Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,351 Bytes
a342aa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from tqdm import tqdm
from seva.geometry import get_camera_dist
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
return x[(...,) + (None,) * dims_to_append]
def append_zero(x: torch.Tensor) -> torch.Tensor:
return torch.cat([x, x.new_zeros([1])])
def to_d(x: torch.Tensor, sigma: torch.Tensor, denoised: torch.Tensor) -> torch.Tensor:
return (x - denoised) / append_dims(sigma, x.ndim)
def make_betas(
num_timesteps: int, linear_start: float = 1e-4, linear_end: float = 2e-2
) -> np.ndarray:
betas = (
torch.linspace(
linear_start**0.5, linear_end**0.5, num_timesteps, dtype=torch.float64
)
** 2
)
return betas.numpy()
def generate_roughly_equally_spaced_steps(
num_substeps: int, max_step: int
) -> np.ndarray:
return np.linspace(max_step - 1, 0, num_substeps, endpoint=False).astype(int)[::-1]
class EpsScaling(object):
def __call__(
self, sigma: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
c_skip = torch.ones_like(sigma, device=sigma.device)
c_out = -sigma
c_in = 1 / (sigma**2 + 1.0) ** 0.5
c_noise = sigma.clone()
return c_skip, c_out, c_in, c_noise
class DDPMDiscretization(object):
def __init__(
self,
linear_start: float = 5e-06,
linear_end: float = 0.012,
num_timesteps: int = 1000,
log_snr_shift: float | None = 2.4,
):
self.num_timesteps = num_timesteps
betas = make_betas(
num_timesteps,
linear_start=linear_start,
linear_end=linear_end,
)
self.log_snr_shift = log_snr_shift
alphas = 1.0 - betas # first alpha here is on data side
self.alphas_cumprod = np.cumprod(alphas, axis=0)
def get_sigmas(self, n: int, device: str | torch.device = "cpu") -> torch.Tensor:
if n < self.num_timesteps:
timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps)
alphas_cumprod = self.alphas_cumprod[timesteps]
elif n == self.num_timesteps:
alphas_cumprod = self.alphas_cumprod
else:
raise ValueError(f"Expected n <= {self.num_timesteps}, but got n = {n}.")
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
if self.log_snr_shift is not None:
sigmas = sigmas * np.exp(self.log_snr_shift)
return torch.flip(
torch.tensor(sigmas, dtype=torch.float32, device=device), (0,)
)
def __call__(
self,
n: int,
do_append_zero: bool = True,
flip: bool = False,
device: str | torch.device = "cpu",
) -> torch.Tensor:
sigmas = self.get_sigmas(n, device=device)
sigmas = append_zero(sigmas) if do_append_zero else sigmas
return sigmas if not flip else torch.flip(sigmas, (0,))
class DiscreteDenoiser(object):
sigmas: torch.Tensor
def __init__(
self,
discretization: DDPMDiscretization,
num_idx: int = 1000,
device: str | torch.device = "cpu",
):
self.scaling = EpsScaling()
self.discretization = discretization
self.num_idx = num_idx
self.device = device
self.register_sigmas()
def register_sigmas(self):
self.sigmas = self.discretization(
self.num_idx, do_append_zero=False, flip=True, device=self.device
)
def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor:
dists = sigma - self.sigmas[:, None]
return dists.abs().argmin(dim=0).view(sigma.shape)
def idx_to_sigma(self, idx: torch.Tensor | int) -> torch.Tensor:
return self.sigmas[idx]
def __call__(
self,
network: nn.Module,
input: torch.Tensor,
sigma: torch.Tensor,
cond: dict,
**additional_model_inputs,
) -> torch.Tensor:
sigma = self.idx_to_sigma(self.sigma_to_idx(sigma))
sigma_shape = sigma.shape
sigma = append_dims(sigma, input.ndim)
c_skip, c_out, c_in, c_noise = self.scaling(sigma)
c_noise = self.sigma_to_idx(c_noise.reshape(sigma_shape))
if "replace" in cond:
x, mask = cond.pop("replace").split((input.shape[1], 1), dim=1)
input = input * (1 - mask) + x * mask
return (
network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out
+ input * c_skip
)
class ConstantScaleRule(object):
def __call__(self, scale: float | torch.Tensor) -> float | torch.Tensor:
return scale
