Anonymous Authors
Update app.py
60696a5
import gradio as gr
from datasets import load_dataset
import numpy as np
gender_labels = ['man', 'non-binary', 'woman', 'no_gender_specified', ]
ethnicity_labels = ['African-American', 'American_Indian', 'Black', 'Caucasian', 'East_Asian',
'First_Nations', 'Hispanic', 'Indigenous_American', 'Latino', 'Latinx',
'Multiracial', 'Native_American', 'Pacific_Islander', 'South_Asian',
'Southeast_Asian', 'White', 'no_ethnicity_specified']
models = ['DallE', 'SD_14', 'SD_2']
nos = [1,2,3,4,5,6,7,8,9,10]
indexes = [768, 1536, 10752]
ds = load_dataset("tti-bias/identities", split="train")
def get_nearest_64(gender, ethnicity, model, no, index):
df = ds.remove_columns(["image","image_path"]).to_pandas()
index = np.load(f"indexes/knn_{index}_65.npy")
ix = df.loc[(df['ethnicity'] == ethnicity) & (df['gender'] == gender) & (df['no'] == no) & (df['model'] == model)].index[0]
image = ds.select([index[ix][0]])["image"][0]
neighbors = ds.select(index[ix][1:25])
neighbor_images = neighbors["image"]
neighbor_captions = [caption.split("/")[-1] for caption in neighbors["image_path"]]
neighbor_captions = [' '.join(caption.split("_")[4:-3]) for caption in neighbor_captions]
neighbor_models = neighbors["model"]
neighbor_captions = [f"{a} {b}" for a,b in zip(neighbor_captions,neighbor_models)]
return image, list(zip(neighbor_images, neighbor_captions))
with gr.Blocks() as demo:
gr.Markdown("# BoVW Nearest Neighbors Explorer")
gr.Markdown("### TF-IDF index of the _identities_ dataset of images generated by 3 models using a visual vocabulary of 10,752 words.")
gr.Markdown("#### Choose one of the generated identity images to see its nearest neighbors according to a bag-of-visual-words model.")
gr.HTML("""<span style="color:red">⚠️ <b>DISCLAIMER: the images displayed by this tool were generated by text-to-image models and may depict offensive stereotypes or contain explicit content.</b></span>""")
with gr.Row():
with gr.Column():
model = gr.Radio(models, label="Model")
index = gr.Radio(indexes, label="Visual vocabulary size")
gender = gr.Radio(gender_labels, label="Gender label")
with gr.Column():
ethnicity = gr.Radio(ethnicity_labels, label="Ethnicity label")
no = gr.Radio(nos, label="Image number")
button = gr.Button(value="Get nearest neighbors")
with gr.Row():
image = gr.Image()
gallery = gr.Gallery().style(grid=4)
button.click(get_nearest_64, inputs=[gender, ethnicity, model, no, index], outputs=[image, gallery])
demo.launch()