Spaces:
Sleeping
Sleeping
File size: 11,997 Bytes
6937a88 1119c6c 6937a88 1119c6c 6937a88 1119c6c 6937a88 1119c6c 6937a88 1119c6c 6937a88 1119c6c 6937a88 1119c6c 6937a88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from collections import Counter
from fastapi import APIRouter
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup
import os
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
HF_API_KEY = os.getenv("HF_API_KEY")
from bs4 import BeautifulSoup
import requests
import csv
import pandas as pd
def getLatestStatistics(symbol):
all_company_data = []
file_path = 'output_file_update.csv'
url = f'https://www.mse.mk/mk/stats/symbolhistory/{symbol}'
response = requests.get(url)
content = BeautifulSoup(response.text, 'html.parser')
table_of_data = content.select("#resultsTable tbody tr")
for row in table_of_data:
data = row.text.split('\n')
data.pop()
data.remove('')
if data.__contains__(''):
continue
data.insert(0, symbol)
all_company_data.append(data)
dataframe = pd.DataFrame(all_company_data, columns=['COMPANY', 'DATE', 'PRICE OF LAST TRANSACTION', 'MAX', 'MIN', 'AVERAGE PRICE', '% PERCENT', 'QUANTITY', 'REVENUE IN BEST DENARS', 'TOTAL REVENUE IN DENARS'])
def string_to_float(column):
if column == 'DATE':
return dataframe[column]
if column == 'TOTAL REVENUE IN DENARS':
dataframe[column] = dataframe[column].str.replace('.', '').astype(float)
return dataframe[column]
if column == 'COMPANY':
return dataframe[column]
try:
# Replace commas with dots, then remove extra dots and convert to float
dataframe[column] = dataframe[column].str.replace(',', '.').str.replace('.', '', 1)
dataframe[column] = dataframe[column].astype(float)
except Exception as e:
print(f"Error processing column {column}: {e}")
return dataframe[column]
# Apply the transformation to each column
for col in dataframe.columns:
dataframe[col] = string_to_float(col)
dataframe['DATE'] = pd.to_datetime(dataframe['DATE'])
current_data = pd.read_csv('app/data-formatted.csv')
current_data['DATE'] = pd.to_datetime(current_data['DATE'])
merged_df = pd.concat([current_data, dataframe], ignore_index=True)
updated_df = merged_df.drop_duplicates(keep='first')
updated_df.to_csv('app/data-formatted.csv', index=False)
return updated_df
def getBerzaNews(symbol):
url = f'https://www.mse.mk/en/symbol/{symbol}'
response = requests.get(url)
content = BeautifulSoup(response.text, 'html.parser')
# finding links to news
aElements = content.find_all('a', href=True)
newsLinks = [link['href'] for link in aElements if link['href'].startswith('/en/news')]
news = []
for link in newsLinks:
response = requests.get(f'https://www.mse.mk{link}')
content = BeautifulSoup(response.text, 'html.parser')
try:
# print(content.find(id='content').text)
# print('-----------------------------------')
news.append(content.find(id='content').text)
except Exception as e:
continue
return news
# Load a multilingual model
def analyzeSentiment(symbol):
API_URL = "https://api-inference.huggingface.co/models/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
def query(text):
payload = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
print(f"Error: {response.status_code}, {response.text}")
return None
return response.json()
def getMax(result):
# Ensure the response has the expected structure
if not result or not isinstance(result, list):
return "neutral" # Default to neutral if the response is invalid
result = result[0] if isinstance(result[0], list) else result
max_label = max(result, key=lambda x: x['score'])['label']
return max_label
# Fetch news articles
texts = getBerzaNews(symbol)
if not texts:
return 'No news for ' + symbol
# Collect sentiment labels
sentiment_labels = []
for text in texts:
try:
result = query(text) # Query the Hugging Face API
if result:
sentiment_label = getMax(result) # Get the label
sentiment_labels.append(sentiment_label)
except Exception as e:
print(f"Error processing text: {e}")
continue
if not sentiment_labels:
return 'No news for ' + symbol
# Count occurrences of each sentiment
sentiment_counts = Counter(sentiment_labels)
# Find the sentiment with the most occurrences
most_common = sentiment_counts.most_common()
if len(most_common) == 0:
return "neutral" # Default to neutral if no sentiments found
# Check for ties
max_count = most_common[0][1]
top_sentiments = [sentiment for sentiment, count in most_common if count == max_count]
if len(top_sentiments) > 1:
return "neutral" # Return neutral in case of ties
return top_sentiments[0]
def predict_future_price(input_data):
input_data = input_data.drop(columns=['DATE'])
data_to_dictionary = input_data.to_dict(orient='list')
url = 'https://stefan155-das-lstm-model-api.hf.space/predict/'
payload = {
"input_data": data_to_dictionary,
}
response = requests.post(url, json=payload)
return response.json()['prediction']
# Function to resample data for timeframes
def resample_data(data, timeframe):
data["DATE"] = pd.to_datetime(data["DATE"]) # Ensure DATE is in datetime format
data = data.drop_duplicates(subset="DATE", keep="first") # Drop duplicate dates
data = data.set_index("DATE") # Set DATE as the index
# Select only numeric columns for resampling
numeric_columns = data.select_dtypes(include=["number"]).columns
non_numeric_columns = data.select_dtypes(exclude=["number"]).columns
if timeframe == "1D":
resampled_data = data[numeric_columns].asfreq("D").fillna(method="ffill")
elif timeframe == "1W":
resampled_data = data[numeric_columns].resample("W").mean().fillna(0)
elif timeframe == "1M":
resampled_data = data[numeric_columns].resample("M").mean().fillna(0)
else:
raise ValueError("Invalid timeframe. Choose '1D', '1W', or '1M'.")