class MultiviewScaleRule(object):
def __init__(self, min_scale: float = 1.0):
self.min_scale = min_scale
def __call__(
self,
scale: float | torch.Tensor,
c2w: torch.Tensor,
K: torch.Tensor,
input_frame_mask: torch.Tensor,
) -> torch.Tensor:
c2w_input = c2w[input_frame_mask]
rotation_diff = get_camera_dist(c2w, c2w_input, mode="rotation").min(-1).values
translation_diff = (
get_camera_dist(c2w, c2w_input, mode="translation").min(-1).values
)
K_diff = (
((K[:, None] - K[input_frame_mask][None]).flatten(-2) == 0).all(-1).any(-1)
)
close_frame = (rotation_diff < 10.0) & (translation_diff < 1e-5) & K_diff
if isinstance(scale, torch.Tensor):
scale = scale.clone()
scale[close_frame] = self.min_scale
elif isinstance(scale, float):
scale = torch.where(close_frame, self.min_scale, scale)
else:
raise ValueError(f"Invalid scale type {type(scale)}.")
return scale
class ConstantScaleSchedule(object):
def __call__(
self, sigma: float | torch.Tensor, scale: float | torch.Tensor
) -> float | torch.Tensor:
if isinstance(sigma, float):
return scale
elif isinstance(sigma, torch.Tensor):
if len(sigma.shape) == 1 and isinstance(scale, torch.Tensor):
sigma = append_dims(sigma, scale.ndim)
return scale * torch.ones_like(sigma)
else:
raise ValueError(f"Invalid sigma type {type(sigma)}.")
class ConstantGuidance(object):
def __call__(
self,
uncond: torch.Tensor,
cond: torch.Tensor,
scale: float | torch.Tensor,
) -> torch.Tensor:
if isinstance(scale, torch.Tensor) and len(scale.shape) == 1:
scale = append_dims(scale, cond.ndim)
return uncond + scale * (cond - uncond)
class VanillaCFG(object):
def __init__(self):
self.scale_rule = ConstantScaleRule()
self.scale_schedule = ConstantScaleSchedule()
self.guidance = ConstantGuidance()
def __call__(
self, x: torch.Tensor, sigma: float | torch.Tensor, scale: float | torch.Tensor
) -> torch.Tensor:
x_u, x_c = x.chunk(2)
scale = self.scale_rule(scale)
scale_value = self.scale_schedule(sigma, scale)
x_pred = self.guidance(x_u, x_c, scale_value)
return x_pred
def prepare_inputs(
self, x: torch.Tensor, s: torch.Tensor, c: dict, uc: dict
) -> tuple[torch.Tensor, torch.Tensor, dict]:
c_out = dict()
for k in c:
if k in ["vector", "crossattn", "concat", "replace", "dense_vector"]:
c_out[k] = torch.cat((uc[k], c[k]), 0)
else:
assert c[k] == uc[k]
c_out[k] = c[k]
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
class MultiviewCFG(VanillaCFG):
def __init__(self, cfg_min: float = 1.0):
self.scale_min = cfg_min
self.scale_rule = MultiviewScaleRule(min_scale=cfg_min)
self.scale_schedule = ConstantScaleSchedule()
self.guidance = ConstantGuidance()
def __call__( # type: ignore
self,
x: torch.Tensor,
sigma: float | torch.Tensor,
scale: float | torch.Tensor,
c2w: torch.Tensor,
K: torch.Tensor,
input_frame_mask: torch.Tensor,
) -> torch.Tensor:
x_u, x_c = x.chunk(2)
scale = self.scale_rule(scale, c2w, K, input_frame_mask)
scale_value = self.scale_schedule(sigma, scale)
x_pred = self.guidance(x_u, x_c, scale_value)
return x_pred
class MultiviewTemporalCFG(MultiviewCFG):
def __init__(self, num_frames: int, cfg_min: float = 1.0):
super().__init__(cfg_min=cfg_min)
self.num_frames = num_frames
distance_matrix = (
torch.arange(num_frames)[None] - torch.arange(num_frames)[:, None]
).abs()
self.distance_matrix = distance_matrix
def __call__(
self,
x: torch.Tensor,
sigma: float | torch.Tensor,
scale: float | torch.Tensor,
c2w: torch.Tensor,
K: torch.Tensor,
input_frame_mask: torch.Tensor,
) -> torch.Tensor:
input_frame_mask = rearrange(
input_frame_mask, "(b t) ... -> b t ...", t=self.num_frames
)
min_distance = (
self.distance_matrix[None].to(x.device)
+ (~input_frame_mask[:, None]) * self.num_frames
).min(-1)[0]
min_distance = min_distance / min_distance.max(-1, keepdim=True)[0].clamp(min=1)
scale = min_distance * (scale - self.scale_min) + self.scale_min
scale = rearrange(scale, "b t ... -> (b t) ...")
