Spaces:
Running
on
L40S
Running
on
L40S
File size: 26,427 Bytes
a342aa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
from typing import Literal
import numpy as np
import roma
import scipy.interpolate
import torch
import torch.nn.functional as F
DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default
def get_camera_dist(
source_c2ws: torch.Tensor, # N x 3 x 4
target_c2ws: torch.Tensor, # M x 3 x 4
mode: str = "translation",
):
if mode == "rotation":
dists = torch.acos(
(
(
torch.matmul(
source_c2ws[:, None, :3, :3],
target_c2ws[None, :, :3, :3].transpose(-1, -2),
)
.diagonal(offset=0, dim1=-2, dim2=-1)
.sum(-1)
- 1
)
/ 2
).clamp(-1, 1)
) * (180 / torch.pi)
elif mode == "translation":
dists = torch.norm(
source_c2ws[:, None, :3, 3] - target_c2ws[None, :, :3, 3], dim=-1
)
else:
raise NotImplementedError(
f"Mode {mode} is not implemented for finding nearest source indices."
)
return dists
def to_hom(X):
# get homogeneous coordinates of the input
X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1)
return X_hom
def to_hom_pose(pose):
# get homogeneous coordinates of the input pose
if pose.shape[-2:] == (3, 4):
pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1)
pose_hom[:, :3, :] = pose
return pose_hom
return pose
def get_default_intrinsics(
fov_rad=DEFAULT_FOV_RAD,
aspect_ratio=1.0,
):
if not isinstance(fov_rad, torch.Tensor):
fov_rad = torch.tensor(
[fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad
)
if aspect_ratio >= 1.0: # W >= H
focal_x = 0.5 / torch.tan(0.5 * fov_rad)
focal_y = focal_x * aspect_ratio
else: # W < H
focal_y = 0.5 / torch.tan(0.5 * fov_rad)
focal_x = focal_y / aspect_ratio
intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3))
intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack(
[focal_x, focal_y, torch.ones_like(focal_x)], dim=-1
)
intrinsics[:, :, -1] = torch.tensor(
[0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype
)
return intrinsics
def get_image_grid(img_h, img_w):
# add 0.5 is VERY important especially when your img_h and img_w
# is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5)
x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5)
Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W]
xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2]
return to_hom(xy_grid) # [HW,3]
def img2cam(X, cam_intr):
return X @ cam_intr.inverse().transpose(-1, -2)
def cam2world(X, pose):
X_hom = to_hom(X)
pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4]
return X_hom @ pose_inv.transpose(-1, -2)
def get_center_and_ray(
img_h, img_w, pose, intr, zero_center_for_debugging=False
): # [HW,2]
# given the intrinsic/extrinsic matrices, get the camera center and ray directions]
# assert(opt.camera.model=="perspective")
# compute center and ray
grid_img = get_image_grid(img_h, img_w) # [HW,3]
grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3]
center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3]
# transform from camera to world coordinates
grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3]
center_3D = cam2world(center_3D_cam, pose) # [B,HW,3]
ray = grid_3D - center_3D # [B,HW,3]
return center_3D_cam if zero_center_for_debugging else center_3D, ray, grid_3D_cam
def get_plucker_coordinates(
extrinsics_src,
extrinsics,
intrinsics=None,
fov_rad=DEFAULT_FOV_RAD,
mode="plucker",
rel_zero_translation=True,
zero_center_for_debugging=False,
target_size=[72, 72], # 576-size image
return_grid_cam=False, # save for later use if want restore
):
if intrinsics is None:
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device)
else:
# for some data preprocessed in the early stage (e.g., MVI and CO3D),
# intrinsics are expressed in raw pixel space (e.g., 576x576) instead
# of normalized image coordinates
if not (
torch.all(intrinsics[:, :2, -1] >= 0)
and torch.all(intrinsics[:, :2, -1] <= 1)
):
intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8
# you should ensure the intrisics are expressed in
# resolution-independent normalized image coordinates just performing a
# very simple verification here checking if principal points are
# between 0 and 1
assert (
torch.all(intrinsics[:, :2, -1] >= 0)
and torch.all(intrinsics[:, :2, -1] <= 1)
), "Intrinsics should be expressed in resolution-independent normalized image coordinates."
