xinyu1205 commited on
Commit
d3a437b
·
1 Parent(s): 616e7e7

Delete .ipynb_checkpoints

Browse files
.ipynb_checkpoints/gradio_demo-checkpoint.ipynb DELETED
@@ -1,294 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 2,
6
- "id": "35d8939e-909d-45d8-bcf9-0ff1dccacfdf",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stderr",
11
- "output_type": "stream",
12
- "text": [
13
- "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['bert.encoder.layer.6.output.LayerNorm.weight', 'bert.encoder.layer.6.attention.self.query.weight', 'bert.encoder.layer.3.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.attention.self.value.bias', 'bert.encoder.layer.2.attention.self.value.bias', 'bert.encoder.layer.10.intermediate.dense.bias', 'bert.encoder.layer.3.intermediate.dense.bias', 'bert.encoder.layer.6.attention.self.value.weight', 'bert.encoder.layer.11.output.dense.bias', 'bert.encoder.layer.3.attention.self.value.bias', 'bert.encoder.layer.7.attention.self.value.bias', 'bert.encoder.layer.2.attention.output.dense.weight', 'bert.encoder.layer.11.attention.output.dense.weight', 'bert.encoder.layer.6.output.dense.bias', 'bert.encoder.layer.6.attention.output.dense.bias', 'bert.encoder.layer.4.output.LayerNorm.weight', 'bert.encoder.layer.9.output.dense.weight', 'bert.encoder.layer.9.attention.self.key.bias', 'bert.encoder.layer.3.attention.self.key.weight', 'bert.encoder.layer.3.intermediate.dense.weight', 'bert.encoder.layer.8.output.LayerNorm.weight', 'cls.seq_relationship.bias', 'bert.encoder.layer.6.attention.self.value.bias', 'bert.encoder.layer.10.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.bias', 'bert.encoder.layer.8.attention.self.key.bias', 'bert.encoder.layer.3.attention.self.query.weight', 'bert.encoder.layer.8.intermediate.dense.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.bias', 'bert.encoder.layer.7.attention.output.dense.weight', 'bert.encoder.layer.9.attention.self.query.bias', 'bert.encoder.layer.2.output.dense.bias', 'bert.encoder.layer.6.attention.self.key.bias', 'bert.encoder.layer.4.attention.self.query.weight', 'bert.encoder.layer.2.attention.self.query.weight', 'bert.encoder.layer.11.attention.self.query.weight', 'bert.encoder.layer.3.attention.output.dense.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.self.key.weight', 'bert.encoder.layer.3.attention.self.value.weight', 'bert.encoder.layer.5.attention.self.key.bias', 'bert.encoder.layer.5.intermediate.dense.bias', 'bert.encoder.layer.7.attention.self.key.weight', 'bert.encoder.layer.5.attention.self.value.weight', 'bert.encoder.layer.2.attention.output.dense.bias', 'bert.encoder.layer.2.output.dense.weight', 'bert.encoder.layer.6.attention.output.dense.weight', 'bert.encoder.layer.2.intermediate.dense.bias', 'bert.encoder.layer.9.attention.self.value.bias', 'bert.encoder.layer.6.intermediate.dense.bias', 'bert.encoder.layer.9.attention.output.dense.bias', 'bert.encoder.layer.7.attention.self.query.weight', 'bert.encoder.layer.8.attention.self.value.bias', 'bert.encoder.layer.4.attention.self.key.bias', 'bert.pooler.dense.bias', 'bert.encoder.layer.10.attention.output.dense.bias', 'bert.encoder.layer.5.output.LayerNorm.weight', 'cls.seq_relationship.weight', 'bert.encoder.layer.11.intermediate.dense.weight', 'bert.encoder.layer.2.attention.self.key.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.weight', 'bert.encoder.layer.10.output.dense.bias', 'bert.encoder.layer.10.intermediate.dense.weight', 'bert.encoder.layer.4.intermediate.dense.weight', 'bert.encoder.layer.3.attention.self.key.bias', 'bert.encoder.layer.5.attention.self.query.weight', 'bert.encoder.layer.9.intermediate.dense.weight', 'bert.pooler.dense.weight', 'bert.encoder.layer.7.