tspace / app.py
stcoats
Add application file
6763ad1
raw
history blame
3.1 kB
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import re
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
st.write("Downloading from HF Hub...")
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir=".",
local_dir_use_symlinks=False
)
st.success("Download complete.")
# Connect (only once)
@st.cache_resource(show_spinner=False)
def get_duckdb_connection():
return duckdb.connect(LOCAL_PATH, read_only=True)
try:
con = get_duckdb_connection()
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search input
query = st.text_input("Search text (case-insensitive)", "").strip()
# Build query
if query:
search_terms = query.lower().split()
conditions = " AND ".join(["LOWER(text) LIKE ?" for _ in search_terms])
sql = f"""
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
WHERE {conditions}
LIMIT 100
"""
df = con.execute(sql, [f"%{term}%" for term in search_terms]).df()
else:
df = con.execute("""
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
LIMIT 100
""").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
else:
def render_audio_html(audio_bytes):
try:
if isinstance(audio_bytes, (bytes, bytearray, memoryview)):
data = bytes(audio_bytes)
elif isinstance(audio_bytes, list):
data = bytes(audio_bytes)
else:
return ""
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(data)
tmp.flush()
return f'<audio controls style="height:20px;width:100%;"><source src="file://{tmp.name}" type="audio/mpeg"></audio>'
except Exception:
return ""
df["Audio"] = df["audio"].apply(render_audio_html)
df = df.drop(columns=["audio"])
df = df[["id", "channel", "video_id", "speaker", "start_time", "end_time", "upload_date", "text", "pos_tags", "Audio"]]
from st_aggrid import AgGrid, GridOptionsBuilder
st.markdown("### Results Table (Sortable with Embedded Audio)")
gb = GridOptionsBuilder.from_dataframe(df.drop(columns=["Audio"]))
gb.configure_default_column(resizable=True, sortable=True, filter=True)
grid_options = gb.build()
AgGrid(df.drop(columns=["Audio"]), gridOptions=grid_options, fit_columns_on_grid_load=True)
st.markdown("### Audio Controls in Table")
for i in range(len(df)):
st.markdown(df.loc[i, "Audio"], unsafe_allow_html=True)