lukehinds's picture
Fix 'AutoEvalColumn' has no attribute
b257b3e
raw
history blame
3.42 kB
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
# Ensure all required columns exist before filtering
for col in benchmark_cols:
if col not in df.columns:
df[col] = None
# Filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
df = df.sort_values(by="Security Score ⬆️", ascending=False)
df = df[cols].round(decimals=2)
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
# Create a new dict with the required column names
formatted_data = {
"model": make_clickable_model(data["model"]),
"revision": data.get("revision", "main"),
"private": data.get("private", False),
"precision": data.get("precision", ""),
"weight_type": data.get("weight_type", ""),
"status": data.get("status", "")
}
all_evals.append(formatted_data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
# Create a new dict with the required column names
formatted_data = {
"model": make_clickable_model(data["model"]),
"revision": data.get("revision", "main"),
"private": data.get("private", False),
"precision": data.get("precision", ""),
"weight_type": data.get("weight_type", ""),
"status": data.get("status", "")
}
all_evals.append(formatted_data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]