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.output.LayerNorm.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'bert.encoder.layer.10.attention.self.value.bias', 'bert.encoder.layer.4.attention.self.query.bias', 'bert.encoder.layer.3.attention.self.query.bias', 'bert.encoder.layer.10.output.LayerNorm.weight', 'bert.encoder.layer.10.attention.self.key.bias', 'bert.encoder.layer.8.attention.self.value.weight', 'bert.encoder.layer.4.output.dense.bias', 'bert.encoder.layer.7.attention.self.key.bias', 'bert.encoder.layer.8.intermediate.dense.bias', 'bert.encoder.layer.7.intermediate.dense.weight', 'bert.encoder.layer.2.attention.self.key.weight', 'bert.encoder.layer.4.attention.output.dense.bias', 'bert.encoder.layer.6.output.dense.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.output.LayerNorm.bias', 'bert.encoder.layer.10.output.dense.weight', 'bert.encoder.layer.4.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.output.dense.weight', 'bert.encoder.layer.8.output.dense.weight', 'bert.encoder.layer.5.attention.self.value.bias', 'bert.encoder.layer.4.intermediate.dense.bias', 'bert.encoder.layer.5.attention.self.key.weight', 'bert.encoder.layer.4.attention.self.key.weight', 'bert.encoder.layer.7.attention.self.query.bias', 'bert.encoder.layer.10.attention.self.query.weight', 'bert.encoder.layer.5.output.dense.bias', 'bert.encoder.layer.5.attention.output.dense.weight', 'bert.encoder.layer.7.output.dense.bias', 'bert.embeddings.token_type_embeddings.weight', 'bert.encoder.layer.8.output.dense.bias', 'bert.encoder.layer.7.attention.output.LayerNorm.weight', 'bert.encoder.layer.6.attention.self.key.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.weight', 'bert.encoder.layer.3.output.dense.bias', 'bert.encoder.layer.8.attention.self.query.bias', 'bert.encoder.layer.6.attention.self.query.bias', 'bert.encoder.layer.4.attention.output.dense.weight', 'bert.encoder.layer.6.intermediate.dense.weight', 'bert.encoder.layer.8.attention.output.dense.bias', 'bert.encoder.layer.10.attention.self.query.bias', 'bert.encoder.layer.8.attention.output.dense.weight', 'bert.encoder.layer.9.attention.output.dense.weight', 'bert.encoder.layer.5.output.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'bert.encoder.layer.9.attention.self.query.weight', 'bert.encoder.layer.2.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.attention.self.value.weight', 'bert.encoder.layer.6.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.output.dense.weight', 'bert.encoder.layer.5.attention.self.query.bias', 'bert.encoder.layer.3.output.dense.weight', 'bert.encoder.layer.2.output.LayerNorm.weight', 'bert.encoder.layer.4.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.self.value.weight', 'bert.encoder.layer.6.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.attention.output.dense.bias', 'bert.encoder.layer.2.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.output.LayerNorm.weight', 'bert.encoder.layer.2.output.LayerNorm.bias', 'bert.encoder.layer.3.output.LayerNorm.bias', 'cls.predictions.decoder.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.weight', 'bert.encoder.layer.2.intermediate.dense.weight', 'bert.encoder.layer.11.attention.self.key.weight', 'bert.encoder.layer.11.attention.self.value.weight', 'bert.encoder.layer.9.intermediate.dense.bias', 'bert.encoder.layer.11.intermediate.dense.bias', 'bert.encoder.layer.11.attention.self.key.bias', 'bert.encoder.layer.2.attention.self.value.weight', 'bert.encoder.layer.3.output.LayerNorm.weight', 'bert.encoder.layer.9.output.LayerNorm.bias', 'bert.encoder.layer.5.intermediate.dense.weight', 'bert.encoder.layer.8.output.LayerNorm.bias', 'bert.encoder.layer.9.output.LayerNorm.weight', 'bert.encoder.layer.7.attention.self.value.weight', 'bert.encoder.layer.9.output.dense.bias', 'bert.encoder.layer.7.intermediate.dense.bias', 'bert.encoder.layer.6.attention.