fourier-draw / app.py
staghado's picture
Update app.py
365c88b
raw
history blame
3.87 kB
import gradio as gr
import cv2
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import quad_vec
from math import tau
import os
from PIL import Image
import io
def fourier_transform_drawing(input_image, frames, coefficients):
# Convert input_image to an OpenCV image
input_image = np.array(input_image)
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
# processing
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (7, 7), 0)
(T, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
largest_contour_idx = np.argmax([len(c) for c in contours])
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]
xs, ys = zip(*verts)
xs = np.asarray(xs) - np.mean(xs)
ys = - np.asarray(ys) + np.mean(ys)
# Calculate the range of xs and ys
x_range = np.max(xs) - np.min(xs)
y_range = np.max(ys) - np.min(ys)
# Determine the scale factors
desired_range = 500
scale_factor_x = desired_range / x_range
scale_factor_y = desired_range / y_range
# Apply scaling
xs = (xs - np.mean(xs)) * scale_factor_x
ys = (ys - np.mean(ys)) * scale_factor_y
t_list = np.linspace(0, tau, len(xs))
# Compute the Fourier coefficients
def f(t, t_list, xs, ys):
return np.interp(t, t_list, xs + 1j*ys)
def compute_cn(f, n):
coef = 1/tau*quad_vec(
lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j),
0,
tau,
limit=100,
full_output=False)[0]
return coef
N = coefficients
coefs = [(compute_cn(f, 0), 0)] + [(compute_cn(f, j), j) for i in range(1, N+1) for j in (i, -i)]
# animate the drawings
fig, ax = plt.subplots()
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)]
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)]
drawing, = ax.plot([], [], 'r-', linewidth=2)
ax.set_xlim(-500, 500)
ax.set_ylim(-500, 500)
ax.set_axis_off()
ax.set_aspect('equal')
fig.set_size_inches(15, 15)
draw_x, draw_y = [], []
def animate(i, coefs, time):
t = time[i]
coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs]
center = (0, 0)
for c, _ in coefs:
r = np.linalg.norm(c)
theta = np.linspace(0, tau, 80)
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
circle_lines[_].set_data([center[0], center[0]+np.real(c)], [center[1], center[1]+np.imag(c)])
circles[_].set_data(x, y)
center = (center[0] + np.real(c), center[1] + np.imag(c))
draw_x.append(center[0])
draw_y.append(center[1])
drawing.set_data(draw_x, draw_y)
drawing_time = 1
time = np.linspace(0, drawing_time, num=frames)
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time))
# Save the animation as an MP4 file
output_animation = "output.mp4"
anim.save(output_animation, fps=15)
plt.close(fig)
# Return the path to the MP4 file
return output_animation
# Gradio interface
interface = gr.Interface(
fn=fourier_transform_drawing,
inputs=[
gr.Image(label="Input Image", sources=['upload'], type="pil"),
gr.Slider(minimum=10, maximum=500, value=100, label="Number of Frames"),
gr.Slider(minimum=10, maximum=500, value=100, label="Number of Coefficients")
],
outputs=gr.Video(),
title="Fourier Transform Drawing",
description="Upload an image and generate a Fourier Transform drawing animation."
)
if __name__ == "__main__":
interface.launch()