tspace / app.py
stcoats
Add application file
e85bb51
raw
history blame
2.21 kB
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
st.write("Downloading from HF Hub...")
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir="."
)
st.success("Download complete.")
# Connect
try:
con = duckdb.connect(LOCAL_PATH, read_only=True)
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search
query = st.text_input("Search text or speaker", "")
query = query.strip().lower()
if query:
sql = """
SELECT speaker, text, audio
FROM data
WHERE LOWER(CAST(speaker AS VARCHAR)) LIKE ? OR LOWER(CAST(text AS VARCHAR)) LIKE ?
LIMIT 100
"""
df = con.execute(sql, [f"%{query}%", f"%{query}%"]).df()
else:
df = con.execute("SELECT speaker, text, audio FROM data LIMIT 100").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
# Show table with inline audio players
for i, row in df.iterrows():
col1, col2, col3 = st.columns([2, 5, 3])
col1.markdown(f"**{row['speaker']}**")
col2.markdown(row['text'])
audio_data = row["audio"]
try:
if isinstance(audio_data, (bytes, bytearray, memoryview)):
audio_bytes = bytes(audio_data)
elif isinstance(audio_data, list): # DuckDB sometimes gives list[int]
audio_bytes = bytes(audio_data)
else:
audio_bytes = None
if audio_bytes:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmpfile:
tmpfile.write(audio_bytes)
tmpfile.flush()
col3.audio(tmpfile.name, format="audio/mp3")
else:
col3.warning("Audio missing or invalid format.")
except Exception as e:
col3.error(f"Audio error: {e}")