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.self.query.weight', 'bert.encoder.layer.9.attention.self.key.weight', 'bert.encoder.layer.4.output.dense.weight', 'bert.encoder.layer.2.attention.self.query.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.bias', 'bert.encoder.layer.3.attention.output.dense.bias', 'bert.encoder.layer.7.output.dense.weight', 'bert.encoder.layer.10.attention.self.value.weight', 'bert.encoder.layer.8.attention.self.key.weight', 'bert.encoder.layer.11.attention.self.value.bias', 'cls.predictions.transform.LayerNorm.bias', 'bert.encoder.layer.3.attention.output.LayerNorm.weight', 'bert.encoder.layer.5.attention.output.dense.bias', 'bert.encoder.layer.4.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.self.query.bias', 'cls.predictions.transform.dense.bias', 'bert.encoder.layer.7.attention.output.dense.bias', 'bert.encoder.layer.5.output.LayerNorm.bias']\n",
14
- "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
15
- "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
16
- "Some weights of BertModel were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['bert.encoder.layer.1.crossattention.output.LayerNorm.bias', 'bert.encoder.layer.0.crossattention.self.query.bias', 'bert.encoder.layer.0.crossattention.output.dense.bias', 'bert.encoder.layer.1.crossattention.self.query.weight', 'bert.encoder.layer.0.crossattention.output.dense.weight', 'bert.encoder.layer.1.crossattention.output.LayerNorm.weight', 'bert.encoder.layer.0.crossattention.self.key.weight', 'bert.encoder.layer.1.crossattention.output.dense.weight', 'bert.encoder.layer.0.crossattention.self.query.weight', 'bert.encoder.layer.0.crossattention.output.LayerNorm.bias', 'bert.encoder.layer.1.crossattention.self.key.weight', 'bert.encoder.layer.0.crossattention.self.key.bias', 'bert.encoder.layer.1.crossattention.output.dense.bias', 'bert.encoder.layer.0.crossattention.output.LayerNorm.weight', 'bert.encoder.layer.1.crossattention.self.value.weight', 'bert.encoder.layer.1.crossattention.self.value.bias', 'bert.encoder.layer.0.crossattention.self.value.bias', 'bert.encoder.layer.0.crossattention.self.value.weight', 'bert.encoder.layer.1.crossattention.self.query.bias', 'bert.encoder.layer.1.crossattention.self.key.bias']\n",
17
- "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
18
- ]
19
- },
20
- {
21
- "name": "stdout",
22
- "output_type": "stream",
23
- "text": [
24
- "/encoder/layer/0/crossattention/self/query is tied\n",
25
- "/encoder/layer/0/crossattention/self/key is tied\n",
26
- "/encoder/layer/0/crossattention/self/value is tied\n",
27
- "/encoder/layer/0/crossattention/output/dense is tied\n",
28
- "/encoder/layer/0/crossattention/output/LayerNorm is tied\n",
29
- "/encoder/layer/0/intermediate/dense is tied\n",
30
- "/encoder/layer/0/output/dense is tied\n",
31
- "/encoder/layer/0/output/LayerNorm is tied\n",
32
- "/encoder/layer/1/crossattention/self/query is tied\n",
33
- "/encoder/layer/1/crossattention/self/key is tied\n",
34
- "/encoder/layer/1/crossattention/self/value is tied\n",
35
- "/encoder/layer/1/crossattention/output/dense is tied\n",
36
- "/encoder/layer/1/crossattention/output/LayerNorm is tied\n",
37
- "/encoder/layer/1/intermediate/dense is tied\n",
38
- "/encoder/layer/1/output/dense is tied\n",
39
- "/encoder/layer/1/output/LayerNorm is tied\n",
