform_points,
)


def _get_rel_paths(path_dir: str) -> List[str]:
    """Recursively get relative paths of files in a directory."""
    paths = []
    for dp, _, fn in os.walk(path_dir):
        for f in fn:
            paths.append(os.path.relpath(os.path.join(dp, f), path_dir))
    return paths


class BaseParser(object):
    def __init__(
        self,
        data_dir: str,
        factor: int = 1,
        normalize: bool = False,
        test_every: Optional[int] = 8,
    ):
        self.data_dir = data_dir
        self.factor = factor
        self.normalize = normalize
        self.test_every = test_every

        self.image_names: List[str] = []  # (num_images,)
        self.image_paths: List[str] = []  # (num_images,)
        self.camtoworlds: np.ndarray = np.zeros((0, 4, 4))  # (num_images, 4, 4)
        self.camera_ids: List[int] = []  # (num_images,)
        self.Ks_dict: Dict[int, np.ndarray] = {}  # Dict of camera_id -> K
        self.params_dict: Dict[int, np.ndarray] = {}  # Dict of camera_id -> params
        self.imsize_dict: Dict[
            int, Tuple[int, int]
        ] = {}  # Dict of camera_id -> (width, height)
        self.points: np.ndarray = np.zeros((0, 3))  # (num_points, 3)
        self.points_err: np.ndarray = np.zeros((0,))  # (num_points,)
        self.points_rgb: np.ndarray = np.zeros((0, 3))  # (num_points, 3)
        self.point_indices: Dict[str, np.ndarray] = {}  # Dict of image_name -> (M,)
        self.transform: np.ndarray = np.zeros((4, 4))  # (4, 4)

        self.mapx_dict: Dict[int, np.ndarray] = {}  # Dict of camera_id -> (H, W)
        self.mapy_dict: Dict[int, np.ndarray] = {}  # Dict of camera_id -> (H, W)
        self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = (
            dict()
        )  # Dict of camera_id -> (x, y, w, h)
        self.scene_scale: float = 1.0


class DirectParser(BaseParser):
    def __init__(
        self,
        imgs: List[np.ndarray],
        c2ws: np.ndarray,
        Ks: np.ndarray,
        points: Optional[np.ndarray] = None,
        points_rgb: Optional[np.ndarray] = None,  # uint8
        mono_disps: Optional[List[np.ndarray]] = None,
        normalize: bool = False,
        test_every: Optional[int] = None,
    ):
        super().__init__("", 1, normalize, test_every)

        self.image_names = [f"{i:06d}" for i in range(len(imgs))]
        self.image_paths = ["null" for _ in range(len(imgs))]
        self.camtoworlds = c2ws
        self.camera_ids = [i for i in range(len(imgs))]
        self.Ks_dict = {i: K for i, K in enumerate(Ks)}
        self.imsize_dict = {
            i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs)
        }
        if points is not None:
            self.points = points
            assert points_rgb is not None
            self.points_rgb = points_rgb
            self.points_err = np.zeros((len(points),))

        self.imgs = imgs
        self.mono_disps = mono_disps

        # Normalize the world space.
        if normalize:
            T1 = similarity_from_cameras(self.camtoworlds)
            self.camtoworlds = transform_cameras(T1, self.camtoworlds)

            if points is not None:
                self.points = transform_points(T1, self.points)
                T2 = align_principle_axes(self.points)
                self.camtoworlds = transform_cameras(T2, self.camtoworlds)
                self.points = transform_points(T2, self.points)
            else:
                T2 = np.eye(4)

            self.transform = T2 @ T1
        else:
            self.transform = np.eye(4)

        # size of the scene measured by cameras
        camera_locations = self.camtoworlds[:, :3, 3]
        scene_center = np.mean(camera_locations, axis=0)
        dists = np.linalg.norm(camera_locations - scene_center, axis=1)
        self.scene_scale = np.max(dists)


class COLMAPParser(BaseParser):
    """COLMAP parser."""

    def __init__(
        self,
        data_dir: str,
        factor: int = 1,
        normalize: bool = False,
        test_every: Optional[int] = 8,
        image_folder: str = "images",
        colmap_folder: str = "sparse/0",
    ):
        super().__init__(data_dir, factor, normalize, test_every)

        colmap_dir = os.path.join(data_dir, colmap_folder)
        assert os.path.exists(
            colmap_dir
        ), f"COLMAP directory {colmap_dir} does not exist."

        try:
            from pycolmap import SceneManager
        except ImportError:
            raise ImportError(
                "Please install pycolmap to use the data parsers: "
                "  `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`"
            )

        manager = SceneManager(colmap_dir)
        manager.load_cameras()
        manager.load_images()
        manager.load_points3D()

