File size: 1,832 Bytes
bf3bbe6
 
c1cd135
efac2d0
 
 
 
bf3bbe6
 
 
c1cd135
bf3bbe6
c1cd135
efac2d0
 
 
 
 
 
 
 
 
 
 
c1cd135
 
 
 
bf3bbe6
 
 
 
 
c1cd135
bf3bbe6
c1cd135
 
bf3bbe6
 
 
 
 
c1cd135
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import gradio as gr

model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3")

if torch.cuda.is_available():
    model = model.cuda()

convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter")


def inference(video):
    convert_video(
        model,  # The loaded model, can be on any device (cpu or cuda).
        input_source=video,  # A video file or an image sequence directory.
        downsample_ratio=0.25,  # [Optional] If None, make downsampled max size be 512px.
        output_type="video",  # Choose "video" or "png_sequence"
        output_composition="com.mp4",  # File path if video; directory path if png sequence.
        output_alpha=None,  # [Optional] Output the raw alpha prediction.
        output_foreground=None,  # [Optional] Output the raw foreground prediction.
        output_video_mbps=4,  # Output video mbps. Not needed for png sequence.
        seq_chunk=12,  # Process n frames at once for better parallelism.
        num_workers=1,  # Only for image sequence input. Reader threads.
        progress=True,  # Print conversion progress.
    )
    return "com.mp4"


title = "Robust Video Matting"
description = "Gradio demo for Robust Video Matting. To use it, simply upload your video, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.11515'>Robust High-Resolution Video Matting with Temporal Guidance</a> | <a href='https://github.com/PeterL1n/RobustVideoMatting'>Github Repo</a></p>"

examples = [["example.mp4"]]
gr.Interface(
    inference,
    gr.inputs.Video(label="Input"),
    gr.outputs.Video(label="Output"),
    title=title,
    description=description,
    article=article,
    enable_queue=True,
    examples=examples,
).launch(debug=True)