40
- "--------------\n",
41
- "/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth\n",
42
- "--------------\n",
43
- "load checkpoint from /home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth\n",
44
- "vit: swin_b\n",
45
- "msg_v2 _IncompatibleKeys(missing_keys=['visual_encoder.layers.0.blocks.0.attn.relative_position_index', 'visual_encoder.layers.0.blocks.1.attn_mask', 'visual_encoder.layers.0.blocks.1.attn.relative_position_index', 'visual_encoder.layers.1.blocks.0.attn.relative_position_index', 'visual_encoder.layers.1.blocks.1.attn_mask', 'visual_encoder.layers.1.blocks.1.attn.relative_position_index', 'visual_encoder.layers.2.blocks.0.attn.relative_position_index', 'visual_encoder.layers.2.blocks.1.attn_mask', 'visual_encoder.layers.2.blocks.1.attn.relative_position_index', 'visual_encoder.layers.2.blocks.2.attn.relative_position_index', 'visual_encoder.layers.2.blocks.3.attn_mask', 'visual_encoder.layers.2.blocks.3.attn.relative_position_index', 'visual_encoder.layers.2.blocks.4.attn.relative_position_index', 'visual_encoder.layers.2.blocks.5.attn_mask', 'visual_encoder.layers.2.blocks.5.attn.relative_position_index', 'visual_encoder.layers.2.blocks.6.attn.relative_position_index', 'visual_encoder.layers.2.blocks.7.attn_mask', 'visual_encoder.layers.2.blocks.7.attn.relative_position_index', 'visual_encoder.layers.2.blocks.8.attn.relative_position_index', 'visual_encoder.layers.2.blocks.9.attn_mask', 'visual_encoder.layers.2.blocks.9.attn.relative_position_index', 'visual_encoder.layers.2.blocks.10.attn.relative_position_index', 'visual_encoder.layers.2.blocks.11.attn_mask', 'visual_encoder.layers.2.blocks.11.attn.relative_position_index', 'visual_encoder.layers.2.blocks.12.attn.relative_position_index', 'visual_encoder.layers.2.blocks.13.attn_mask', 'visual_encoder.layers.2.blocks.13.attn.relative_position_index', 'visual_encoder.layers.2.blocks.14.attn.relative_position_index', 'visual_encoder.layers.2.blocks.15.attn_mask', 'visual_encoder.layers.2.blocks.15.attn.relative_position_index', 'visual_encoder.layers.2.blocks.16.attn.relative_position_index', 'visual_encoder.layers.2.blocks.17.attn_mask', 'visual_encoder.layers.2.blocks.17.attn.relative_position_index', 'visual_encoder.layers.3.blocks.0.attn.relative_position_index', 'visual_encoder.layers.3.blocks.1.attn.relative_position_index'], unexpected_keys=[])\n"
46
- ]
47
- }
48
- ],
49
- "source": [
50
- "from PIL import Image\n",
51
- "import requests\n",
52
- "import torch\n",
53
- "from torchvision import transforms\n",
54
- "from torchvision.transforms.functional import InterpolationMode\n",
55
- "import ruamel_yaml as yaml\n",
56
- "from models.tag2text import tag2text_caption\n",
57
- "\n",
58
- "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
59
- "\n",
60
- "\n",
61
- "\n",
62
- "import gradio as gr\n",
63
- "\n",
64
- "image_size = 384\n",
65
- "\n",
66
- "\n",
67
- "normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
68
- " std=[0.229, 0.224, 0.225])\n",
69
- "transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])\n",
70
- "\n",
71
- "\n",
72
- "\n",
73
- "#######Swin Version\n",
74
- "pretrained = '/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth'\n",
75
- "\n",
76
- "config_file = 'configs/tag2text_caption.yaml'\n",
77
- "config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)\n",
78
- "\n",
79
- "\n",
80
- "model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'], \n",
81
- " vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],\n",
82
- " prompt=config['prompt'],config=config,threshold = 0.75 )\n",
83
- "\n",
84
- "model.eval()\n",
85
