Spaces:
Running
on
L40S
Running
on
L40S
File size: 21,655 Bytes
a342aa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
import json
import os
import os.path as osp
from glob import glob
from typing import Any, Dict, List, Optional, Tuple
import cv2
import imageio.v3 as iio
import numpy as np
import torch
from seva.geometry import (
align_principle_axes,
similarity_from_cameras,
transform_cameras,
transform_points,
)
def _get_rel_paths(path_dir: str) -> List[str]:
"""Recursively get relative paths of files in a directory."""
paths = []
for dp, _, fn in os.walk(path_dir):
for f in fn:
paths.append(os.path.relpath(os.path.join(dp, f), path_dir))
return paths
class BaseParser(object):
def __init__(
self,
data_dir: str,
factor: int = 1,
normalize: bool = False,
test_every: Optional[int] = 8,
):
self.data_dir = data_dir
self.factor = factor
self.normalize = normalize
self.test_every = test_every
self.image_names: List[str] = [] # (num_images,)
self.image_paths: List[str] = [] # (num_images,)
self.camtoworlds: np.ndarray = np.zeros((0, 4, 4)) # (num_images, 4, 4)
self.camera_ids: List[int] = [] # (num_images,)
self.Ks_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> K
self.params_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> params
self.imsize_dict: Dict[
int, Tuple[int, int]
] = {} # Dict of camera_id -> (width, height)
self.points: np.ndarray = np.zeros((0, 3)) # (num_points, 3)
self.points_err: np.ndarray = np.zeros((0,)) # (num_points,)
self.points_rgb: np.ndarray = np.zeros((0, 3)) # (num_points, 3)
self.point_indices: Dict[str, np.ndarray] = {} # Dict of image_name -> (M,)
self.transform: np.ndarray = np.zeros((4, 4)) # (4, 4)
self.mapx_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W)
self.mapy_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W)
self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = (
dict()
) # Dict of camera_id -> (x, y, w, h)
self.scene_scale: float = 1.0
class DirectParser(BaseParser):
def __init__(
self,
imgs: List[np.ndarray],
c2ws: np.ndarray,
Ks: np.ndarray,
points: Optional[np.ndarray] = None,
points_rgb: Optional[np.ndarray] = None, # uint8
mono_disps: Optional[List[np.ndarray]] = None,
normalize: bool = False,
test_every: Optional[int] = None,
):
super().__init__("", 1, normalize, test_every)
self.image_names = [f"{i:06d}" for i in range(len(imgs))]
self.image_paths = ["null" for _ in range(len(imgs))]
self.camtoworlds = c2ws
self.camera_ids = [i for i in range(len(imgs))]
self.Ks_dict = {i: K for i, K in enumerate(Ks)}
self.imsize_dict = {
i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs)
}
if points is not None:
self.points = points
assert points_rgb is not None
self.points_rgb = points_rgb
self.points_err = np.zeros((len(points),))
self.imgs = imgs
self.mono_disps = mono_disps
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(self.camtoworlds)
self.camtoworlds = transform_cameras(T1, self.camtoworlds)
if points is not None:
self.points = transform_points(T1, self.points)
T2 = align_principle_axes(self.points)
self.camtoworlds = transform_cameras(T2, self.camtoworlds)
self.points = transform_points(T2, self.points)
else:
T2 = np.eye(4)
self.transform = T2 @ T1
else:
self.transform = np.eye(4)
# size of the scene measured by cameras
camera_locations = self.camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
class COLMAPParser(BaseParser):
"""COLMAP parser."""
def __init__(
self,
data_dir: str,
factor: int = 1,
normalize: bool = False,
test_every: Optional[int] = 8,
image_folder: str = "images",
colmap_folder: str = "sparse/0",
):
super().__init__(data_dir, factor, normalize, test_every)
colmap_dir = os.path.join(data_dir, colmap_folder)
assert os.path.exists(
colmap_dir
), f"COLMAP directory {colmap_dir} does not exist."