        # Extract extrinsic matrices in world-to-camera format.
        imdata = manager.images
        w2c_mats = []
        camera_ids = []
        Ks_dict = dict()
        params_dict = dict()
        imsize_dict = dict()  # width, height
        bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
        for k in imdata:
            im = imdata[k]
            rot = im.R()
            trans = im.tvec.reshape(3, 1)
            w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
            w2c_mats.append(w2c)

            # support different camera intrinsics
            camera_id = im.camera_id
            camera_ids.append(camera_id)

            # camera intrinsics
            cam = manager.cameras[camera_id]
            fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
            K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
            K[:2, :] /= factor
            Ks_dict[camera_id] = K

            # Get distortion parameters.
            type_ = cam.camera_type
            if type_ == 0 or type_ == "SIMPLE_PINHOLE":
                params = np.empty(0, dtype=np.float32)
                camtype = "perspective"
            elif type_ == 1 or type_ == "PINHOLE":
                params = np.empty(0, dtype=np.float32)
                camtype = "perspective"
            if type_ == 2 or type_ == "SIMPLE_RADIAL":
                params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32)
                camtype = "perspective"
            elif type_ == 3 or type_ == "RADIAL":
                params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32)
                camtype = "perspective"
            elif type_ == 4 or type_ == "OPENCV":
                params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32)
                camtype = "perspective"
            elif type_ == 5 or type_ == "OPENCV_FISHEYE":
                params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32)
                camtype = "fisheye"
            assert (
                camtype == "perspective"  # type: ignore
            ), f"Only support perspective camera model, got {type_}"

            params_dict[camera_id] = params  # type: ignore

            # image size
            imsize_dict[camera_id] = (cam.width // factor, cam.height // factor)

        print(
            f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras."
        )

        if len(imdata) == 0:
            raise ValueError("No images found in COLMAP.")
        if not (type_ == 0 or type_ == 1):  # type: ignore
            print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.")

        w2c_mats = np.stack(w2c_mats, axis=0)

        # Convert extrinsics to camera-to-world.
        camtoworlds = np.linalg.inv(w2c_mats)

        # Image names from COLMAP. No need for permuting the poses according to
        # image names anymore.
        image_names = [imdata[k].name for k in imdata]

        # Previous Nerf results were generated with images sorted by filename,
        # ensure metrics are reported on the same test set.
        inds = np.argsort(image_names)
        image_names = [image_names[i] for i in inds]
        camtoworlds = camtoworlds[inds]
        camera_ids = [camera_ids[i] for i in inds]

        # Load images.
        if factor > 1:
            image_dir_suffix = f"_{factor}"
        else:
            image_dir_suffix = ""
        colmap_image_dir = os.path.join(data_dir, image_folder)
        image_dir = os.path.join(data_dir, image_folder + image_dir_suffix)
        for d in [image_dir, colmap_image_dir]:
            if not os.path.exists(d):
                raise ValueError(f"Image folder {d} does not exist.")

        # Downsampled images may have different names vs images used for COLMAP,
        # so we need to map between the two sorted lists of files.
        colmap_files = sorted(_get_rel_paths(colmap_image_dir))
        image_files = sorted(_get_rel_paths(image_dir))
        colmap_to_image = dict(zip(colmap_files, image_files))
        image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names]

        # 3D points and {image_name -> [point_idx]}
        points = manager.points3D.astype(np.float32)  # type: ignore
        points_err = manager.point3D_errors.astype(np.float32)  # type: ignore
        points_rgb = manager.point3D_colors.astype(np.uint8)  # type: ignore
        point_indices = dict()

        image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()}
        for point_id, data in manager.point3D_id_to_images.items():
            for image_id, _ in data:
                image_name = image_id_to_name[image_id]
                point_idx = manager.point3D_id_to_point3D_idx[point_id]
                point_indices.setdefault(image_name, []).append(point_idx)
        point_indices = {
            k: np.array(v).astype(np.int32) for k, v in point_indices.items()
        }

        # Normalize the world space.
        if normalize:
            T1 = similarity_from_cameras(camtoworlds)
            camtoworlds = transform_cameras(T1, camtoworlds)
            points = transform_points(T1, points)

            T2 = align_principle_axes(points)
            camtoworlds = transform_cameras(T2, camtoworlds)
            points = transform_points(T2, points)

            transform = T2 @ T1
        else:
            transform = np.eye(4)

        self.image_names = image_names  # List[str], (num_images,)
        self.image_paths = image_paths  # List[str], (num_images,)
        self.camtoworlds = camtoworlds  # np.ndarray, (num_images, 4, 4)
        self.camera_ids = camera_ids  # List[int], (num_images,)
        self.Ks_dict = Ks_dict  # Dict of camera_id -> K
        self.params_dict = params_dict  # Dict of camera_id -> params
        self.imsize_dict = imsize_dict  # Dict of camera_id -> (width, height)
        self.points = points  # np.ndarray, (num_points, 3)
        self.points_err = points_err  # np.ndarray, (num_points,)
        self.points_rgb = points_rgb  # np.ndarray, (num_points, 3)
        self.point_indices = point_indices  # Dict[str, np.ndarray], image_name -> [M,]
        self.transform = transform  # np.ndarray, (4, 4)

