File size: 13,351 Bytes
a342aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from tqdm import tqdm

from seva.geometry import get_camera_dist


def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(
            f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
        )
    return x[(...,) + (None,) * dims_to_append]


def append_zero(x: torch.Tensor) -> torch.Tensor:
    return torch.cat([x, x.new_zeros([1])])


def to_d(x: torch.Tensor, sigma: torch.Tensor, denoised: torch.Tensor) -> torch.Tensor:
    return (x - denoised) / append_dims(sigma, x.ndim)


def make_betas(
    num_timesteps: int, linear_start: float = 1e-4, linear_end: float = 2e-2
) -> np.ndarray:
    betas = (
        torch.linspace(
            linear_start**0.5, linear_end**0.5, num_timesteps, dtype=torch.float64
        )
        ** 2
    )
    return betas.numpy()


def generate_roughly_equally_spaced_steps(
    num_substeps: int, max_step: int
) -> np.ndarray:
    return np.linspace(max_step - 1, 0, num_substeps, endpoint=False).astype(int)[::-1]


class EpsScaling(object):
    def __call__(
        self, sigma: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        c_skip = torch.ones_like(sigma, device=sigma.device)
        c_out = -sigma
        c_in = 1 / (sigma**2 + 1.0) ** 0.5
        c_noise = sigma.clone()
        return c_skip, c_out, c_in, c_noise


class DDPMDiscretization(object):
    def __init__(
        self,
        linear_start: float = 5e-06,
        linear_end: float = 0.012,
        num_timesteps: int = 1000,
        log_snr_shift: float | None = 2.4,
    ):
        self.num_timesteps = num_timesteps

        betas = make_betas(
            num_timesteps,
            linear_start=linear_start,
            linear_end=linear_end,
        )
        self.log_snr_shift = log_snr_shift

        alphas = 1.0 - betas  # first alpha here is on data side
        self.alphas_cumprod = np.cumprod(alphas, axis=0)

    def get_sigmas(self, n: int, device: str | torch.device = "cpu") -> torch.Tensor:
        if n < self.num_timesteps:
            timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps)
            alphas_cumprod = self.alphas_cumprod[timesteps]
        elif n == self.num_timesteps:
            alphas_cumprod = self.alphas_cumprod
        else:
            raise ValueError(f"Expected n <= {self.num_timesteps}, but got n = {n}.")

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
        if self.log_snr_shift is not None:
            sigmas = sigmas * np.exp(self.log_snr_shift)
        return torch.flip(
            torch.tensor(sigmas, dtype=torch.float32, device=device), (0,)
        )

    def __call__(
        self,
        n: int,
        do_append_zero: bool = True,
        flip: bool = False,
        device: str | torch.device = "cpu",
    ) -> torch.Tensor:
        sigmas = self.get_sigmas(n, device=device)
        sigmas = append_zero(sigmas) if do_append_zero else sigmas
        return sigmas if not flip else torch.flip(sigmas, (0,))


class DiscreteDenoiser(object):
    sigmas: torch.Tensor

    def __init__(
        self,
        discretization: DDPMDiscretization,
        num_idx: int = 1000,
        device: str | torch.device = "cpu",
    ):
        self.scaling = EpsScaling()
        self.discretization = discretization
        self.num_idx = num_idx
        self.device = device

        self.register_sigmas()

    def register_sigmas(self):
        self.sigmas = self.discretization(
            self.num_idx, do_append_zero=False, flip=True, device=self.device
        )

    def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor:
        dists = sigma - self.sigmas[:, None]
        return dists.abs().argmin(dim=0).view(sigma.shape)

    def idx_to_sigma(self, idx: torch.Tensor | int) -> torch.Tensor:
        return self.sigmas[idx]

    def __call__(
        self,
        network: nn.Module,
        input: torch.Tensor,
        sigma: torch.Tensor,
        cond: dict,
        **additional_model_inputs,
    ) -> torch.Tensor:
        sigma = self.idx_to_sigma(self.sigma_to_idx(sigma))
        sigma_shape = sigma.shape
        sigma = append_dims(sigma, input.ndim)
        c_skip, c_out, c_in, c_noise = self.scaling(sigma)
        c_noise = self.sigma_to_idx(c_noise.reshape(sigma_shape))
        if "replace" in cond:
            x, mask = cond.pop("replace").split((input.shape[1], 1), dim=1)
            input = input * (1 - mask) + x * mask
        return (
            network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out
            + input * c_skip
        )


