Spaces:
Running
Running
File size: 4,993 Bytes
1c3330f c77c587 573c3f1 70542da 573c3f1 c8a65fb 573c3f1 1c3330f 573c3f1 c77c587 573c3f1 cad3317 573c3f1 c77c587 573c3f1 cad3317 4e597da 573c3f1 4e597da c77c587 573c3f1 365c88b 573c3f1 cbcb276 c77c587 573c3f1 cbcb276 573c3f1 c8a65fb c77c587 573c3f1 c77c587 c8a65fb 573c3f1 209d481 4e597da c8a65fb 573c3f1 c77c587 573c3f1 c77c587 1c3330f c77c587 bdd2388 c77c587 573c3f1 4e597da 573c3f1 c77c587 573c3f1 c77c587 573c3f1 3ea9a92 c77c587 20a6f95 c77c587 573c3f1 26d12c4 c77c587 26d12c4 c77c587 573c3f1 c77c587 6ee4209 bdd2388 cad3317 573c3f1 c77c587 26d12c4 c77c587 573c3f1 c77c587 b9d04ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
import io
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from PIL import Image
from math import tau
from concurrent.futures import ThreadPoolExecutor
import gradio as gr
def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_kernel_size, desired_range, num_points, theta_points):
# Convert PIL to OpenCV image
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
# Resize the image for faster processing
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA)
# Image processing
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (blur_kernel_size, blur_kernel_size), 0)
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find the contour with the largest area
# largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
# largest_contour = contours[largest_contour_idx]
# Combine all contours
def combine_all_contours(contours):
combined_contour = np.array([], dtype=np.int32).reshape(0, 1, 2)
for contour in contours:
combined_contour = np.vstack((combined_contour, contour))
return combined_contour
combined_contour = combine_all_contours(contours)
verts = [tuple(coord) for coord in combined_contour.squeeze()]
xs, ys = np.asarray(list(zip(*verts)))
# Scale the coordinates
x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys)
scale_x, scale_y = desired_range / x_range, desired_range / y_range
xs = (xs - np.mean(xs)) * scale_x
ys = (-ys + np.mean(ys)) * scale_y
# Compute Fourier coefficients
t_list = np.linspace(0, tau, len(xs))
t_values = np.linspace(0, tau, num_points)
f_precomputed = np.interp(t_values, t_list, xs + 1j * ys)
def compute_cn(f_exp, n, t_values):
coef = np.trapz(f_exp * np.exp(-n * t_values * 1j), t_values) / tau
return coef
N = coefficients
indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)]
# Parallel computation of coefficients
with ThreadPoolExecutor(max_workers=8) as executor:
coefs = list(executor.map(lambda n: (compute_cn(f_precomputed, n, t_values), n), indices))
# Animation setup
fig, ax = plt.subplots()
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N + 1)]
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N + 1)]
drawing, = ax.plot([], [], 'r-', linewidth=2)
ax.set_xlim(-desired_range, desired_range)
ax.set_ylim(-desired_range, desired_range)
ax.set_axis_off()
ax.set_aspect('equal')
fig.set_size_inches(15, 15)
draw_x, draw_y = [], []
theta = np.linspace(0, tau, theta_points)
coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs]
# Animation function
def animate(i, coefs, time):
center = (0, 0)
for idx, (r, fr) in enumerate(coefs_static):
c_dynamic = coefs[idx][0] * np.exp(1j * (fr * tau * time[i]))
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
circle_lines[idx].set_data([center[0], center[0] + np.real(c_dynamic)], [center[1], center[1] + np.imag(c_dynamic)])
circles[idx].set_data(x, y)
center = (center[0] + np.real(c_dynamic), center[1] + np.imag(c_dynamic))
draw_x.append(center[0])
draw_y.append(center[1])
drawing.set_data(draw_x[:i+1], draw_y[:i+1])
# Create and save the animation
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, np.linspace(0, 1, num=frames)))
output_animation = "output.mp4"
anim.save(output_animation, fps=15)
plt.close(fig)
return output_animation
# Gradio interface setup
interface = gr.Interface(
fn=fourier_transform_drawing,
inputs=[
gr.Image(label="Input Image", sources=['upload'], type="pil"),
gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"),
gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"),
gr.Number(value=224, label="Image Size (px)", precision=0),
gr.Slider(minimum=3, maximum=11, step=2, value=5, label="Blur Kernel Size (odd number)"),
gr.Number(value=400, label="Desired Range for Scaling", precision=0),
gr.Number(value=1000, label="Number of Points for Integration", precision=0),
gr.Slider(minimum=50, maximum=500, value=80, label="Theta Points for Animation")
],
outputs=gr.Video(),
title="Fourier Transform Drawing",
description="Upload an image and generate a Fourier Transform drawing animation.",
examples=[["Fourier2.jpg", 100, 200, 224, 5, 400, 1000, 80], ["Luffy.png", 100, 100, 224, 5, 400, 1000, 80]]
)
if __name__ == "__main__":
interface.launch() |