scale = append_dims(scale, x.ndim)
return super().__call__(x, sigma, scale, c2w, K, input_frame_mask.flatten(0, 1))
class EulerEDMSampler(object):
def __init__(
self,
discretization: DDPMDiscretization,
guider: VanillaCFG | MultiviewCFG | MultiviewTemporalCFG,
num_steps: int | None = None,
verbose: bool = False,
device: str | torch.device = "cuda",
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
):
self.num_steps = num_steps
self.discretization = discretization
self.guider = guider
self.verbose = verbose
self.device = device
self.s_churn = s_churn
self.s_tmin = s_tmin
self.s_tmax = s_tmax
self.s_noise = s_noise
def prepare_sampling_loop(
self, x: torch.Tensor, cond: dict, uc: dict, num_steps: int | None = None
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, dict, dict]:
num_steps = num_steps or self.num_steps
assert num_steps is not None, "num_steps must be specified"
sigmas = self.discretization(num_steps, device=self.device)
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
num_sigmas = len(sigmas)
s_in = x.new_ones([x.shape[0]])
return x, s_in, sigmas, num_sigmas, cond, uc
def get_sigma_gen(self, num_sigmas: int, verbose: bool = True) -> range | tqdm:
sigma_generator = range(num_sigmas - 1)
if self.verbose and verbose:
sigma_generator = tqdm(
sigma_generator,
total=num_sigmas - 1,
desc="Sampling",
leave=False,
)
return sigma_generator
def sampler_step(
self,
sigma: torch.Tensor,
next_sigma: torch.Tensor,
denoiser,
x: torch.Tensor,
scale: float | torch.Tensor,
cond: dict,
uc: dict,
gamma: float = 0.0,
**guider_kwargs,
) -> torch.Tensor:
sigma_hat = sigma * (gamma + 1.0) + 1e-6
eps = torch.randn_like(x) * self.s_noise
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
denoised = denoiser(*self.guider.prepare_inputs(x, sigma_hat, cond, uc))
denoised = self.guider(denoised, sigma_hat, scale, **guider_kwargs)
d = to_d(x, sigma_hat, denoised)
dt = append_dims(next_sigma - sigma_hat, x.ndim)
return x + dt * d
def __call__(
self,
denoiser,
x: torch.Tensor,
scale: float | torch.Tensor,
cond: dict,
uc: dict | None = None,
num_steps: int | None = None,
verbose: bool = True,
**guider_kwargs,
) -> torch.Tensor:
uc = cond if uc is None else uc
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x,
cond,
uc,
num_steps,
)
for i in self.get_sigma_gen(num_sigmas, verbose=verbose):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
if self.s_tmin <= sigmas[i] <= self.s_tmax
else 0.0
)
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
scale,
cond,
uc,
gamma,
**guider_kwargs,
)
return x
|