Daniel Kantor
add fallback logic for getting the model size
87921bd
raw
history blame
14.2 kB
import json
import logging
import asyncio
from typing import Tuple, Optional, Dict, Any
from datasets import load_dataset
from huggingface_hub import HfApi, ModelCard, hf_hub_download
from huggingface_hub import hf_api
from transformers import AutoConfig, AutoTokenizer
from app.config.base import HF_TOKEN
from app.config.hf_config import OFFICIAL_PROVIDERS_REPO
from app.core.formatting import LogFormatter
logger = logging.getLogger(__name__)
class ModelValidator:
def __init__(self):
self.token = HF_TOKEN
self.api = HfApi(token=self.token)
self.headers = {"Authorization": f"Bearer {self.token}"} if self.token else {}
async def check_model_card(
self, model_id: str
) -> Tuple[bool, str, Optional[Dict[str, Any]]]:
"""Check if model has a valid model card"""
try:
logger.info(LogFormatter.info(f"Checking model card for {model_id}"))
# Get model card content using ModelCard.load
try:
model_card = await asyncio.to_thread(ModelCard.load, model_id)
logger.info(LogFormatter.success("Model card found"))
except Exception as e:
error_msg = "Please add a model card to your model to explain how you trained/fine-tuned it."
logger.error(LogFormatter.error(error_msg, e))
return False, error_msg, None
# Check license in model card data
if model_card.data.license is None and not (
"license_name" in model_card.data and "license_link" in model_card.data
):
error_msg = "License not found. Please add a license to your model card using the `license` metadata or a `license_name`/`license_link` pair."
logger.warning(LogFormatter.warning(error_msg))
return False, error_msg, None
# Enforce card content length
if len(model_card.text) < 200:
error_msg = (
"Please add a description to your model card, it is too short."
)
logger.warning(LogFormatter.warning(error_msg))
return False, error_msg, None
logger.info(LogFormatter.success("Model card validation passed"))
return True, "", model_card
except Exception as e:
error_msg = "Failed to validate model card"
logger.error(LogFormatter.error(error_msg, e))
return False, str(e), None
async def get_safetensors_metadata(
self, model_id: str, is_adapter: bool = False, revision: str = "main"
) -> Optional[Dict]:
"""Get metadata from a safetensors file"""
try:
if is_adapter:
metadata = await asyncio.to_thread(
hf_api.parse_safetensors_file_metadata,
model_id,
"adapter_model.safetensors",
token=self.token,
revision=revision,
)
else:
metadata = await asyncio.to_thread(
hf_api.get_safetensors_metadata,
repo_id=model_id,
token=self.token,
revision=revision,
)
return metadata
except Exception as e:
logger.error(f"Failed to get safetensors metadata: {str(e)}")
return None
async def get_model_size(
self, model_info: Any, precision: str, base_model: str, revision: str
) -> Tuple[Optional[float], Optional[str]]:
"""Get model size in billions of parameters.
First, try to use safetensors metadata (which provides parameter counts).
If that isn’t available (i.e. for non-safetensors models), then as a fallback,
use file metadata (summing the sizes of weight files) and estimate the parameter count.
"""
try:
logger.info(
LogFormatter.info(f"Checking model size for {model_info.modelId}")
)
# Check if model is adapter
is_adapter = any(
s.rfilename == "adapter_config.json"
for s in model_info.siblings
if hasattr(s, "rfilename")
)
model_size = None # will hold total parameter count (as a number)
if is_adapter and base_model:
# For adapters, we need both adapter and base model sizes from safetensors metadata.
adapter_meta = await self.get_safetensors_metadata(
model_info.id, is_adapter=True, revision=revision
)
base_meta = await self.get_safetensors_metadata(
base_model, revision="main"
)
if adapter_meta and base_meta:
adapter_size = sum(adapter_meta.parameter_count.values())
base_size = sum(base_meta.parameter_count.values())
model_size = adapter_size + base_size
else:
# For regular models, try to get the model size from safetensors metadata.
meta = await self.get_safetensors_metadata(
model_info.id, revision=revision
)
if meta:
model_size = sum(meta.parameter_count.values())
if model_size is not None:
# Adjust size for GPTQ models if needed
factor = (
8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
)
# Convert parameter count to billions
model_size = round((model_size / 1e9) * factor, 3)
logger.info(
LogFormatter.success(f"Model size: {model_size}B parameters")
)
return model_size, None
# Fallback: use file metadata (siblings) to estimate model size
logger.info(
"Safetensors metadata not available. Falling back to file metadata to estimate model size."
