tspace / app.py
stcoats
Add application file
4c9a1f3
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import base64
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
with st.spinner("Downloading from HF Hub..."):
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir=".",
local_dir_use_symlinks=False
)
st.success("Download complete.")
# Connect (only once)
@st.cache_resource(show_spinner=False)
def get_duckdb_connection():
return duckdb.connect(LOCAL_PATH, read_only=True)
try:
con = get_duckdb_connection()
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search input
query = st.text_input("Search text (case-insensitive, exact substring match)", "").strip()
# Escape single quotes in query
query_safe = query.replace("'", "''")
# Build query using exact substring match only (case-insensitive handled by ILIKE)
if query:
sql = f"""
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
WHERE text ILIKE '%{query_safe}%'
LIMIT 100
"""
df = con.execute(sql).df()
else:
df = con.execute("""
SELECT id, channel, video_id, speaker, start_time, end_time, upload_date, text, pos_tags, audio
FROM data
LIMIT 100
""").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
else:
def get_audio_html(audio_bytes):
try:
if isinstance(audio_bytes, (bytes, bytearray, memoryview)):
data = bytes(audio_bytes)
elif isinstance(audio_bytes, list):
data = bytes(audio_bytes)
else:
return ""
b64 = base64.b64encode(data).decode("utf-8")
return f'<audio controls preload="metadata" style="height:20px;width:120px;"><source src="data:audio/mp3;base64,{b64}" type="audio/mpeg"></audio>'
except Exception:
return ""
df["Audio"] = df["audio"].apply(get_audio_html)
df.drop(columns=["audio"], inplace=True)
# Reorder columns so "Audio" is last and limit column width for id
display_cols = ["id", "channel", "video_id", "speaker", "start_time", "end_time", "upload_date", "text", "pos_tags", "Audio"]
df = df[display_cols]
# Show table with HTML rendering for audio
st.markdown("### Results Table (Sortable with Audio Column)")
st.write("(Scroll right to view audio controls)")
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)