try:
from pycolmap import SceneManager
except ImportError:
raise ImportError(
"Please install pycolmap to use the data parsers: "
" `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`"
)
manager = SceneManager(colmap_dir)
manager.load_cameras()
manager.load_images()
manager.load_points3D()
# Extract extrinsic matrices in world-to-camera format.
imdata = manager.images
w2c_mats = []
camera_ids = []
Ks_dict = dict()
params_dict = dict()
imsize_dict = dict() # width, height
bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
for k in imdata:
im = imdata[k]
rot = im.R()
trans = im.tvec.reshape(3, 1)
w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
w2c_mats.append(w2c)
# support different camera intrinsics
camera_id = im.camera_id
camera_ids.append(camera_id)
# camera intrinsics
cam = manager.cameras[camera_id]
fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
K[:2, :] /= factor
Ks_dict[camera_id] = K
# Get distortion parameters.
type_ = cam.camera_type
if type_ == 0 or type_ == "SIMPLE_PINHOLE":
params = np.empty(0, dtype=np.float32)
camtype = "perspective"
elif type_ == 1 or type_ == "PINHOLE":
params = np.empty(0, dtype=np.float32)
camtype = "perspective"
if type_ == 2 or type_ == "SIMPLE_RADIAL":
params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32)
camtype = "perspective"
elif type_ == 3 or type_ == "RADIAL":
params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32)
camtype = "perspective"
elif type_ == 4 or type_ == "OPENCV":
params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32)
camtype = "perspective"
elif type_ == 5 or type_ == "OPENCV_FISHEYE":
params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32)
camtype = "fisheye"
assert (
camtype == "perspective" # type: ignore
), f"Only support perspective camera model, got {type_}"
params_dict[camera_id] = params # type: ignore
# image size
imsize_dict[camera_id] = (cam.width // factor, cam.height // factor)
print(
f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras."
)
if len(imdata) == 0:
raise ValueError("No images found in COLMAP.")
if not (type_ == 0 or type_ == 1): # type: ignore
print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.")
w2c_mats = np.stack(w2c_mats, axis=0)
# Convert extrinsics to camera-to-world.
camtoworlds = np.linalg.inv(w2c_mats)
# Image names from COLMAP. No need for permuting the poses according to
# image names anymore.
image_names = [imdata[k].name for k in imdata]
# Previous Nerf results were generated with images sorted by filename,
# ensure metrics are reported on the same test set.
inds = np.argsort(image_names)
image_names = [image_names[i] for i in inds]
camtoworlds = camtoworlds[inds]
camera_ids = [camera_ids[i] for i in inds]
# Load images.
if factor > 1:
image_dir_suffix = f"_{factor}"
else:
image_dir_suffix = ""
colmap_image_dir = os.path.join(data_dir, image_folder)
image_dir = os.path.join(data_dir, image_folder + image_dir_suffix)
for d in [image_dir, colmap_image_dir]:
if not os.path.exists(d):
raise ValueError(f"Image folder {d} does not exist.")