)
weight_file_extensions = [".bin", ".safetensors"]
fallback_size_bytes = 0
for sibling in model_info.siblings:
if hasattr(sibling, "rfilename") and sibling.size is not None:
if any(
sibling.rfilename.endswith(ext)
for ext in weight_file_extensions
):
fallback_size_bytes += sibling.size
if fallback_size_bytes > 0:
# Assume float16 storage where each parameter takes ~2 bytes.
# Then estimate parameter count and adjust for GPTQ if needed.
factor = (
8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
)
estimated_param_count = (fallback_size_bytes / 2) * factor
model_size = round(estimated_param_count / 1e9, 3) # in billions
logger.info(
LogFormatter.success(
f"Fallback model size: {model_size}B parameters"
)
)
return model_size, None
else:
return (
None,
"Model size could not be determined using file metadata fallback",
)
except Exception as e:
logger.error(LogFormatter.error(f"Error while determining model size: {e}"))
return None, str(e)
async def check_chat_template(
self, model_id: str, revision: str
) -> Tuple[bool, Optional[str]]:
"""Check if model has a valid chat template"""
try:
logger.info(LogFormatter.info(f"Checking chat template for {model_id}"))
try:
config_file = await asyncio.to_thread(
hf_hub_download,
repo_id=model_id,
filename="tokenizer_config.json",
revision=revision,
repo_type="model",
)
with open(config_file, "r") as f:
tokenizer_config = json.load(f)
if "chat_template" not in tokenizer_config:
error_msg = f"The model {model_id} doesn't have a chat_template in its tokenizer_config.json. Please add a chat_template before submitting or submit without it."
logger.error(LogFormatter.error(error_msg))
return False, error_msg
logger.info(LogFormatter.success("Valid chat template found"))
return True, None
except Exception as e:
error_msg = f"Error checking chat_template: {str(e)}"
logger.error(LogFormatter.error(error_msg))
return False, error_msg
except Exception as e:
error_msg = "Failed to check chat template"
logger.error(LogFormatter.error(error_msg, e))
return False, str(e)
async def is_model_on_hub(
self,
model_name: str,
revision: str,
gated: bool = False,
test_tokenizer: bool = False,
trust_remote_code: bool = False,
) -> Tuple[bool, Optional[str], Optional[Any]]:
"""Check if model exists and is properly configured on the Hub"""
try:
config = await asyncio.to_thread(
AutoConfig.from_pretrained,
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=self.token,
force_download=True,
)
if test_tokenizer:
try:
await asyncio.to_thread(
AutoTokenizer.from_pretrained,
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=self.token,
)
except ValueError as e:
return (
False,
f"The tokenizer is not available in an official Transformers release: {e}",
None,
)
except Exception:
return (
False,
"The tokenizer cannot be loaded. Ensure the tokenizer class is part of a stable Transformers release and correctly configured.",
None,
)
return True, None, config
except ValueError:
return (
False,
"The model requires `trust_remote_code=True` to launch, and for safety reasons, we don't accept such models automatically.",
None,
)
except Exception as e:
if gated:
return (
True,
"The model is gated by the model authors and requires special access permissions. Please contact us to request evaluation.",
None,
)
return (
False,
f"The model was not found or is misconfigured on the Hub. Error: {e.args[0]}",
None,
)
async def check_official_provider_status(
self, model_id: str, existing_models: Dict[str, list]
) -> Tuple[bool, Optional[str]]:
"""
Check if model is from official provider and has finished submission.
Args:
model_id: The model identifier (org/model-name)
existing_models: Dictionary of models by status from get_models()
Returns:
Tuple[bool, Optional[str]]: (is_valid, error_message)
"""
try:
logger.info(
LogFormatter.info(f"Checking official provider status for {model_id}")
)
# Get model organization
model_org = model_id.split("/")[0] if "/" in model_id else None
if not model_org:
return True, None
# Load official providers dataset
dataset = load_dataset(OFFICIAL_PROVIDERS_REPO)
official_providers = dataset["train"][0]["CURATED_SET"]
# Check if model org is in official providers
is_official = model_org in official_providers
if is_official:
logger.info(
LogFormatter.info(
f"Model organization '{model_org}' is an official provider"
)
)
# Check for finished submissions
if "finished" in existing_models:
for model in existing_models["finished"]:
# TODO: remove this after official provider evaluation is implemented
if model["name"] == model_id and False:
error_msg = (
f"Model {model_id} is an official provider model "
f"with a completed evaluation. "
f"To re-evaluate, please open a discussion."
)
logger.error(
LogFormatter.error("Validation failed", error_msg)
)
return False, error_msg
logger.info(
LogFormatter.success(
"No finished submission found for this official provider model"
)
)
else:
logger.info(
LogFormatter.info(
f"Model organization '{model_org}' is not an official provider"
)
)
return True, None
except Exception as e:
error_msg = f"Failed to check official provider status: {str(e)}"
logger.error(LogFormatter.error(error_msg))
return False, error_msg