File size: 4,474 Bytes
1c3330f
 
c77c587
 
 
 
1c3330f
c77c587
 
70542da
1c3330f
c77c587
cad3317
1c3330f
c77c587
 
 
 
cad3317
 
 
a526c29
cad3317
a526c29
1c3330f
c77c587
1c3330f
cad3317
 
 
 
c77c587
 
 
365c88b
1c3330f
365c88b
 
 
1c3330f
 
365c88b
 
 
1c3330f
d6c7eed
84513e9
 
365c88b
c77c587
 
a526c29
c77c587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3330f
 
c77c587
bdd2388
 
c77c587
 
 
 
 
 
 
 
 
 
 
 
1c3330f
c77c587
 
 
 
 
a526c29
20a6f95
c77c587
 
 
 
 
1c3330f
26d12c4
c77c587
 
 
1c3330f
26d12c4
c77c587
 
 
 
 
6ee4209
bdd2388
cad3317
 
c77c587
26d12c4
c77c587
bdd2388
a2e1a7c
c77c587
 
 
b9d04ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import io
import cv2
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
from scipy.integrate import quad_vec
from math import tau
from PIL import Image


def fourier_transform_drawing(input_image, frames, coefficients, img_size):
    # Convert PIL to OpenCV image(array)
    input_image = np.array(input_image)
    img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)

    # processing
    # resize the image to a smaller size for faster processing
    dim = (img_size, img_size)
    img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
    
    imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(imgray, (5, 5), 0)
    (_, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
    # find the contour with the largest area
    largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
    largest_contour = contours[largest_contour_idx]
    #largest_contour_idx = np.argmax([len(c) for c in contours])
    verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]

    xs, ys = zip(*verts)

    # calculate the range of xs and ys
    x_range = np.max(xs) - np.min(xs)
    y_range = np.max(ys) - np.min(ys)
    
    # determine the scale factors
    desired_range = 400
    scale_factor_x = desired_range / x_range
    scale_factor_y = desired_range / y_range
    
    # apply scaling
    # ys needs to be flipped vertically
    xs = (np.asarray(xs) - np.mean(xs)) * scale_factor_x
    ys = (-np.asarray(ys) + np.mean(ys)) * scale_factor_y

    t_list = np.linspace(0, tau, len(xs))

    # compute the Fourier coefficients
    def f(t, t_list, xs, ys):
        return np.interp(t, t_list, xs + 1j*ys)

    def compute_cn(f, n):
        coef = 1/tau*quad_vec(
            lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j), 
            0, 
            tau, 
            limit=100, 
            full_output=False)[0]
        return coef

    N = coefficients
    coefs = [(compute_cn(f, 0), 0)] + [(compute_cn(f, j), j) for i in range(1, N+1) for j in (i, -i)]

    # animate the drawings
    fig, ax = plt.subplots()
    circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)]
    circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)]
    drawing, = ax.plot([], [], 'r-', linewidth=2)

    ax.set_xlim(-desired_range, desired_range)
    ax.set_ylim(-desired_range, desired_range)
    ax.set_axis_off()
    ax.set_aspect('equal')
    fig.set_size_inches(15, 15)

    draw_x, draw_y = [], []
    
    def animate(i, coefs, time):
        t = time[i]
        coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs]
        center = (0, 0)

        for c, _ in coefs:
            r = np.linalg.norm(c)
            theta = np.linspace(0, tau, 80)
            x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
            circle_lines[_].set_data([center[0], center[0 ]+ np.real(c)], [center[1], center[1] + np.imag(c)])
            circles[_].set_data(x, y) 
            center = (center[0] + np.real(c), center[1] + np.imag(c))
        
        draw_x.append(center[0])
        draw_y.append(center[1])

        drawing.set_data(draw_x[:i+1], draw_y[:i+1])

    drawing_time = 1
    time = np.linspace(0, drawing_time, num=frames)    
    anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time)) 

    # save the animation as an MP4 file
    output_animation = "output.mp4"
    anim.save(output_animation, fps=15)
    plt.close(fig)

    # return the path to the MP4 file
    return output_animation

# Gradio interface
interface = gr.Interface(
    fn=fourier_transform_drawing,
    inputs=[
        gr.Image(label="Input Image", sources=['upload'], type="pil"),
        gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"),
        gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"),
        gr.Number(value=224, label="Image size", precision=0)
    ],
    outputs=gr.Video(),
    title="Fourier Transform Drawing",
    description="Upload an image and generate a Fourier Transform drawing animation. You can find out more about the project here : https://github.com/staghado/fourier-draw",
    examples=[["Fourier2.jpg", 100, 100], ["Luffy.png", 250, 300]]
)

if __name__ == "__main__":
    interface.launch()