hangg-sai's picture
Initial commit
a342aa8
import contextlib
import os
import os.path as osp
import sys
from typing import cast
import imageio.v3 as iio
import numpy as np
import torch
class Dust3rPipeline(object):
def __init__(self, device: str | torch.device = "cuda"):
submodule_path = osp.realpath(
osp.join(osp.dirname(__file__), "../../third_party/dust3r/")
)
if submodule_path not in sys.path:
sys.path.insert(0, submodule_path)
try:
with open(os.devnull, "w") as f, contextlib.redirect_stdout(f):
from dust3r.cloud_opt import ( # type: ignore[import]
GlobalAlignerMode,
global_aligner,
)
from dust3r.image_pairs import make_pairs # type: ignore[import]
from dust3r.inference import inference # type: ignore[import]
from dust3r.model import AsymmetricCroCo3DStereo # type: ignore[import]
from dust3r.utils.image import load_images # type: ignore[import]
except ImportError:
raise ImportError(
"Missing required submodule: 'dust3r'. Please ensure that all submodules are properly set up.\n\n"
"To initialize them, run the following command in the project root:\n"
" git submodule update --init --recursive"
)
self.device = torch.device(device)
self.model = AsymmetricCroCo3DStereo.from_pretrained(
"naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
).to(self.device)
self._GlobalAlignerMode = GlobalAlignerMode
self._global_aligner = global_aligner
self._make_pairs = make_pairs
self._inference = inference
self._load_images = load_images
def infer_cameras_and_points(
self,
img_paths: list[str],
Ks: list[list] = None,
c2ws: list[list] = None,
batch_size: int = 16,
schedule: str = "cosine",
lr: float = 0.01,
niter: int = 500,
min_conf_thr: int = 3,
) -> tuple[
list[np.ndarray], np.ndarray, np.ndarray, list[np.ndarray], list[np.ndarray]
]:
num_img = len(img_paths)
if num_img == 1:
print("Only one image found, duplicating it to create a stereo pair.")
img_paths = img_paths * 2
images = self._load_images(img_paths, size=512)
pairs = self._make_pairs(
images,
scene_graph="complete",
prefilter=None,
symmetrize=True,
)
output = self._inference(pairs, self.model, self.device, batch_size=batch_size)
ori_imgs = [iio.imread(p) for p in img_paths]
ori_img_whs = np.array([img.shape[1::-1] for img in ori_imgs])
img_whs = np.concatenate([image["true_shape"][:, ::-1] for image in images], 0)
scene = self._global_aligner(
output,
device=self.device,
mode=self._GlobalAlignerMode.PointCloudOptimizer,
same_focals=True,
optimize_pp=False, # True,
min_conf_thr=min_conf_thr,
)
# if Ks is not None:
# scene.preset_focal(
# torch.tensor([[K[0, 0], K[1, 1]] for K in Ks])
# )
if c2ws is not None:
scene.preset_pose(c2ws)
_ = scene.compute_global_alignment(
init="msp", niter=niter, schedule=schedule, lr=lr
)
imgs = cast(list, scene.imgs)
Ks = scene.get_intrinsics().detach().cpu().numpy().copy()
c2ws = scene.get_im_poses().detach().cpu().numpy() # type: ignore
pts3d = [x.detach().cpu().numpy() for x in scene.get_pts3d()] # type: ignore
if num_img > 1:
masks = [x.detach().cpu().numpy() for x in scene.get_masks()]
points = [p[m] for p, m in zip(pts3d, masks)]
point_colors = [img[m] for img, m in zip(imgs, masks)]
else:
points = [p.reshape(-1, 3) for p in pts3d]
point_colors = [img.reshape(-1, 3) for img in imgs]
# Convert back to the original image size.
imgs = ori_imgs
Ks[:, :2, -1] *= ori_img_whs / img_whs
Ks[:, :2, :2] *= (ori_img_whs / img_whs).mean(axis=1, keepdims=True)[..., None]
return imgs, Ks, c2ws, points, point_colors