c2w_src = torch.linalg.inv(extrinsics_src)
if not rel_zero_translation:
c2w_src[:3, 3] = c2w_src[3, :3] = 0.0
# transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera
extrinsics_rel = torch.einsum(
"vnm,vmp->vnp", extrinsics, c2w_src[None].repeat(extrinsics.shape[0], 1, 1)
)
intrinsics[:, :2] *= extrinsics.new_tensor(
[
target_size[1], # w
target_size[0], # h
]
).view(1, -1, 1)
centers, rays, grid_cam = get_center_and_ray(
img_h=target_size[0],
img_w=target_size[1],
pose=extrinsics_rel[:, :3, :],
intr=intrinsics,
zero_center_for_debugging=zero_center_for_debugging,
)
if mode == "plucker" or "v1" in mode:
rays = torch.nn.functional.normalize(rays, dim=-1)
plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1)
else:
raise ValueError(f"Unknown Plucker coordinate mode: {mode}")
plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size)
if return_grid_cam:
return plucker, grid_cam.reshape(-1, *target_size, 3)
return plucker
def rt_to_mat4(
R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None
) -> torch.Tensor:
"""
Args:
R (torch.Tensor): (..., 3, 3).
t (torch.Tensor): (..., 3).
s (torch.Tensor): (...,).
Returns:
torch.Tensor: (..., 4, 4)
"""
mat34 = torch.cat([R, t[..., None]], dim=-1)
if s is None:
bottom = (
mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]])
.reshape((1,) * (mat34.dim() - 2) + (1, 4))
.expand(mat34.shape[:-2] + (1, 4))
)
else:
bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0)
mat4 = torch.cat([mat34, bottom], dim=-2)
return mat4
def get_preset_pose_fov(
option: Literal[
"orbit",
"spiral",
"lemniscate",
"zoom-in",
"zoom-out",
"dolly zoom-in",
"dolly zoom-out",
"move-forward",
"move-backward",
"move-up",
"move-down",
"move-left",
"move-right",
"roll",
],
num_frames: int,
start_w2c: torch.Tensor,
look_at: torch.Tensor,
up_direction: torch.Tensor | None = None,
fov: float = DEFAULT_FOV_RAD,
spiral_radii: list[float] = [0.5, 0.5, 0.2],
zoom_factor: float | None = None,
):
poses = fovs = None
if option == "orbit":
poses = torch.linalg.inv(
get_arc_horizontal_w2cs(
start_w2c,
look_at,
up_direction,
num_frames=num_frames,
endpoint=False,
)
).numpy()
fovs = np.full((num_frames,), fov)
elif option == "spiral":
poses = generate_spiral_path(
torch.linalg.inv(start_w2c)[None].numpy() @ np.diagflat([1, -1, -1, 1]),
np.array([1, 5]),
n_frames=num_frames,
n_rots=2,
zrate=0.5,
radii=spiral_radii,
endpoint=False,
) @ np.diagflat([1, -1, -1, 1])
poses = np.concatenate(
[
poses,
np.array([0.0, 0.0, 0.0, 1.0])[None, None].repeat(len(poses), 0),
],
1,
)
# We want the spiral trajectory to always start from start_w2c. Thus we
# apply the relative pose to get the final trajectory.
poses = (
np.linalg.inv(start_w2c.numpy())[None] @ np.linalg.inv(poses[:1]) @ poses
)
fovs = np.full((num_frames,), fov)
elif option == "lemniscate":
poses = torch.linalg.inv(
get_lemniscate_w2cs(
start_w2c,
look_at,
up_direction,
num_frames,
degree=60.0,
endpoint=False,
)
).numpy()
fovs = np.full((num_frames,), fov)
elif option == "roll":
poses = torch.linalg.inv(
get_roll_w2cs(
start_w2c,
look_at,
None,
num_frames,
degree=360.0,
endpoint=False,
)
).numpy()
fovs = np.full((num_frames,), fov)
elif option in [
"dolly zoom-in",
"dolly zoom-out",
"zoom-in",
"zoom-out",
]:
if option.startswith("dolly"):
direction = "backward" if option == "dolly zoom-in" else "forward"
poses = torch.linalg.inv(
get_moving_w2cs(
start_w2c,
look_at,
up_direction,
num_frames,
endpoint=True,
direction=direction,
)
).numpy()
else:
poses = torch.linalg.inv(start_w2c)[None].repeat(num_frames, 1, 1).numpy()
fov_rad_start = fov
if zoom_factor is None:
zoom_factor = 0.28 if option.endswith("zoom-in") else 1.5
fov_rad_end = zoom_factor * fov
fovs = (
np.linspace(0, 1, num_frames) * (fov_rad_end - fov_rad_start)
+ fov_rad_start
)
elif option in [
"move-forward",
"move-backward",
"move-up",
"move-down",
"move-left",
"move-right",
]:
poses = torch.linalg.inv(
get_moving_w2cs(
start_w2c,
look_at,
up_direction,
num_frames,
endpoint=True,
direction=option.removeprefix("move-"),
)
).numpy()
fovs = np.full((num_frames,), fov)
else:
raise ValueError(f"Unknown preset option {option}.")
