Spaces:
Sleeping
Sleeping
File size: 8,257 Bytes
bd603fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# coding=utf-8
import os
import re
import utils
import commons
import json
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from torch import no_grad, LongTensor
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
hps_ms = utils.get_hparams_from_file(r'config/config.json')
def get_text(text, hps):
text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm, clean_text
def create_tts_fn(net_g_ms, speaker_id):
def tts_fn(text, language, noise_scale, noise_scale_w, length_scale):
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
max_len = 150
if text_len > max_len:
return "Error: Text is too long", None
if language == 0:
text = f"[ZH]{text}[ZH]"
elif language == 1:
text = f"[JA]{text}[JA]"
else:
text = f"{text}"
stn_tst, clean_text = get_text(text, hps_ms)
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
length_scale=length_scale)[0][0, 0].data.float().numpy()
return "Success", (22050, audio)
return tts_fn
def change_lang(language):
if language == 0:
return 0.6, 0.668, 1.2
else:
return 0.6, 0.668, 1
download_audio_js = """
() =>{{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let audio = root.querySelector("#tts-audio").querySelector("audio");
let text = root.querySelector("#input-text").querySelector("textarea");
if (audio == undefined)
return;
text = text.value;
if (text == undefined)
text = Math.floor(Math.random()*100000000);
audio = audio.src;
let oA = document.createElement("a");
oA.download = text.substr(0, 20)+'.wav';
oA.href = audio;
document.body.appendChild(oA);
oA.click();
oA.remove();
}}
"""
if __name__ == '__main__':
models = []
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for i, info in models_info.items():
net_g_ms = SynthesizerTrn(
len(hps_ms.symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model)
_ = net_g_ms.eval()
sid = info['sid']
name_en = info['name_en']
name_zh = info['name_zh']
title = info['title']
cover = f"pretrained_models/{i}/{info['cover']}"
utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None)
models.append((sid, name_en, name_zh, title, cover, net_g_ms, create_tts_fn(net_g_ms, sid)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> vits-models\n"
"<div align='center'>主要有赛马娘,原神中文,原神日语,崩坏3的音色</div>"
'<div align="center"><a><font color="#dd0000">结果有随机性,语调可能很奇怪,可多次生成取最佳效果</font></a></div>'
'<div align="center"><a><font color="#dd0000">标点符号会影响生成的结果</font></a></div>'
)
with gr.Tabs():
with gr.TabItem("EN"):
for (sid, name_en, name_zh, title, cover, net_g_ms, tts_fn) in models:
with gr.TabItem(name_en):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'<img src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Text (100 words limitation)", lines=5, value="先生。今日も全力であなたをアシストしますね。", elem_id=f"input-text")
lang = gr.Dropdown(label="Language", choices=["Chinese", "Japanese", "Mix(wrap the Chinese text with [ZH][ZH], wrap the Japanese text with [JA][JA])"],
type="index", value="Japanese")
btn = gr.Button(value="Generate")
with gr.Row():
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
with gr.Column():
o1 = gr.Textbox(label="Output Message")
o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio")
download = gr.Button("Download Audio")
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls], outputs=[o1, o2])
download.click(None, [], [], _js=download_audio_js.format())
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
with gr.TabItem("中文"):
for (sid, name_en, name_zh, title, cover, net_g_ms, tts_fn) in models:
with gr.TabItem(name_zh):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'<img src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="文本 (100字上限)", lines=5, value="先生。今日も全力であなたをアシストしますね。", elem_id=f"input-text")
lang = gr.Dropdown(label="语言", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
type="index", value="日语")
btn = gr.Button(value="生成")
with gr.Row():
ns = gr.Slider(label="控制感情变化程度", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
nsw = gr.Slider(label="控制音素发音长度", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
ls = gr.Slider(label="控制整体语速", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
with gr.Column():
o1 = gr.Textbox(label="输出信息")
o2 = gr.Audio(label="输出音频", elem_id=f"tts-audio")
download = gr.Button("下载音频")
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls], outputs=[o1, o2])
download.click(None, [], [], _js=download_audio_js.format())
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
app.queue(concurrency_count=1).launch()
|