File size: 12,328 Bytes
e7abd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import { Box, Typography } from "@mui/material";
const createTooltipContent = (title, items) => (
<Box sx={{ maxWidth: 400 }}>
<Typography variant="body2" paragraph sx={{ mb: 1, color: "inherit" }}>
{title}
</Typography>
<Box component="ul" sx={{ m: 0, pl: 2 }}>
{items.map(({ label, description, subItems }, index) => (
<li key={index}>
<Typography variant="body2" sx={{ mb: 0.5, color: "inherit" }}>
<b>{label}</b>: {description}
{subItems && (
<Box component="ul" sx={{ mt: 0.5, mb: 1 }}>
{subItems.map((item, subIndex) => (
<li key={subIndex}>
<Typography variant="body2" sx={{ color: "inherit" }}>
{item}
</Typography>
</li>
))}
</Box>
)}
</Typography>
</li>
))}
</Box>
</Box>
);
export const COLUMN_TOOLTIPS = {
AVERAGE: createTooltipContent("Average score across all benchmarks:", [
{
label: "Calculation",
description: "Weighted average of normalized scores from all benchmarks",
subItems: [
"Each benchmark is normalized to a 0-100 scale",
"All normalised benchmarks are then averaged together",
],
},
]),
IFEVAL: createTooltipContent("Instruction-Following Evaluation (IFEval):", [
{
label: "Purpose",
description:
"Tests model's ability to follow explicit formatting instructions",
subItems: ["Instruction following", "Formatting", "Generation"],
},
{
label: "Scoring",
description: "Accuracy: was the format asked for strictly respected.",
},
]),
BBH: createTooltipContent("Big Bench Hard (BBH):", [
{
label: "Overview",
description: "Collection of challenging for LLM tasks across domains",
subItems: [
"Language understanding",
"Mathematical reasoning",
"Common sense and world knowledge",
],
},
{
label: "Scoring",
description:
"Accuracy: was the correct choice selected among the options.",
},
]),
MATH: createTooltipContent(
"Mathematics Aptitude Test of Heuristics (MATH), level 5:",
[
{
label: "Content",
description: "High school level competitions mathematical problems",
subItems: ["Complex algebra", "Geometry problems", "Advanced calculus"],
},
{
label: "Evaluation",
description:
"Accuracy: is the solution generated correct and in the expected format",
},
]
),
GPQA: createTooltipContent("Graduate-Level Google-Proof Q&A (GPQA):", [
{
label: "Focus",
description: "PhD-level knowledge multiple choice questions in science",
subItems: [
"PhD-level chemistry",
"PhD-level biology",
"PhD-level physics",
],
},
{
label: "Methodology",
description:
"Accuracy: was the correct choice selected among the options.",
},
]),
MUSR: createTooltipContent("Multistep Soft Reasoning (MUSR):", [
{
label: "Scope",
description: "Reasoning and understanding on/of long texts",
subItems: [
"Language understanding",
"Reasoning capabilities",
"Long context reasoning",
],
},
{
label: "Scoring",
description:
"Accuracy: was the correct choice selected among the options.",
},
]),
MMLU_PRO: createTooltipContent(
"Massive Multitask Language Understanding - Professional (MMLU-Pro):",
[
{
label: "Coverage",
description: "Expertly reviewed multichoice questions across domains",
subItems: [
"Medicine and healthcare",
"Law and ethics",
"Engineering",
"Mathematics",
],
},
{
label: "Evaluation",
description:
"Accuracy: was the correct choice selected among the options.",
},
]
),
ARCHITECTURE: createTooltipContent("Model Architecture Information:", [
{
label: "Definition",
description: "The fundamental structure and design of the model",
subItems: [
"Base architecture type (e.g., Llama, Mistral, GPT-J)",
"Specific architectural innovations and improvements",
"Model family and version information",
"Core design principles and techniques used",
],
},
{
label: "Impact",
description: "How architecture affects model capabilities",
subItems: [
"Influences model's learning capacity and efficiency",
"Determines hardware compatibility and requirements",
"Affects inference speed and memory usage",
],
},
]),
PRECISION: createTooltipContent("Numerical Precision Format:", [
{
label: "Overview",
description:
"Data format used to store model weights and perform computations",
subItems: [
"BFloat16: Brain Float format, good for training stability",
"Float16: Half precision, balances accuracy and speed",
"Int8/Int4: Quantized formats for efficiency",
"GPTQ/AWQ: Advanced quantization techniques",
],
},
{
label: "Impact",
description: "How precision affects model deployment",
subItems: [
"Higher precision = better accuracy but more memory usage",
"Lower precision = faster inference and smaller size",
"Different hardware compatibility requirements",
"Trade-off between model quality and resource usage",
],
},
{
label: "Use Cases",
description: "Choosing the right precision format",
subItems: [
"Production deployment optimization",
"Resource-constrained environments",
"High-performance computing scenarios",
],
},
]),
FLAGS: createTooltipContent("Model Flags and Special Features:", [
{
label: "Purpose",
description: "Special indicators and capabilities of the model",
subItems: [
"Safeguards and content filtering features",
"Specialized training techniques used",
"Hardware optimization flags",