return poses, fovs
def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor:
"""Triangulate a set of rays to find a single lookat point.
Args:
origins (torch.Tensor): A (N, 3) array of ray origins.
viewdirs (torch.Tensor): A (N, 3) array of ray view directions.
Returns:
torch.Tensor: A (3,) lookat point.
"""
viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1)
eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None]
# Calculate projection matrix I - rr^T
I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :])
# Compute sum of projections
sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3)
# Solve for the intersection point using least squares
lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
# Check NaNs.
assert not torch.any(torch.isnan(lookat))
return lookat
def get_lookat_w2cs(
positions: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor,
face_off: bool = False,
):
"""
Args:
positions: (N, 3) tensor of camera positions
lookat: (3,) tensor of lookat point
up: (3,) or (N, 3) tensor of up vector
Returns:
w2cs: (N, 3, 3) tensor of world to camera rotation matrices
"""
forward_vectors = F.normalize(lookat - positions, dim=-1)
if face_off:
forward_vectors = -forward_vectors
if up.dim() == 1:
up = up[None]
right_vectors = F.normalize(torch.cross(forward_vectors, up, dim=-1), dim=-1)
down_vectors = F.normalize(
torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1
)
Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1)
w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions))
return w2cs
def get_arc_horizontal_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor | None,
num_frames: int,
clockwise: bool = True,
face_off: bool = False,
endpoint: bool = False,
degree: float = 360.0,
ref_up_shift: float = 0.0,
ref_radius_scale: float = 1.0,
**_,
) -> torch.Tensor:
ref_c2w = torch.linalg.inv(ref_w2c)
ref_position = ref_c2w[:3, 3]
if up is None:
up = -ref_c2w[:3, 1]
assert up is not None
ref_position += up * ref_up_shift
ref_position *= ref_radius_scale
thetas = (
torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device)
if endpoint
else torch.linspace(
0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device
)[:-1]
)
if not clockwise:
thetas = -thetas
positions = (
torch.einsum(
"nij,j->ni",
roma.rotvec_to_rotmat(thetas[:, None] * up[None]),
ref_position - lookat,
)
+ lookat
)
return get_lookat_w2cs(positions, lookat, up, face_off=face_off)
def get_lemniscate_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor | None,
num_frames: int,
degree: float,
endpoint: bool = False,
**_,
) -> torch.Tensor:
ref_c2w = torch.linalg.inv(ref_w2c)
a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi)
# Lemniscate curve in camera space. Starting at the origin.
thetas = (
torch.linspace(0, 2 * torch.pi, num_frames, device=ref_w2c.device)
if endpoint
else torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1]
) + torch.pi / 2
positions = torch.stack(
[
a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2),
a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2),
torch.zeros(num_frames, device=ref_w2c.device),
],
dim=-1,
)
