tspace / app.py
stcoats
Add application file
c173a94
raw
history blame
3.64 kB
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import re
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
st.write("Downloading from HF Hub...")
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir=".",
local_dir_use_symlinks=False
)
st.success("Download complete.")
# Connect (only once)
@st.cache_resource(show_spinner=False)
def get_duckdb_connection():
return duckdb.connect(LOCAL_PATH, read_only=True)
try:
con = get_duckdb_connection()
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search input
query = st.text_input("Search text (case-insensitive, exact substring match)", "").strip()
# Build query
if query:
sql = """
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
WHERE LOWER(text) LIKE LOWER(?)
LIMIT 100
"""
df = con.execute(sql, [f"%{query}%"]).df()
else:
df = con.execute("""
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
LIMIT 100
""").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
else:
def render_audio_tag(audio_bytes, index):
try:
if isinstance(audio_bytes, (bytes, bytearray, memoryview)):
data = bytes(audio_bytes)
elif isinstance(audio_bytes, list):
data = bytes(audio_bytes)
else:
return ""
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(data)
tmp.flush()
return f'<audio controls preload="metadata" style="height:20px;width:100px;"><source src="file://{tmp.name}" type="audio/mpeg"></audio>'
except Exception:
return ""
df["audio_player"] = [render_audio_tag(b, i) for i, b in enumerate(df["audio"])]
df_display = df.drop(columns=["audio"])
from streamlit.components.v1 import html
def display_html_table(df):
table_html = """
<table border='1' style='border-collapse:collapse;width:100%;font-size:13px;'>
<thead>
<tr>
<th style='width:8em;'>id</th>
<th>channel</th>
<th>video_id</th>
<th>speaker</th>
<th>start_time</th>
<th>end_time</th>
<th>upload_date</th>
<th>text</th>
<th>pos_tags</th>
<th>audio</th>
</tr>
</thead>
<tbody>
"""
for _, row in df.iterrows():
table_html += "<tr>"
for col in ["id", "channel", "video_id", "speaker", "start_time", "end_time", "upload_date", "text", "pos_tags"]:
table_html += f"<td>{row[col]}</td>"
table_html += f"<td>{row['audio_player']}</td>"
table_html += "</tr>"
table_html += "</tbody></table>"
return table_html
st.markdown("### Results Table (Sortable with Audio Column)")
html(display_html_table(df_display), height=800, scrolling=True)