Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from diffusers.models import AutoencoderKL # type: ignore | |
from torch import nn | |
class AutoEncoder(nn.Module): | |
scale_factor: float = 0.18215 | |
downsample: int = 8 | |
def __init__(self, chunk_size: int | None = None): | |
super().__init__() | |
self.module = AutoencoderKL.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", | |
subfolder="vae", | |
force_download=False, | |
low_cpu_mem_usage=False, | |
) | |
self.module.eval().requires_grad_(False) # type: ignore | |
self.chunk_size = chunk_size | |
def _encode(self, x: torch.Tensor) -> torch.Tensor: | |
return ( | |
self.module.encode(x).latent_dist.mean # type: ignore | |
* self.scale_factor | |
) | |
def encode(self, x: torch.Tensor, chunk_size: int | None = None) -> torch.Tensor: | |
chunk_size = chunk_size or self.chunk_size | |
if chunk_size is not None: | |
return torch.cat( | |
[self._encode(x_chunk) for x_chunk in x.split(chunk_size)], | |
dim=0, | |
) | |
else: | |
return self._encode(x) | |
def _decode(self, z: torch.Tensor) -> torch.Tensor: | |
return self.module.decode(z / self.scale_factor).sample # type: ignore | |
def decode(self, z: torch.Tensor, chunk_size: int | None = None) -> torch.Tensor: | |
chunk_size = chunk_size or self.chunk_size | |
if chunk_size is not None: | |
return torch.cat( | |
[self._decode(z_chunk) for z_chunk in z.split(chunk_size)], | |
dim=0, | |
) | |
else: | |
return self._decode(z) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.decode(self.encode(x)) | |