# Transform to world space.
positions = torch.einsum(
"ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
)
if up is None:
up = -ref_c2w[:3, 1]
assert up is not None
return get_lookat_w2cs(positions, lookat, up)
def get_moving_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor | None,
num_frames: int,
endpoint: bool = False,
direction: str = "forward",
tilt_xy: torch.Tensor = None,
):
"""
Args:
ref_w2c: (4, 4) tensor of the reference wolrd-to-camera matrix
lookat: (3,) tensor of lookat point
up: (3,) tensor of up vector
Returns:
w2cs: (N, 3, 3) tensor of world to camera rotation matrices
"""
ref_c2w = torch.linalg.inv(ref_w2c)
ref_position = ref_c2w[:3, -1]
if up is None:
up = -ref_c2w[:3, 1]
direction_vectors = {
"forward": (lookat - ref_position).clone(),
"backward": -(lookat - ref_position).clone(),
"up": up.clone(),
"down": -up.clone(),
"right": torch.cross((lookat - ref_position), up, dim=0),
"left": -torch.cross((lookat - ref_position), up, dim=0),
}
if direction not in direction_vectors:
raise ValueError(
f"Invalid direction: {direction}. Must be one of {list(direction_vectors.keys())}"
)
positions = ref_position + (
F.normalize(direction_vectors[direction], dim=0)
* (
torch.linspace(0, 0.99, num_frames, device=ref_w2c.device)
if endpoint
else torch.linspace(0, 1, num_frames + 1, device=ref_w2c.device)[:-1]
)[:, None]
)
if tilt_xy is not None:
positions[:, :2] += tilt_xy
return get_lookat_w2cs(positions, lookat, up)
def get_roll_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor | None,
num_frames: int,
endpoint: bool = False,
degree: float = 360.0,
**_,
) -> torch.Tensor:
ref_c2w = torch.linalg.inv(ref_w2c)
ref_position = ref_c2w[:3, 3]
if up is None:
up = -ref_c2w[:3, 1] # Infer the up vector from the reference.
# Create vertical angles
thetas = (
torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device)
if endpoint
else torch.linspace(
0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device
)[:-1]
)[:, None]
lookat_vector = F.normalize(lookat[None].float(), dim=-1)
up = up[None]
up = (
up * torch.cos(thetas)
+ torch.cross(lookat_vector, up) * torch.sin(thetas)
+ lookat_vector
* torch.einsum("ij,ij->i", lookat_vector, up)[:, None]
* (1 - torch.cos(thetas))
)
# Normalize the camera orientation
return get_lookat_w2cs(ref_position[None].repeat(num_frames, 1), lookat, up)
def normalize(x):
"""Normalization helper function."""
return x / np.linalg.norm(x)
def viewmatrix(lookdir, up, position, subtract_position=False):
"""Construct lookat view matrix."""
vec2 = normalize((lookdir - position) if subtract_position else lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def poses_avg(poses):
"""New pose using average position, z-axis, and up vector of input poses."""
position = poses[:, :3, 3].mean(0)
z_axis = poses[:, :3, 2].mean(0)
up = poses[:, :3, 1].mean(0)
cam2world = viewmatrix(z_axis, up, position)
return cam2world
def generate_spiral_path(
poses, bounds, n_frames=120, n_rots=2, zrate=0.5, endpoint=False, radii=None
):
"""Calculates a forward facing spiral path for rendering."""
# Find a reasonable 'focus depth' for this dataset as a weighted average
# of near and far bounds in disparity space.
close_depth, inf_depth = bounds.min() * 0.9, bounds.max() * 5.0
dt = 0.75
focal = 1 / ((1 - dt) / close_depth + dt / inf_depth)
# Get radii for spiral path using 90th percentile of camera positions.
positions = poses[:, :3, 3]
if radii is None:
radii = np.percentile(np.abs(positions), 90, 0)
radii = np.concatenate([radii, [1.0]])
# Generate poses for spiral path.
render_poses = []
cam2world = poses_avg(poses)
up = poses[:, :3, 1].mean(0)
for theta in np.linspace(0.0, 2.0 * np.pi * n_rots, n_frames, endpoint=endpoint):
t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.0]
position = cam2world @ t
lookat = cam2world @ [0, 0, -focal, 1.0]
z_axis = position - lookat
render_poses.append(viewmatrix(z_axis, up, position))
render_poses = np.stack(render_poses, axis=0)
return render_poses
def generate_interpolated_path(
poses: np.ndarray,
n_interp: int,
spline_degree: int = 5,
smoothness: float = 0.03,
rot_weight: float = 0.1,
endpoint: bool = False,
):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
"""
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
def interp(points, n, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
u = np.linspace(0, 1, n, endpoint=endpoint)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
return new_points
points = poses_to_points(poses, dist=rot_weight)
new_points = interp(
points, n_interp * (points.shape[0] - 1), k=spline_degree, s=smoothness
)
return points_to_poses(new_points)
def similarity_from_cameras(c2w, strict_scaling=False, center_method="focus"):
"""
reference: nerf-factory
Get a similarity transform to normalize dataset
from c2w (OpenCV convention) cameras
:param c2w: (N, 4)
:return T (4,4) , scale (float)
"""
t = c2w[:, :3, 3]
R = c2w[:, :3, :3]
# (1) Rotate the world so that z+ is the up axis
# we estimate the up axis by averaging the camera up axes
ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1)
world_up = np.mean(ups, axis=0)
world_up /= np.linalg.norm(world_up)
up_camspace = np.array([0.0, -1.0, 0.0])
c = (up_camspace * world_up).sum()
cross = np.cross(world_up, up_camspace)
skew = np.array(
[
[0.0, -cross[2], cross[1]],
[cross[2], 0.0, -cross[0]],
[-cross[1], cross[0], 0.0],
]
)
if c > -1:
R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c)
else:
# In the unlikely case the original data has y+ up axis,
# rotate 180-deg about x axis
R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
# R_align = np.eye(3) # DEBUG
R = R_align @ R
fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1)
t = (R_align @ t[..., None])[..., 0]
