File size: 11,228 Bytes
99b815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab30f9
99b815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99b815f
 
8f56293
1264ff3
7a3d0ce
99b815f
8f56293
1264ff3
8f56293
 
1264ff3
99b815f
 
 
7a3d0ce
99b815f
7a3d0ce
 
99b815f
 
7a3d0ce
 
99b815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99b815f
1264ff3
99b815f
 
 
 
 
 
 
 
1264ff3
99b815f
 
 
 
 
 
 
 
 
 
 
 
1264ff3
 
 
 
 
 
 
 
 
 
 
 
99b815f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.leaderboard.security_eval import check_safetensors

# Skip HuggingFace downloads for local testing
print("Creating leaderboard DataFrame...")
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
print(f"LEADERBOARD_DF columns: {LEADERBOARD_DF.columns.tolist()}")
print(f"LEADERBOARD_DF data:\n{LEADERBOARD_DF}")

print("\nGetting evaluation queue DataFrames...")
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def get_field_mapping():
    """Create a mapping from display names to field names."""
    auto_eval_fields = fields(AutoEvalColumn)
    return {f.name: f for f in auto_eval_fields}

def create_empty_dataframe(field_mapping):
    """Create an empty DataFrame with the correct columns."""
    import pandas as pd
    return pd.DataFrame(columns=[f.name for f in field_mapping.values()])

def verify_columns(dataframe, field_mapping):
    """Verify all required columns are present."""
    for col in dataframe.columns:
        if col not in field_mapping:
            print(f"Warning: Column {col} not found in field mapping")

def init_leaderboard(dataframe):
    print(f"Initializing leaderboard with DataFrame shape: {dataframe.shape}")
    
    field_mapping = get_field_mapping()
    print(f"Field mapping: {field_mapping}")
    
    if dataframe is None or len(dataframe) == 0:
        dataframe = create_empty_dataframe(field_mapping)
        print("Created empty DataFrame with correct columns")
    
    verify_columns(dataframe, field_mapping)
    
    return Leaderboard(
        value=dataframe,
        datatype=["str" if col not in field_mapping else field_mapping[col].type for col in dataframe.columns],
        select_columns=SelectColumns(
            default_selection=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].displayed_by_default],
            cant_deselect=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Model", "Hub License"],
        hide_columns=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].hidden],
        filter_columns=[
            ColumnFilter("Type", type="checkboxgroup", label="Model types"),
            ColumnFilter("Weight Format", type="checkboxgroup", label="Weight Format"),
            ColumnFilter("Precision", type="checkboxgroup", label="Precision"),
            ColumnFilter(
                "#Params (B)",
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                "Available on Hub", type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ”’ Security Leaderboard", elem_id="security-leaderboard-tab", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="about-tab", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit Model", elem_id="submit-tab", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# πŸ”’ Submit Your Model for Security Evaluation", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name (organization/model-name)",
                        placeholder="huggingface/model-name"
                    )
                    revision_name_textbox = gr.Textbox(
                        label="Revision commit",
                        placeholder="main"
                    )
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weight Format",
                        multiselect=False,
                        value="Safetensors",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(
                        label="Base model (for delta or adapter weights)",
                        placeholder="Optional: base model path"
                    )

            with gr.Row():
                gr.Markdown(
                    """
                    ### Security Requirements:
                    1. Model weights must be in safetensors format
                    2. Model card must include security considerations
                    3. Model will be evaluated on secure coding capabilities
                    """,
                    elem_classes="markdown-text"
                )

            submit_button = gr.Button("Submit for Security Evaluation")
            submission_result = gr.Markdown()

            def handle_submission(model, base_model, revision, precision, weight_type, model_type):
                """Handle new model submission."""
                try:
                    print(f"New submission received for {model}")
                    
                    # Add to queue
                    result = add_new_eval(model, base_model, revision, precision, weight_type, model_type)
                    
                    # Update pending evaluations table
                    global pending_eval_queue_df
                    _, _, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
                    
                    return [
                        gr.Markdown("Submission successful! Your model has been added to the evaluation queue. Please check the 'Pending Evaluation Queue' for status updates."),
                        gr.Dataframe(value=pending_eval_queue_df)
                    ]
                except Exception as e:
                    print(f"Submission failed: {str(e)}")
                    return [gr.Markdown(f"Error: {str(e)}"), gr.Dataframe(value=pending_eval_queue_df)]

            # Update tables periodically
            def update_evaluation_tables():
                global finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
                finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
                return [
                    finished_eval_table.update(value=finished_eval_queue_df),
                    running_eval_table.update(value=running_eval_queue_df),
                    pending_eval_table.update(value=pending_eval_queue_df)
                ]

            submit_button.click(
                handle_submission,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                [submission_result, pending_eval_table],
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

# Setup periodic updates
import time
import threading

def periodic_update():
    while True:
        time.sleep(60)  # Update every 60 seconds
        demo.queue(update_evaluation_tables)()

update_thread = threading.Thread(target=periodic_update, daemon=True)
update_thread.start()

demo.queue(default_concurrency_limit=40).launch()