        # undistortion
        self.mapx_dict = dict()
        self.mapy_dict = dict()
        self.roi_undist_dict = dict()
        for camera_id in self.params_dict.keys():
            params = self.params_dict[camera_id]
            if len(params) == 0:
                continue  # no distortion
            assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}"
            assert (
                camera_id in self.params_dict
            ), f"Missing params for camera {camera_id}"
            K = self.Ks_dict[camera_id]
            width, height = self.imsize_dict[camera_id]
            K_undist, roi_undist = cv2.getOptimalNewCameraMatrix(
                K, params, (width, height), 0
            )
            mapx, mapy = cv2.initUndistortRectifyMap(
                K,
                params,
                None,
                K_undist,
                (width, height),
                cv2.CV_32FC1,  # type: ignore
            )
            self.Ks_dict[camera_id] = K_undist
            self.mapx_dict[camera_id] = mapx
            self.mapy_dict[camera_id] = mapy
            self.roi_undist_dict[camera_id] = roi_undist  # type: ignore

        # size of the scene measured by cameras
        camera_locations = camtoworlds[:, :3, 3]
        scene_center = np.mean(camera_locations, axis=0)
        dists = np.linalg.norm(camera_locations - scene_center, axis=1)
        self.scene_scale = np.max(dists)


class ReconfusionParser(BaseParser):
    def __init__(self, data_dir: str, normalize: bool = False):
        super().__init__(data_dir, 1, normalize, test_every=None)

        def get_num(p):
            return p.split("_")[-1].removesuffix(".json")

        splits_per_num_input_frames = {}
        num_input_frames = [
            int(get_num(p)) if get_num(p).isdigit() else get_num(p)
            for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json")))
        ]
        for num_input_frames in num_input_frames:
            with open(
                osp.join(
                    data_dir,
                    f"train_test_split_{num_input_frames}.json",
                )
            ) as f:
                splits_per_num_input_frames[num_input_frames] = json.load(f)
        self.splits_per_num_input_frames = splits_per_num_input_frames

        with open(osp.join(data_dir, "transforms.json")) as f:
            metadata = json.load(f)

        image_names, image_paths, camtoworlds = [], [], []
        for frame in metadata["frames"]:
            if frame["file_path"] is None:
                image_path = image_name = None
            else:
                image_path = osp.join(data_dir, frame["file_path"])
                image_name = osp.basename(image_path)
            image_paths.append(image_path)
            image_names.append(image_name)
            camtoworld = np.array(frame["transform_matrix"])
            if "applied_transform" in metadata:
                applied_transform = np.concatenate(
                    [metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0
                )
                camtoworld = applied_transform @ camtoworld
            camtoworlds.append(camtoworld)
        camtoworlds = np.array(camtoworlds)
        camtoworlds[:, :, [1, 2]] *= -1

        # Normalize the world space.
        if normalize:
            T1 = similarity_from_cameras(camtoworlds)
            camtoworlds = transform_cameras(T1, camtoworlds)
            self.transform = T1
        else:
            self.transform = np.eye(4)

        self.image_names = image_names
        self.image_paths = image_paths
        self.camtoworlds = camtoworlds
        self.camera_ids = list(range(len(image_paths)))
        self.Ks_dict = {
            i: np.array(
                [
                    [
                        metadata.get("fl_x", frame.get("fl_x", None)),
                        0.0,
                        metadata.get("cx", frame.get("cx", None)),
                    ],
                    [
                        0.0,
                        metadata.get("fl_y", frame.get("fl_y", None)),
                        metadata.get("cy", frame.get("cy", None)),
                    ],
                    [0.0, 0.0, 1.0],
                ]
            )
            for i, frame in enumerate(metadata["frames"])
        }
        self.imsize_dict = {
            i: (
                metadata.get("w", frame.get("w", None)),
                metadata.get("h", frame.get("h", None)),
            )
            for i, frame in enumerate(metadata["frames"])
        }
        # When num_input_frames is None, use all frames for both training and
        # testing.
        # self.splits_per_num_input_frames[None] = {
        #     "train_ids": list(range(len(image_paths))),
        #     "test_ids": list(range(len(image_paths))),
        # }