# Downsampled images may have different names vs images used for COLMAP,
# so we need to map between the two sorted lists of files.
colmap_files = sorted(_get_rel_paths(colmap_image_dir))
image_files = sorted(_get_rel_paths(image_dir))
colmap_to_image = dict(zip(colmap_files, image_files))
image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names]
# 3D points and {image_name -> [point_idx]}
points = manager.points3D.astype(np.float32) # type: ignore
points_err = manager.point3D_errors.astype(np.float32) # type: ignore
points_rgb = manager.point3D_colors.astype(np.uint8) # type: ignore
point_indices = dict()
image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()}
for point_id, data in manager.point3D_id_to_images.items():
for image_id, _ in data:
image_name = image_id_to_name[image_id]
point_idx = manager.point3D_id_to_point3D_idx[point_id]
point_indices.setdefault(image_name, []).append(point_idx)
point_indices = {
k: np.array(v).astype(np.int32) for k, v in point_indices.items()
}
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(camtoworlds)
camtoworlds = transform_cameras(T1, camtoworlds)
points = transform_points(T1, points)
T2 = align_principle_axes(points)
camtoworlds = transform_cameras(T2, camtoworlds)
points = transform_points(T2, points)
transform = T2 @ T1
else:
transform = np.eye(4)
self.image_names = image_names # List[str], (num_images,)
self.image_paths = image_paths # List[str], (num_images,)
self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4)
self.camera_ids = camera_ids # List[int], (num_images,)
self.Ks_dict = Ks_dict # Dict of camera_id -> K
self.params_dict = params_dict # Dict of camera_id -> params
self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height)
self.points = points # np.ndarray, (num_points, 3)
self.points_err = points_err # np.ndarray, (num_points,)
self.points_rgb = points_rgb # np.ndarray, (num_points, 3)
self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,]
self.transform = transform # np.ndarray, (4, 4)
# undistortion
self.mapx_dict = dict()
self.mapy_dict = dict()
self.roi_undist_dict = dict()
for camera_id in self.params_dict.keys():
params = self.params_dict[camera_id]
if len(params) == 0:
continue # no distortion
assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}"
assert (
camera_id in self.params_dict
), f"Missing params for camera {camera_id}"
K = self.Ks_dict[camera_id]
width, height = self.imsize_dict[camera_id]
K_undist, roi_undist = cv2.getOptimalNewCameraMatrix(
K, params, (width, height), 0
)
mapx, mapy = cv2.initUndistortRectifyMap(
K,
params,
None,
K_undist,
(width, height),
cv2.CV_32FC1, # type: ignore
)
self.Ks_dict[camera_id] = K_undist
self.mapx_dict[camera_id] = mapx
self.mapy_dict[camera_id] = mapy
self.roi_undist_dict[camera_id] = roi_undist # type: ignore
# size of the scene measured by cameras
camera_locations = camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
class ReconfusionParser(BaseParser):
def __init__(self, data_dir: str, normalize: bool = False):
super().__init__(data_dir, 1, normalize, test_every=None)
def get_num(p):
return p.split("_")[-1].removesuffix(".json")
splits_per_num_input_frames = {}
num_input_frames = [
int(get_num(p)) if get_num(p).isdigit() else get_num(p)
for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json")))
]
for num_input_frames in num_input_frames:
with open(
osp.join(
data_dir,
f"train_test_split_{num_input_frames}.json",
)
) as f:
splits_per_num_input_frames[num_input_frames] = json.load(f)
self.splits_per_num_input_frames = splits_per_num_input_frames
with open(osp.join(data_dir, "transforms.json")) as f:
metadata = json.load(f)
image_names, image_paths, camtoworlds = [], [], []
for frame in metadata["frames"]:
if frame["file_path"] is None:
image_path = image_name = None
else:
image_path = osp.join(data_dir, frame["file_path"])
image_name = osp.basename(image_path)
image_paths.append(image_path)
image_names.append(image_name)
camtoworld = np.array(frame["transform_matrix"])
if "applied_transform" in metadata:
applied_transform = np.concatenate(
[metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0
)
camtoworld = applied_transform @ camtoworld
camtoworlds.append(camtoworld)
camtoworlds = np.array(camtoworlds)
camtoworlds[:, :, [1, 2]] *= -1
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(camtoworlds)
camtoworlds = transform_cameras(T1, camtoworlds)
self.transform = T1
else:
self.transform = np.eye(4)
self.image_names = image_names
self.image_paths = image_paths
self.camtoworlds = camtoworlds
self.camera_ids = list(range(len(image_paths)))
self.Ks_dict = {
i: np.array(
[
[
metadata.get("fl_x", frame.get("fl_x", None)),
0.0,
metadata.get("cx", frame.get("cx", None)),
],
[
0.0,
metadata.get("fl_y", frame.get("fl_y", None)),
metadata.get("cy", frame.get("cy", None)),
],
[0.0, 0.0, 1.0],
]
)
for i, frame in enumerate(metadata["frames"])
}
self.imsize_dict = {
i: (
metadata.get("w", frame.get("w", None)),
metadata.get("h", frame.get("h", None)),
)
for i, frame in enumerate(metadata["frames"])
}
# When num_input_frames is None, use all frames for both training and
# testing.
# self.splits_per_num_input_frames[None] = {
# "train_ids": list(range(len(image_paths))),
# "test_ids": list(range(len(image_paths))),
# }
# size of the scene measured by cameras
camera_locations = camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
self.bounds = None
if osp.exists(osp.join(data_dir, "bounds.npy")):
self.bounds = np.load(osp.join(data_dir, "bounds.npy"))
scaling = np.linalg.norm(self.transform[0, :3])
self.bounds = self.bounds / scaling
class Dataset(torch.utils.data.Dataset):
"""A simple dataset class."""