- "model = model.to(device)\n",
86
- "\n",
87
- "\n"
88
- ]
89
- },
90
- {
91
- "cell_type": "code",
92
- "execution_count": 4,
93
- "id": "9772dc6f-680d-45a7-b39c-23770eb5258e",
94
- "metadata": {},
95
- "outputs": [
96
- {
97
- "name": "stdout",
98
- "output_type": "stream",
99
- "text": [
100
- "Running on local URL: http://127.0.0.1:7860\n",
101
- "Running on public URL: https://202e6e6a-b3d9-4c97.gradio.live\n",
102
- "\n",
103
- "This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
104
- ]
105
- },
106
- {
107
- "data": {
108
- "text/html": [
109
- "<div><iframe src=\"https://202e6e6a-b3d9-4c97.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
110
- ],
111
- "text/plain": [
112
- "<IPython.core.display.HTML object>"
113
- ]
114
- },
115
- "metadata": {},
116
- "output_type": "display_data"
117
- },
118
- {
119
- "data": {
120
- "text/plain": []
121
- },
122
- "execution_count": 4,
123
- "metadata": {},
124
- "output_type": "execute_result"
125
- },
126
- {
127
- "name": "stdout",
128
- "output_type": "stream",
129
- "text": [
130
- "<class 'PIL.Image.Image'>\n",
131
- "<class 'PIL.Image.Image'>\n"
132
- ]
133
- }
134
- ],
135
- "source": [
136
- "\n",
137
- "def inference(raw_image, model_n, input_tag, strategy):\n",
138
- " if model_n == 'Image Captioning':\n",
139
- " raw_image = raw_image.resize((image_size, image_size))\n",
140
- " print(type(raw_image))\n",
141
- " image = transform(raw_image).unsqueeze(0).to(device) \n",
142
- " model.threshold = 0.75\n",
143
- " if input_tag == '' or input_tag == 'none' or input_tag == 'None':\n",
144
- " input_tag_list = None\n",
145
- " else:\n",
146
- " input_tag_list = []\n",
147
- " input_tag_list.append(input_tag.replace(',',' | '))\n",
148
- " # print(input_tag_list)\n",
149
- " with torch.no_grad():\n",
150
- " if strategy == \"Beam search\":\n",
151
- " \n",
152
- "\n",
153
- " caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)\n",
154
- " if input_tag_list == None:\n",
155
- " tag_1 = tag_predict\n",
156
- " tag_2 = ['none']\n",
157
- " else:\n",
158
- " _, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)\n",
159
- " tag_2 = tag_predict\n",
160
- "\n",
161
- " else:\n",
162
- "\n",
163
- " caption,tag_predict = model.generate(image, tag_input = input_tag_list,sample=True, top_p=0.9, max_length=20, min_length=5, return_tag_predict = True)\n",
164
- " if input_tag_list == None:\n",
165
- " tag_1 = tag_predict\n",
166
- " tag_2 = ['none']\n",
167
- " else:\n",
168
- " _, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)\n",
169
- " tag_2 = tag_predict\n",
170
- " # return 'Caption: '+caption[0], 'Identified Tags:' + tag_predict[0]\n",
171
- " # return tag_predict[0],caption[0]\n",
172
- " return tag_1[0],tag_2[0],caption[0]\n",
173
- " \n",
174
- " # return 'caption: '+caption[0], tag_predict[0]\n",
175
- "\n",
176
- " else: \n",
177
- " image_vq = transform_vq(raw_image).unsqueeze(0).to(device) \n",
178
- " with torch.no_grad():\n",
179
- " answer = model_vq(image_vq, question, train=False, inference='generate') \n",
180
- " return 'answer: '+answer[0]\n",
181
- " \n",
182
- "inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type=\"value\", default=\"Image Captioning\", label=\"Task\"),gr.inputs.Textbox(lines=2, label=\"User Identified Tags (Optional, Enter with commas)\"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type=\"value\", default=\"Beam search\", label=\"Caption Decoding Strategy\")]\n",
183
- "\n",
184
- "# outputs = gr.outputs.Textbox(label=\"Output\")\n",
185
- "# outputs = [gr.outputs.Textbox(label=\"Image Caption\"),gr.outputs.Textbox(label=\"Identified Tags\")]\n",
186
