File size: 11,228 Bytes
99b815f 1ab30f9 99b815f 1264ff3 99b815f 8f56293 1264ff3 7a3d0ce 99b815f 8f56293 1264ff3 8f56293 1264ff3 99b815f 7a3d0ce 99b815f 7a3d0ce 99b815f 7a3d0ce 99b815f 1264ff3 99b815f 1264ff3 99b815f 1264ff3 99b815f 1264ff3 99b815f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.leaderboard.security_eval import check_safetensors
# Skip HuggingFace downloads for local testing
print("Creating leaderboard DataFrame...")
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
print(f"LEADERBOARD_DF columns: {LEADERBOARD_DF.columns.tolist()}")
print(f"LEADERBOARD_DF data:\n{LEADERBOARD_DF}")
print("\nGetting evaluation queue DataFrames...")
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def get_field_mapping():
"""Create a mapping from display names to field names."""
auto_eval_fields = fields(AutoEvalColumn)
return {f.name: f for f in auto_eval_fields}
def create_empty_dataframe(field_mapping):
"""Create an empty DataFrame with the correct columns."""
import pandas as pd
return pd.DataFrame(columns=[f.name for f in field_mapping.values()])
def verify_columns(dataframe, field_mapping):
"""Verify all required columns are present."""
for col in dataframe.columns:
if col not in field_mapping:
print(f"Warning: Column {col} not found in field mapping")
def init_leaderboard(dataframe):
print(f"Initializing leaderboard with DataFrame shape: {dataframe.shape}")
field_mapping = get_field_mapping()
print(f"Field mapping: {field_mapping}")
if dataframe is None or len(dataframe) == 0:
dataframe = create_empty_dataframe(field_mapping)
print("Created empty DataFrame with correct columns")
verify_columns(dataframe, field_mapping)
return Leaderboard(
value=dataframe,
datatype=["str" if col not in field_mapping else field_mapping[col].type for col in dataframe.columns],
select_columns=SelectColumns(
default_selection=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].displayed_by_default],
cant_deselect=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].never_hidden],
label="Select Columns to Display:",
),
search_columns=["Model", "Hub License"],
hide_columns=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].hidden],
filter_columns=[
ColumnFilter("Type", type="checkboxgroup", label="Model types"),
ColumnFilter("Weight Format", type="checkboxgroup", label="Weight Format"),
ColumnFilter("Precision", type="checkboxgroup", label="Precision"),
ColumnFilter(
"#Params (B)",
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
"Available on Hub", type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π Security Leaderboard", elem_id="security-leaderboard-tab", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="about-tab", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit Model", elem_id="submit-tab", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# π Submit Your Model for Security Evaluation", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name (organization/model-name)",
placeholder="huggingface/model-name"
)
revision_name_textbox = gr.Textbox(
label="Revision commit",
placeholder="main"
)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weight Format",
multiselect=False,
value="Safetensors",
interactive=True,
)
base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)",
placeholder="Optional: base model path"
)
with gr.Row():
gr.Markdown(
"""
### Security Requirements:
1. Model weights must be in safetensors format
2. Model card must include security considerations
3. Model will be evaluated on secure coding capabilities
""",
elem_classes="markdown-text"
)
submit_button = gr.Button("Submit for Security Evaluation")
submission_result = gr.Markdown()
def handle_submission(model, base_model, revision, precision, weight_type, model_type):
"""Handle new model submission."""
try:
print(f"New submission received for {model}")
# Add to queue
result = add_new_eval(model, base_model, revision, precision, weight_type, model_type)
# Update pending evaluations table
global pending_eval_queue_df
_, _, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return [
gr.Markdown("Submission successful! Your model has been added to the evaluation queue. Please check the 'Pending Evaluation Queue' for status updates."),
gr.Dataframe(value=pending_eval_queue_df)
]
except Exception as e:
print(f"Submission failed: {str(e)}")
return [gr.Markdown(f"Error: {str(e)}"), gr.Dataframe(value=pending_eval_queue_df)]
# Update tables periodically
def update_evaluation_tables():
global finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return [
finished_eval_table.update(value=finished_eval_queue_df),
running_eval_table.update(value=running_eval_queue_df),
pending_eval_table.update(value=pending_eval_queue_df)
]
submit_button.click(
handle_submission,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
[submission_result, pending_eval_table],
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# Setup periodic updates
import time
import threading
def periodic_update():
while True:
time.sleep(60) # Update every 60 seconds
demo.queue(update_evaluation_tables)()
update_thread = threading.Thread(target=periodic_update, daemon=True)
update_thread.start()
demo.queue(default_concurrency_limit=40).launch()
|