        # size of the scene measured by cameras
        camera_locations = camtoworlds[:, :3, 3]
        scene_center = np.mean(camera_locations, axis=0)
        dists = np.linalg.norm(camera_locations - scene_center, axis=1)
        self.scene_scale = np.max(dists)

        self.bounds = None
        if osp.exists(osp.join(data_dir, "bounds.npy")):
            self.bounds = np.load(osp.join(data_dir, "bounds.npy"))
            scaling = np.linalg.norm(self.transform[0, :3])
            self.bounds = self.bounds / scaling


class Dataset(torch.utils.data.Dataset):
    """A simple dataset class."""

    def __init__(
        self,
        parser: BaseParser,
        split: str = "train",
        num_input_frames: Optional[int] = None,
        patch_size: Optional[int] = None,
        load_depths: bool = False,
        load_mono_disps: bool = False,
    ):
        self.parser = parser
        self.split = split
        self.num_input_frames = num_input_frames
        self.patch_size = patch_size
        self.load_depths = load_depths
        self.load_mono_disps = load_mono_disps
        if load_mono_disps:
            assert isinstance(parser, DirectParser)
            assert parser.mono_disps is not None
        if isinstance(parser, ReconfusionParser):
            ids_per_split = parser.splits_per_num_input_frames[num_input_frames]
            self.indices = ids_per_split[
                "train_ids" if split == "train" else "test_ids"
            ]
        else:
            indices = np.arange(len(self.parser.image_names))
            if split == "train":
                self.indices = (
                    indices[indices % self.parser.test_every != 0]
                    if self.parser.test_every is not None
                    else indices
                )
            else:
                self.indices = (
                    indices[indices % self.parser.test_every == 0]
                    if self.parser.test_every is not None
                    else indices
                )

    def __len__(self):
        return len(self.indices)

    def __getitem__(self, item: int) -> Dict[str, Any]:
        index = self.indices[item]
        if isinstance(self.parser, DirectParser):
            image = self.parser.imgs[index]
        else:
            image = iio.imread(self.parser.image_paths[index])[..., :3]
        camera_id = self.parser.camera_ids[index]
        K = self.parser.Ks_dict[camera_id].copy()  # undistorted K
        params = self.parser.params_dict.get(camera_id, None)
        camtoworlds = self.parser.camtoworlds[index]

        x, y, w, h = 0, 0, image.shape[1], image.shape[0]
        if params is not None and len(params) > 0:
            # Images are distorted. Undistort them.
            mapx, mapy = (
                self.parser.mapx_dict[camera_id],
                self.parser.mapy_dict[camera_id],
            )
            image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR)
            x, y, w, h = self.parser.roi_undist_dict[camera_id]
            image = image[y : y + h, x : x + w]

        if self.patch_size is not None:
            # Random crop.
            h, w = image.shape[:2]
            x = np.random.randint(0, max(w - self.patch_size, 1))
            y = np.random.randint(0, max(h - self.patch_size, 1))
            image = image[y : y + self.patch_size, x : x + self.patch_size]
            K[0, 2] -= x
            K[1, 2] -= y

        data = {
            "K": torch.from_numpy(K).float(),
            "camtoworld": torch.from_numpy(camtoworlds).float(),
            "image": torch.from_numpy(image).float(),
            "image_id": item,  # the index of the image in the dataset
        }

        if self.load_depths:
            # projected points to image plane to get depths
            worldtocams = np.linalg.inv(camtoworlds)
            image_name = self.parser.image_names[index]
            point_indices = self.parser.point_indices[image_name]
            points_world = self.parser.points[point_indices]
            points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T
            points_proj = (K @ points_cam.T).T
            points = points_proj[:, :2] / points_proj[:, 2:3]  # (M, 2)
            depths = points_cam[:, 2]  # (M,)
            if self.patch_size is not None:
                points[:, 0] -= x
                points[:, 1] -= y
            # filter out points outside the image
            selector = (
                (points[:, 0] >= 0)
                & (points[:, 0] < image.shape[1])
                & (points[:, 1] >= 0)
                & (points[:, 1] < image.shape[0])
                & (depths > 0)
            )
            points = points[selector]
            depths = depths[selector]
            data["points"] = torch.from_numpy(points).float()
            data["depths"] = torch.from_numpy(depths).float()
        if self.load_mono_disps:
            data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float()  # type: ignore

        return data


def get_parser(parser_type: str, **kwargs) -> BaseParser:
    if parser_type == "colmap":
        parser = COLMAPParser(**kwargs)
    elif parser_type == "direct":
        parser = DirectParser(**kwargs)
    elif parser_type == "reconfusion":
        parser = ReconfusionParser(**kwargs)
    else:
        raise ValueError(f"Unknown parser type: {parser_type}")
    return parser