"Deployment-specific configurations",
],
},
{
label: "Common Flags",
description: "Frequently used model indicators",
subItems: [
"RLHF: Reinforcement Learning from Human Feedback",
"DPO: Direct Preference Optimization",
"MoE: Mixture of Experts architecture",
"Flash Attention: Optimized attention implementation",
],
},
]),
PARAMETERS: createTooltipContent("Model Parameters:", [
{
label: "Measurement",
description: "Total number of trainable parameters in billions",
subItems: [
"Indicates model capacity and complexity",
"Correlates with computational requirements",
"Influences memory usage and inference speed",
],
},
]),
LICENSE: createTooltipContent("Model License Information:", [
{
label: "Importance",
description: "Legal terms governing model usage and distribution",
subItems: [
"Commercial vs non-commercial use",
"Attribution requirements",
"Modification and redistribution rights",
"Liability and warranty terms",
],
},
]),
CO2_COST: createTooltipContent("Carbon Dioxide Emissions:", [
{
label: "What is it?",
description: "CO₂ emissions of the model evaluation ",
subItems: [
"Only focuses on model inference for our specific setup",
"Considers data center location and energy mix",
"Allows equivalent comparision of models on our use case",
],
},
{
label: "Why it matters",
description: "Environmental impact of AI model training",
subItems: [
"Large models can have significant carbon footprints",
"Helps make informed choices about model selection",
"Promotes awareness of AI's environmental impact",
],
},
{
label: "Learn more",
description:
"For detailed information about our CO₂ calculation methodology, visit:",
subItems: [
<a
href="https://huggingface.co/docs/hub/carbon-emissions"
target="_blank"
rel="noopener noreferrer"
style={{ color: "#90caf9" }}
>
Carbon Emissions Documentation ↗
</a>,
],
},
]),
};
export const UI_TOOLTIPS = {
COLUMN_SELECTOR: "Choose which columns to display in the table",
DISPLAY_OPTIONS: createTooltipContent("Table Display Options", [
{
label: "Overview",
description: "Configure how the table displays data and information",
subItems: [
"Row size and layout",
"Score display format",
"Ranking calculation",
"Average score computation",
],
},
]),
SEARCH_BAR: createTooltipContent("Advanced Model Search", [
{
label: "Name Search",
description: "Search directly by model name",
subItems: [
"Supports regular expressions (e.g., ^mistral.*7b)",
"Case sensitive",
],
},
{
label: "Field Search",
description: "Use @field:value syntax for precise filtering",
subItems: [
"@architecture:llama - Filter by architecture",
"@license:mit - Filter by license",
"@precision:float16 - Filter by precision",
"@type:chat - Filter by model type",
],
},
{
label: "Multiple Searches",
description: "Combine multiple criteria using semicolons",
subItems: [
"meta @license:mit; @architecture:llama",
"^mistral.*7b; @precision:float16",
],
},
]),
QUICK_FILTERS: createTooltipContent(
"Filter models based on their size and capabilities:",
[
{
label: "Small Models (1.7B-7B)",
description:
"Efficient models for consumer hardware and edge devices, optimized for fast inference.",
},
{
label: "Medium Models (7B-70B)",
description:
"Balanced performance and resource usage, ideal for most production use cases.",
},
{
label: "Large Models (70B+)",
description:
"State-of-the-art performance for complex tasks, requires significant computing power.",
},
{
label: "Official Providers",
description:
"Models directly maintained by their original creators, ensuring reliability and up-to-date performance.",
},
]
),
ROW_SIZE: {
title: "Row Size",
description:
"Adjust the height of table rows. Compact is ideal for viewing more data at once, while Large provides better readability and touch targets.",
},
SCORE_DISPLAY: {
title: "Score Display",
description:
"Choose between normalized scores (0-100% scale for easy comparison) or raw scores (actual benchmark results). Normalized scores help compare performance across different benchmarks, while raw scores show actual benchmark outputs.",
},
RANKING_MODE: {
title: "Ranking Mode",
description:
"Choose between static ranking (original position in the full leaderboard) or dynamic ranking (position based on current filters and sorting).",
},
AVERAGE_SCORE: {
title: "Average Score Calculation",
description:
"Define how the average score is calculated. 'All Scores' uses all benchmarks, while 'Visible Only' calculates the average using only the visible benchmark columns.",
},
};
export const getTooltipStyle = {};
export const TABLE_TOOLTIPS = {
HUB_LINK: (modelName) => `View ${modelName} on Hugging Face Hub`,
EVAL_RESULTS: (modelName) =>
`View detailed evaluation results for ${modelName}`,
POSITION_CHANGE: (change) =>
`${Math.abs(change)} position${Math.abs(change) > 1 ? "s" : ""} ${
change > 0 ? "up" : "down"
}`,
METADATA: {
TYPE: (type) => type || "-",
ARCHITECTURE: (arch) => arch || "-",
PRECISION: (precision) => precision || "-",
LICENSE: (license) => license || "-",
UPLOAD_DATE: (date) => date || "-",
SUBMISSION_DATE: (date) => date || "-",
BASE_MODEL: (model) => model || "-",
},
};
|