def __init__(
self,
parser: BaseParser,
split: str = "train",
num_input_frames: Optional[int] = None,
patch_size: Optional[int] = None,
load_depths: bool = False,
load_mono_disps: bool = False,
):
self.parser = parser
self.split = split
self.num_input_frames = num_input_frames
self.patch_size = patch_size
self.load_depths = load_depths
self.load_mono_disps = load_mono_disps
if load_mono_disps:
assert isinstance(parser, DirectParser)
assert parser.mono_disps is not None
if isinstance(parser, ReconfusionParser):
ids_per_split = parser.splits_per_num_input_frames[num_input_frames]
self.indices = ids_per_split[
"train_ids" if split == "train" else "test_ids"
]
else:
indices = np.arange(len(self.parser.image_names))
if split == "train":
self.indices = (
indices[indices % self.parser.test_every != 0]
if self.parser.test_every is not None
else indices
)
else:
self.indices = (
indices[indices % self.parser.test_every == 0]
if self.parser.test_every is not None
else indices
)
def __len__(self):
return len(self.indices)
def __getitem__(self, item: int) -> Dict[str, Any]:
index = self.indices[item]
if isinstance(self.parser, DirectParser):
image = self.parser.imgs[index]
else:
image = iio.imread(self.parser.image_paths[index])[..., :3]
camera_id = self.parser.camera_ids[index]
K = self.parser.Ks_dict[camera_id].copy() # undistorted K
params = self.parser.params_dict.get(camera_id, None)
camtoworlds = self.parser.camtoworlds[index]
x, y, w, h = 0, 0, image.shape[1], image.shape[0]
if params is not None and len(params) > 0:
# Images are distorted. Undistort them.
mapx, mapy = (
self.parser.mapx_dict[camera_id],
self.parser.mapy_dict[camera_id],
)
image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR)
x, y, w, h = self.parser.roi_undist_dict[camera_id]
image = image[y : y + h, x : x + w]
if self.patch_size is not None:
# Random crop.
h, w = image.shape[:2]
x = np.random.randint(0, max(w - self.patch_size, 1))
y = np.random.randint(0, max(h - self.patch_size, 1))
image = image[y : y + self.patch_size, x : x + self.patch_size]
K[0, 2] -= x
K[1, 2] -= y
data = {
"K": torch.from_numpy(K).float(),
"camtoworld": torch.from_numpy(camtoworlds).float(),
"image": torch.from_numpy(image).float(),
"image_id": item, # the index of the image in the dataset
}
if self.load_depths:
# projected points to image plane to get depths
worldtocams = np.linalg.inv(camtoworlds)
image_name = self.parser.image_names[index]
point_indices = self.parser.point_indices[image_name]
points_world = self.parser.points[point_indices]
points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T
points_proj = (K @ points_cam.T).T
points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2)
depths = points_cam[:, 2] # (M,)
if self.patch_size is not None:
points[:, 0] -= x
points[:, 1] -= y
# filter out points outside the image
selector = (
(points[:, 0] >= 0)
& (points[:, 0] < image.shape[1])
& (points[:, 1] >= 0)
& (points[:, 1] < image.shape[0])
& (depths > 0)
)
points = points[selector]
depths = depths[selector]
data["points"] = torch.from_numpy(points).float()
data["depths"] = torch.from_numpy(depths).float()
if self.load_mono_disps:
data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float() # type: ignore
return data
def get_parser(parser_type: str, **kwargs) -> BaseParser:
if parser_type == "colmap":
parser = COLMAPParser(**kwargs)
elif parser_type == "direct":
parser = DirectParser(**kwargs)
elif parser_type == "reconfusion":
parser = ReconfusionParser(**kwargs)
else:
raise ValueError(f"Unknown parser type: {parser_type}")
return parser
|