stcoats
commited on
Commit
·
b5ff3a4
1
Parent(s):
548bf4c
Add application file
Browse files
app.py
CHANGED
@@ -1,3 +1,71 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
+
import duckdb
|
4 |
+
import pandas as pd
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
DB_PATH = "/data/ycsep.duckdb"
|
8 |
+
REPO_ID = "stcoats/temp-duckdb-upload"
|
9 |
+
FILENAME = "ycsep.duckdb"
|
10 |
+
|
11 |
+
st.title("YCSEP Audio Dataset Viewer")
|
12 |
+
|
13 |
+
# Step 1: Show storage status
|
14 |
+
st.write("Checking persistent storage...")
|
15 |
+
st.write(f"Expected DB location: `{DB_PATH}`")
|
16 |
+
st.write(f"File exists: {os.path.exists(DB_PATH)}")
|
17 |
+
|
18 |
+
# Step 2: Try downloading if needed
|
19 |
+
if not os.path.exists(DB_PATH):
|
20 |
+
st.write("Database not found in persistent storage. Downloading from HF Hub...")
|
21 |
+
try:
|
22 |
+
path = hf_hub_download(
|
23 |
+
repo_id=REPO_ID,
|
24 |
+
repo_type="dataset",
|
25 |
+
filename=FILENAME,
|
26 |
+
local_dir="/data",
|
27 |
+
local_dir_use_symlinks=False,
|
28 |
+
)
|
29 |
+
st.success(f"Downloaded to {path}")
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"Download failed: {e}")
|
32 |
+
st.stop()
|
33 |
+
|
34 |
+
# Step 3: Try loading DB
|
35 |
+
try:
|
36 |
+
st.write("Connecting to DuckDB...")
|
37 |
+
con = duckdb.connect(DB_PATH, read_only=True)
|
38 |
+
st.write("Reading table...")
|
39 |
+
df = con.execute("SELECT * FROM data").df()
|
40 |
+
st.success(f"Loaded {len(df)} rows.")
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"DuckDB load failed: {e}")
|
43 |
+
st.stop()
|
44 |
+
|
45 |
+
# Step 4: Proceed with app
|
46 |
+
query = st.text_input("Search text or speaker")
|
47 |
+
|
48 |
+
if query:
|
49 |
+
filtered_df = df[df["text"].str.contains(query, case=False, na=False) |
|
50 |
+
df["speaker"].astype(str).str.contains(query, case=False, na=False)]
|
51 |
+
else:
|
52 |
+
filtered_df = df
|
53 |
+
|
54 |
+
rows_per_page = 10
|
55 |
+
total_rows = len(filtered_df)
|
56 |
+
total_pages = (total_rows - 1) // rows_per_page + 1
|
57 |
+
page = st.number_input("Page", min_value=1, max_value=total_pages, value=1)
|
58 |
+
|
59 |
+
start = (page - 1) * rows_per_page
|
60 |
+
end = start + rows_per_page
|
61 |
+
page_df = filtered_df.iloc[start:end]
|
62 |
+
|
63 |
+
for _, row in page_df.iterrows():
|
64 |
+
st.markdown(f"**Speaker:** {row['speaker']}")
|
65 |
+
st.markdown(f"**Text:** {row['text']}")
|
66 |
+
if isinstance(row['audio'], str) and row['audio'].startswith("http"):
|
67 |
+
st.audio(row['audio'], format="audio/mp3")
|
68 |
+
else:
|
69 |
+
st.warning("Audio not available")
|
70 |
+
st.markdown("---")
|
71 |
|