Spaces:
Sleeping
Sleeping
File size: 4,831 Bytes
2340e06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#!/bin/bash
echo "Starting MVP setup for Proto-Peanut System (Go-based)"
# Create directory structure
mkdir -p proto_peanut_mvp/{server,client,logs,tools,weaviate,node_red}
cd proto_peanut_mvp
# Step 1: Install Go if not installed
echo "Checking for Go installation..."
if ! [ -x "$(command -v go)" ]; then
echo 'Error: Go is not installed. Installing Go...'
wget https://golang.org/dl/go1.19.4.linux-amd64.tar.gz
tar -xvf go1.19.4.linux-amd64.tar.gz
sudo mv go /usr/local
export GOROOT=/usr/local/go
export PATH=$GOPATH/bin:$GOROOT/bin:$PATH
echo 'Go installed successfully.'
else
echo 'Go is already installed.'
fi
# Step 2: Set up Go module for the server
echo "Setting up Go server..."
cd server
go mod init proto_peanut_server
go get -u github.com/gin-gonic/gin
go get github.com/weaviate/weaviate-go-client/v4/weaviate
go get github.com/sirupsen/logrus
# Step 3: Create the Go server
cat > main.go <<EOL
package main
import (
"github.com/gin-gonic/gin"
"time"
"github.com/sirupsen/logrus"
"github.com/weaviate/weaviate-go-client/v4/weaviate"
"fmt"
"os"
)
// Message structure
type Message struct {
ID int64 \`json:"id"\`
SenderName string \`json:"senderName"\`
SenderRole string \`json:"senderRole"\`
Type string \`json:"type"\`
Content string \`json:"content"\`
ChainID int64 \`json:"chainId"\`
Tags []string \`json:"tags"\`
Params map[string]string \`json:"params"\`
}
var chatroom []Message
var log = logrus.New()
func main() {
r := gin.Default()
// Load weaviate client
weaviateClient := initWeaviate()
// Shared chatroom route
r.GET("/getMessages", func(c *gin.Context) {
lastKnownId := c.Query("lastKnownId")
newMessages := filterMessages(lastKnownId)
c.JSON(200, gin.H{"messages": newMessages})
})
// Route to send message
r.POST("/sendMessage", func(c *gin.Context) {
var msg Message
if err := c.ShouldBindJSON(&msg); err == nil {
msg.ID = time.Now().UnixNano() / 1e6 // Timestamp in milliseconds as unique ID
chatroom = append(chatroom, msg)
log.Infof("New message received from %s: %s", msg.SenderName, msg.Content)
c.JSON(200, gin.H{"status": "Message received", "messageId": msg.ID})
} else {
c.JSON(400, gin.H{"error": err.Error()})
}
})
// Start the server
r.Run(":8080")
}
// Filter messages after a certain last known ID
func filterMessages(lastKnownId string) []Message {
var newMessages []Message
for _, msg := range chatroom {
if fmt.Sprintf("%d", msg.ID) > lastKnownId {
newMessages = append(newMessages, msg)
}
}
return newMessages
}
// Initialize Weaviate
func initWeaviate() *weaviate.Client {
config := weaviate.Config{
Scheme: "http",
Host: "localhost:8080",
}
client := weaviate.New(config)
return client
}
EOL
# Step 4: Install Docker and Set up Weaviate (run in Docker container)
echo "Setting up Weaviate using Docker..."
cd ../weaviate
cat > docker-compose.yml <<EOL
version: '3'
services:
weaviate:
image: semitechnologies/weaviate:latest
ports:
- "8080:8080"
environment:
- QUERY_DEFAULTS_LIMIT=20
- AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true
- PERSISTENCE_DATA_PATH=/var/lib/weaviate
volumes:
- ./data:/var/lib/weaviate
restart: always
EOL
docker-compose up -d
cd ..
# Step 5: Set up Gradio Chatbot on Hugging Face Spaces
echo "Setting up Gradio Chatbot on Hugging Face Spaces..."
cd client
cat > chatbot_gradio.py <<EOL
import gradio as gr
from huggingface_hub import InferenceApi
# Hugging Face GPT-based API for proto-peanut
model = InferenceApi(repo_id="gpt2", token="YOUR_HUGGING_FACE_TOKEN")
def chatbot(input_text):
response = model(inputs=input_text)
return response["generated_text"]
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Proto-Peanut Chatbot")
iface.launch(share=True)
EOL
# Step 6: Install Node-RED for Workflow Automation
echo "Installing Node-RED for workflow automation..."
cd ../node_red
npm install -g --unsafe-perm node-red
cat > start_node_red.sh <<EOL
#!/bin/bash
echo "Starting Node-RED server..."
node-red
EOL
chmod +x start_node_red.sh
cd ..
# Step 7: Create a script to run everything
echo "Creating run script..."
cat > run_mvp.sh <<EOL
#!/bin/bash
# Run Go Server
cd server
go run main.go &
# Run Weaviate using Docker Compose
cd ../weaviate
docker-compose up -d &
# Run Node-RED
cd ../node_red
./start_node_red.sh &
# Start Gradio Chatbot on Hugging Face Space
cd ../client
python3 chatbot_gradio.py &
EOL
chmod +x run_mvp.sh |