- "outputs = [gr.outputs.Textbox(label=\"Model Identified Tags\"),gr.outputs.Textbox(label=\"User Identified Tags\"), gr.outputs.Textbox(label=\"Image Caption\") ]\n",
187
- "\n",
188
- "title = \"Tag2Text\"\n",
189
- "\n",
190
- "description = \"Gradio demo for Tag2Text: Guiding Language-Image Model via Image Tagging (Fudan University, OPPO Research Institute, International Digital Economy Academy).\"\n",
191
- "\n",
192
- "article = \"<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>\"\n",
193
- "\n",
194
- "demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000551338.jpg',\"Image Captioning\",\"none\",\"Beam search\"], \n",
195
- " ['images/COCO_val2014_000000551338.jpg',\"Image Captioning\",\"fence, sky\",\"Beam search\"],\n",
196
- " # ['images/COCO_val2014_000000551338.jpg',\"Image Captioning\",\"grass\",\"Beam search\"],\n",
197
- " ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"none\",\"Beam search\"],\n",
198
- " ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"electric cable\",\"Beam search\"],\n",
199
- " # ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"sky, train\",\"Beam search\"],\n",
200
- " ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"track, train\",\"Beam search\"] , \n",
201
- " ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"grass\",\"Beam search\"] \n",
202
- " ])\n",
203
- "\n",
204
- "\n",
205
- "demo.launch(share=True)"
206
- ]
207
- },
208
- {
209
- "cell_type": "code",
210
- "execution_count": null,
211
- "id": "0da1f11b-e737-47a9-9b07-4e00c0835f63",
212
- "metadata": {},
213
- "outputs": [],
214
- "source": []
215
- },
216
- {
217
- "cell_type": "code",
218
- "execution_count": null,
219
- "id": "73a4bb88-4200-4853-b1ba-34f0d4b6dc34",
220
- "metadata": {},
221
- "outputs": [],
222
- "source": []
223
- },
224
- {
225
- "cell_type": "code",
226
- "execution_count": null,
227
- "id": "3340a61f-c6bc-4ead-87ea-b26aa97b7a68",
228
- "metadata": {},
229
- "outputs": [],
230
- "source": []
231
- },
232
- {
233
- "cell_type": "code",
234
- "execution_count": null,
235
- "id": "d49e3de4-c3f7-4835-90eb-d0d013fc0ffb",
236
- "metadata": {},
237
- "outputs": [],
238
- "source": []
239
- },
240
- {
241
- "cell_type": "code",
242
- "execution_count": null,
243
- "id": "205e0317-1701-4afd-8d67-bedb6959f350",
244
- "metadata": {},
245
- "outputs": [],
246
- "source": []
247
- },
248
- {
249
- "cell_type": "code",
250
- "execution_count": null,
251
- "id": "bf5301a5-80c5-4e44-835e-0160a97fef66",
252
- "metadata": {},
253
- "outputs": [],
254
- "source": []
255
- },
256
- {
257
- "cell_type": "code",
258
- "execution_count": null,
259
- "id": "f63d7a06-7625-4e1c-855d-177971217a0d",
260
- "metadata": {},
261
- "outputs": [],
262
- "source": []
263
- },
264
- {
265
- "cell_type": "code",
266
- "execution_count": null,
267
- "id": "c929e566-1a6e-4280-96eb-c434ef9a35d0",
268
- "metadata": {},
269
- "outputs": [],
270
- "source": []
271
- }
272
- ],
273
- "metadata": {
274
- "kernelspec": {
275
- "display_name": "Python 3 (ipykernel)",
276
- "language": "python",
277
- "name": "python3"
278
- },
279
- "language_info": {
280
- "codemirror_mode": {
281
- "name": "ipython",
282
- "version": 3
283
- },
284
- "file_extension": ".py",
285
- "mimetype": "text/x-python",
286
- "name": "python",
287
- "nbconvert_exporter": "python",
288
- "pygments_lexer": "ipython3",
289
- "version": "3.7.12"
290
- }
291
- },
292
- "nbformat": 4,
293
- "nbformat_minor": 5
294
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/upload-checkpoint.ipynb DELETED
@@ -1,6 +0,0 @@
1
- {
2
- "cells": [],
3
- "metadata": {},
4
- "nbformat": 4,
5
- "nbformat_minor": 5
6
- }