tspace / app.py
stcoats
Add application file
135e6d1
raw
history blame
2.91 kB
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import re
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
st.write("Downloading from HF Hub...")
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir=".",
local_dir_use_symlinks=False
)
st.success("Download complete.")
# Connect (only once)
@st.cache_resource(show_spinner=False)
def get_duckdb_connection():
return duckdb.connect(LOCAL_PATH, read_only=True)
try:
con = get_duckdb_connection()
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search input
query = st.text_input("Search text (case-insensitive)", "").strip()
# Build query
if query:
sql = """
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
WHERE LOWER(text) LIKE LOWER(?)
LIMIT 100
"""
df = con.execute(sql, [f"%{query}%"]).df()
else:
df = con.execute("""
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
LIMIT 100
""").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
else:
def render_audio_cell(audio_bytes):
try:
if isinstance(audio_bytes, (bytes, bytearray, memoryview)):
data = bytes(audio_bytes)
elif isinstance(audio_bytes, list):
data = bytes(audio_bytes)
else:
return ""
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(data)
tmp.flush()
return f'<audio controls style="height:20px;"> <source src="file://{tmp.name}" type="audio/mpeg"></audio>'
except Exception:
return ""
df["Audio"] = df["audio"].apply(render_audio_cell)
df_display = df.drop(columns=["audio"]) # Drop binary column before display
# Reorder columns for display
df_display = df_display[["id", "channel", "video_id", "speaker", "start_time", "end_time", "upload_date", "text", "pos_tags", "Audio"]]
st.markdown("### Results Table (Sortable with Audio Column)")
st.markdown("(Scroll right to view audio controls)")
st.dataframe(df_display, use_container_width=True)
# Optionally, render inline HTML audio
# for i, row in df_display.iterrows():
# st.markdown(f"**{row['speaker']} | {row['text']}**")
# st.markdown(row["Audio"], unsafe_allow_html=True)