class ConstantScaleRule(object):
    def __call__(self, scale: float | torch.Tensor) -> float | torch.Tensor:
        return scale


class MultiviewScaleRule(object):
    def __init__(self, min_scale: float = 1.0):
        self.min_scale = min_scale

    def __call__(
        self,
        scale: float | torch.Tensor,
        c2w: torch.Tensor,
        K: torch.Tensor,
        input_frame_mask: torch.Tensor,
    ) -> torch.Tensor:
        c2w_input = c2w[input_frame_mask]
        rotation_diff = get_camera_dist(c2w, c2w_input, mode="rotation").min(-1).values
        translation_diff = (
            get_camera_dist(c2w, c2w_input, mode="translation").min(-1).values
        )
        K_diff = (
            ((K[:, None] - K[input_frame_mask][None]).flatten(-2) == 0).all(-1).any(-1)
        )
        close_frame = (rotation_diff < 10.0) & (translation_diff < 1e-5) & K_diff
        if isinstance(scale, torch.Tensor):
            scale = scale.clone()
            scale[close_frame] = self.min_scale
        elif isinstance(scale, float):
            scale = torch.where(close_frame, self.min_scale, scale)
        else:
            raise ValueError(f"Invalid scale type {type(scale)}.")
        return scale


class ConstantScaleSchedule(object):
    def __call__(
        self, sigma: float | torch.Tensor, scale: float | torch.Tensor
    ) -> float | torch.Tensor:
        if isinstance(sigma, float):
            return scale
        elif isinstance(sigma, torch.Tensor):
            if len(sigma.shape) == 1 and isinstance(scale, torch.Tensor):
                sigma = append_dims(sigma, scale.ndim)
            return scale * torch.ones_like(sigma)
        else:
            raise ValueError(f"Invalid sigma type {type(sigma)}.")


class ConstantGuidance(object):
    def __call__(
        self,
        uncond: torch.Tensor,
        cond: torch.Tensor,
        scale: float | torch.Tensor,
    ) -> torch.Tensor:
        if isinstance(scale, torch.Tensor) and len(scale.shape) == 1:
            scale = append_dims(scale, cond.ndim)
        return uncond + scale * (cond - uncond)


class VanillaCFG(object):
    def __init__(self):
        self.scale_rule = ConstantScaleRule()
        self.scale_schedule = ConstantScaleSchedule()
        self.guidance = ConstantGuidance()

    def __call__(
        self, x: torch.Tensor, sigma: float | torch.Tensor, scale: float | torch.Tensor
    ) -> torch.Tensor:
        x_u, x_c = x.chunk(2)
        scale = self.scale_rule(scale)
        scale_value = self.scale_schedule(sigma, scale)
        x_pred = self.guidance(x_u, x_c, scale_value)
        return x_pred

    def prepare_inputs(
        self, x: torch.Tensor, s: torch.Tensor, c: dict, uc: dict
    ) -> tuple[torch.Tensor, torch.Tensor, dict]:
        c_out = dict()

        for k in c:
            if k in ["vector", "crossattn", "concat", "replace", "dense_vector"]:
                c_out[k] = torch.cat((uc[k], c[k]), 0)
            else:
                assert c[k] == uc[k]
                c_out[k] = c[k]
        return torch.cat([x] * 2), torch.cat([s] * 2), c_out


class MultiviewCFG(VanillaCFG):
    def __init__(self, cfg_min: float = 1.0):
        self.scale_min = cfg_min
        self.scale_rule = MultiviewScaleRule(min_scale=cfg_min)
        self.scale_schedule = ConstantScaleSchedule()
        self.guidance = ConstantGuidance()

    def __call__(  # type: ignore
        self,
        x: torch.Tensor,
        sigma: float | torch.Tensor,
        scale: float | torch.Tensor,
        c2w: torch.Tensor,
        K: torch.Tensor,
        input_frame_mask: torch.Tensor,
    ) -> torch.Tensor:
        x_u, x_c = x.chunk(2)
        scale = self.scale_rule(scale, c2w, K, input_frame_mask)
        scale_value = self.scale_schedule(sigma, scale)
        x_pred = self.guidance(x_u, x_c, scale_value)
        return x_pred


