File size: 7,552 Bytes
a342aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import nn
from torch.nn.attention import SDPBackend, sdpa_kernel


class GEGLU(nn.Module):
    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int | None = None,
        mult: int = 4,
        dropout: float = 0.0,
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out or dim
        self.net = nn.Sequential(
            GEGLU(dim, inner_dim), nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.net(x)


class Attention(nn.Module):
    def __init__(
        self,
        query_dim: int,
        context_dim: int | None = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
    ):
        super().__init__()
        self.heads = heads
        self.dim_head = dim_head
        inner_dim = dim_head * heads
        context_dim = context_dim or query_dim

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )

    def forward(
        self, x: torch.Tensor, context: torch.Tensor | None = None
    ) -> torch.Tensor:
        q = self.to_q(x)
        context = context if context is not None else x
        k = self.to_k(context)
        v = self.to_v(context)
        q, k, v = map(
            lambda t: rearrange(t, "b l (h d) -> b h l d", h=self.heads),
            (q, k, v),
        )
        with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
            out = F.scaled_dot_product_attention(q, k, v)
        out = rearrange(out, "b h l d -> b l (h d)")
        out = self.to_out(out)
        return out


class TransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        context_dim: int,
        dropout: float = 0.0,
    ):
        super().__init__()
        self.attn1 = Attention(
            query_dim=dim,
            context_dim=None,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
        )
        self.ff = FeedForward(dim, dropout=dropout)
        self.attn2 = Attention(
            query_dim=dim,
            context_dim=context_dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
        )
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)

    def forward(self, x: torch.Tensor, context: torch.Tensor) -> torch.Tensor:
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class TransformerBlockTimeMix(nn.Module):
    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        context_dim: int,
        dropout: float = 0.0,
    ):
        super().__init__()
        inner_dim = n_heads * d_head
        self.norm_in = nn.LayerNorm(dim)
        self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout)
        self.attn1 = Attention(
            query_dim=inner_dim,
            context_dim=None,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
        )
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout)
        self.attn2 = Attention(
            query_dim=inner_dim,
            context_dim=context_dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
        )
        self.norm1 = nn.LayerNorm(inner_dim)
        self.norm2 = nn.LayerNorm(inner_dim)
        self.norm3 = nn.LayerNorm(inner_dim)

    def forward(
        self, x: torch.Tensor, context: torch.Tensor, num_frames: int
    ) -> torch.Tensor:
        _, s, _ = x.shape
        x = rearrange(x, "(b t) s c -> (b s) t c", t=num_frames)
        x = self.ff_in(self.norm_in(x)) + x
        x = self.attn1(self.norm1(x), context=None) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x))
        x = rearrange(x, "(b s) t c -> (b t) s c", s=s)
        return x


class SkipConnect(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(
        self, x_spatial: torch.Tensor, x_temporal: torch.Tensor
    ) -> torch.Tensor:
        return x_spatial + x_temporal


class MultiviewTransformer(nn.Module):
    def __init__(
        self,
        in_channels: int,
        n_heads: int,
        d_head: int,
        name: str,
        unflatten_names: list[str] = [],
        depth: int = 1,
        context_dim: int = 1024,
        dropout: float = 0.0,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.name = name
        self.unflatten_names = unflatten_names

        inner_dim = n_heads * d_head
        self.norm = nn.GroupNorm(32, in_channels, eps=1e-6)
        self.proj_in = nn.Linear(in_channels, inner_dim)
        self.transformer_blocks = nn.ModuleList(
            [
                TransformerBlock(
                    inner_dim,
                    n_heads,
                    d_head,
                    context_dim=context_dim,
                    dropout=dropout,
                )
                for _ in range(depth)
            ]
        )
        self.proj_out = nn.Linear(inner_dim, in_channels)
        self.time_mixer = SkipConnect()
        self.time_mix_blocks = nn.ModuleList(
            [
                TransformerBlockTimeMix(
                    inner_dim,
                    n_heads,
                    d_head,
                    context_dim=context_dim,
                    dropout=dropout,
                )
                for _ in range(depth)
            ]
        )

    def forward(
        self, x: torch.Tensor, context: torch.Tensor, num_frames: int
    ) -> torch.Tensor:
        assert context.ndim == 3
        _, _, h, w = x.shape
        x_in = x

        time_context = context
        time_context_first_timestep = time_context[::num_frames]
        time_context = repeat(
            time_context_first_timestep, "b ... -> (b n) ...", n=h * w
        )

        if self.name in self.unflatten_names:
            context = context[::num_frames]

        x = self.norm(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        x = self.proj_in(x)

        for block, mix_block in zip(self.transformer_blocks, self.time_mix_blocks):
            if self.name in self.unflatten_names:
                x = rearrange(x, "(b t) (h w) c -> b (t h w) c", t=num_frames, h=h, w=w)
            x = block(x, context=context)
            if self.name in self.unflatten_names:
                x = rearrange(x, "b (t h w) c -> (b t) (h w) c", t=num_frames, h=h, w=w)
            x_mix = mix_block(x, context=time_context, num_frames=num_frames)
            x = self.time_mixer(x_spatial=x, x_temporal=x_mix)

        x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        out = x + x_in
        return out