# (2) Recenter the scene.
if center_method == "focus":
# find the closest point to the origin for each camera's center ray
nearest = t + (fwds * -t).sum(-1)[:, None] * fwds
translate = -np.median(nearest, axis=0)
elif center_method == "poses":
# use center of the camera positions
translate = -np.median(t, axis=0)
else:
raise ValueError(f"Unknown center_method {center_method}")
transform = np.eye(4)
transform[:3, 3] = translate
transform[:3, :3] = R_align
# (3) Rescale the scene using camera distances
scale_fn = np.max if strict_scaling else np.median
inv_scale = scale_fn(np.linalg.norm(t + translate, axis=-1))
if inv_scale == 0:
inv_scale = 1.0
scale = 1.0 / inv_scale
transform[:3, :] *= scale
return transform
def align_principle_axes(point_cloud):
# Compute centroid
centroid = np.median(point_cloud, axis=0)
# Translate point cloud to centroid
translated_point_cloud = point_cloud - centroid
# Compute covariance matrix
covariance_matrix = np.cov(translated_point_cloud, rowvar=False)
# Compute eigenvectors and eigenvalues
eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
# Sort eigenvectors by eigenvalues (descending order) so that the z-axis
# is the principal axis with the smallest eigenvalue.
sort_indices = eigenvalues.argsort()[::-1]
eigenvectors = eigenvectors[:, sort_indices]
# Check orientation of eigenvectors. If the determinant of the eigenvectors is
# negative, then we need to flip the sign of one of the eigenvectors.
if np.linalg.det(eigenvectors) < 0:
eigenvectors[:, 0] *= -1
# Create rotation matrix
rotation_matrix = eigenvectors.T
# Create SE(3) matrix (4x4 transformation matrix)
transform = np.eye(4)
transform[:3, :3] = rotation_matrix
transform[:3, 3] = -rotation_matrix @ centroid
return transform
def transform_points(matrix, points):
"""Transform points using a SE(4) matrix.
Args:
matrix: 4x4 SE(4) matrix
points: Nx3 array of points
Returns:
Nx3 array of transformed points
"""
assert matrix.shape == (4, 4)
assert len(points.shape) == 2 and points.shape[1] == 3
return points @ matrix[:3, :3].T + matrix[:3, 3]
def transform_cameras(matrix, camtoworlds):
"""Transform cameras using a SE(4) matrix.
Args:
matrix: 4x4 SE(4) matrix
camtoworlds: Nx4x4 array of camera-to-world matrices
Returns:
Nx4x4 array of transformed camera-to-world matrices
"""
assert matrix.shape == (4, 4)
assert len(camtoworlds.shape) == 3 and camtoworlds.shape[1:] == (4, 4)
camtoworlds = np.einsum("nij, ki -> nkj", camtoworlds, matrix)
scaling = np.linalg.norm(camtoworlds[:, 0, :3], axis=1)
camtoworlds[:, :3, :3] = camtoworlds[:, :3, :3] / scaling[:, None, None]
return camtoworlds
def normalize_scene(camtoworlds, points=None, camera_center_method="focus"):
T1 = similarity_from_cameras(camtoworlds, center_method=camera_center_method)
camtoworlds = transform_cameras(T1, camtoworlds)
if points is not None:
points = transform_points(T1, points)
T2 = align_principle_axes(points)
camtoworlds = transform_cameras(T2, camtoworlds)
points = transform_points(T2, points)
return camtoworlds, points, T2 @ T1
else:
return camtoworlds, T1
|