class MultiviewTemporalCFG(MultiviewCFG):
    def __init__(self, num_frames: int, cfg_min: float = 1.0):
        super().__init__(cfg_min=cfg_min)

        self.num_frames = num_frames
        distance_matrix = (
            torch.arange(num_frames)[None] - torch.arange(num_frames)[:, None]
        ).abs()
        self.distance_matrix = distance_matrix

    def __call__(
        self,
        x: torch.Tensor,
        sigma: float | torch.Tensor,
        scale: float | torch.Tensor,
        c2w: torch.Tensor,
        K: torch.Tensor,
        input_frame_mask: torch.Tensor,
    ) -> torch.Tensor:
        input_frame_mask = rearrange(
            input_frame_mask, "(b t) ... -> b t ...", t=self.num_frames
        )
        min_distance = (
            self.distance_matrix[None].to(x.device)
            + (~input_frame_mask[:, None]) * self.num_frames
        ).min(-1)[0]
        min_distance = min_distance / min_distance.max(-1, keepdim=True)[0].clamp(min=1)
        scale = min_distance * (scale - self.scale_min) + self.scale_min
        scale = rearrange(scale, "b t ... -> (b t) ...")
        scale = append_dims(scale, x.ndim)
        return super().__call__(x, sigma, scale, c2w, K, input_frame_mask.flatten(0, 1))


class EulerEDMSampler(object):
    def __init__(
        self,
        discretization: DDPMDiscretization,
        guider: VanillaCFG | MultiviewCFG | MultiviewTemporalCFG,
        num_steps: int | None = None,
        verbose: bool = False,
        device: str | torch.device = "cuda",
        s_churn=0.0,
        s_tmin=0.0,
        s_tmax=float("inf"),
        s_noise=1.0,
    ):
        self.num_steps = num_steps
        self.discretization = discretization
        self.guider = guider
        self.verbose = verbose
        self.device = device

        self.s_churn = s_churn
        self.s_tmin = s_tmin
        self.s_tmax = s_tmax
        self.s_noise = s_noise

    def prepare_sampling_loop(
        self, x: torch.Tensor, cond: dict, uc: dict, num_steps: int | None = None
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, dict, dict]:
        num_steps = num_steps or self.num_steps
        assert num_steps is not None, "num_steps must be specified"
        sigmas = self.discretization(num_steps, device=self.device)
        x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
        num_sigmas = len(sigmas)
        s_in = x.new_ones([x.shape[0]])
        return x, s_in, sigmas, num_sigmas, cond, uc

    def get_sigma_gen(self, num_sigmas: int, verbose: bool = True) -> range | tqdm:
        sigma_generator = range(num_sigmas - 1)
        if self.verbose and verbose:
            sigma_generator = tqdm(
                sigma_generator,
                total=num_sigmas - 1,
                desc="Sampling",
                leave=False,
            )
        return sigma_generator

    def sampler_step(
        self,
        sigma: torch.Tensor,
        next_sigma: torch.Tensor,
        denoiser,
        x: torch.Tensor,
        scale: float | torch.Tensor,
        cond: dict,
        uc: dict,
        gamma: float = 0.0,
        **guider_kwargs,
    ) -> torch.Tensor:
        sigma_hat = sigma * (gamma + 1.0) + 1e-6

        eps = torch.randn_like(x) * self.s_noise
        x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5

        denoised = denoiser(*self.guider.prepare_inputs(x, sigma_hat, cond, uc))
        denoised = self.guider(denoised, sigma_hat, scale, **guider_kwargs)
        d = to_d(x, sigma_hat, denoised)
        dt = append_dims(next_sigma - sigma_hat, x.ndim)
        return x + dt * d

    def __call__(
        self,
        denoiser,
        x: torch.Tensor,
        scale: float | torch.Tensor,
        cond: dict,
        uc: dict | None = None,
        num_steps: int | None = None,
        verbose: bool = True,
        **guider_kwargs,
    ) -> torch.Tensor:
        uc = cond if uc is None else uc
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x,
            cond,
            uc,
            num_steps,
        )
        for i in self.get_sigma_gen(num_sigmas, verbose=verbose):
            gamma = (
                min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
                if self.s_tmin <= sigmas[i] <= self.s_tmax
                else 0.0
            )
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                scale,
                cond,
                uc,
                gamma,
                **guider_kwargs,
            )
        return x