print(f"Resampled data for {timeframe} timeframe:")
print(resampled_data)
resampled_data = resampled_data.reset_index()
# Reattach non-numeric columns (e.g., COMPANY)
if not non_numeric_columns.empty:
non_numeric_data = data[non_numeric_columns].reset_index().drop_duplicates(subset="DATE")
resampled_data = resampled_data.merge(non_numeric_data, on="DATE", how="left")
return resampled_data
# Function to calculate technical indicators
def calculate_technical_indicators(data, column="PRICE OF LAST TRANSACTION"):
data = data.sort_values(by="DATE").reset_index(drop=True)
# Oscillators
delta = data[column].diff()
gain = np.where(delta > 0, delta, 0)
loss = np.where(delta < 0, -delta, 0)
avg_gain = pd.Series(gain).rolling(window=14).mean()
avg_loss = pd.Series(loss).rolling(window=14).mean()
rs = avg_gain / avg_loss
data["RSI"] = 100 - (100 / (1 + rs))
# MACD
data["EMA12"] = data[column].ewm(span=12, adjust=False).mean()
data["EMA26"] = data[column].ewm(span=26, adjust=False).mean()
data["MACD"] = data["EMA12"] - data["EMA26"]
# Stochastic Oscillator
data["L14"] = data[column].rolling(window=14).min()
data["H14"] = data[column].rolling(window=14).max()
data["Stochastic"] = (data[column] - data["L14"]) / (data["H14"] - data["L14"]) * 100
# Williams %R
data["Williams %R"] = (data["H14"] - data[column]) / (data["H14"] - data["L14"]) * -100
# Rate of Change
data["ROC"] = data[column].pct_change(periods=12)
# Moving Averages
for window in [10, 20, 50]:
data[f"SMA{window}"] = data[column].rolling(window=window).mean()
data[f"EMA{window}"] = data[column].ewm(span=window, adjust=False).mean()
# Meters
oscillators_meter = "STRONG BUY" if data["RSI"].iloc[-1] > 70 else "NEUTRAL"
moving_averages_meter = "STRONG BUY" if data[f"SMA10"].iloc[-1] < data[column].iloc[-1] else "SELL"
return data, oscillators_meter, moving_averages_meter
@router.get("/stock-data/{ticker}")
async def get_stock_data(ticker: str):
print(f"Fetching data for ticker: {ticker}")
latest_data = getLatestStatistics(ticker)
stock_data = latest_data[latest_data["COMPANY"] == ticker]
if stock_data.empty:
print("No data found for the given ticker.")
return {"error": "Ticker not found"}
# Process for each timeframe
timeframes = ["1D", "1W", "1M"]
timeframe_results = {}
for timeframe in timeframes:
try:
resampled_data = resample_data(stock_data, timeframe)
# Replace NaN/Inf/-Inf in resampled data
resampled_data.replace([np.inf, -np.inf, np.nan], 0, inplace=True)
indicators_data, oscillators_meter, moving_averages_meter = calculate_technical_indicators(resampled_data)
# Replace NaN/Inf/-Inf in indicators_data
indicators_data.replace([np.inf, -np.inf, np.nan], 0, inplace=True)
price_prediction = predict_future_price(indicators_data)
market_news_evaluation = analyzeSentiment(ticker)
# market_news_evaluation = 'neutral'
timeframe_results[timeframe] = {
"Price Prediction": price_prediction,
"Market News Evaluation": market_news_evaluation,
"GraphData": indicators_data[["DATE", "PRICE OF LAST TRANSACTION"]].to_dict(orient="records"),
"Oscillators": {
"RSI": indicators_data["RSI"].iloc[-1],
"MACD": indicators_data["MACD"].iloc[-1],
"Stochastic Oscillator": indicators_data["Stochastic"].iloc[-1],
"Williams %R": indicators_data["Williams %R"].iloc[-1],
"Rate of Change": indicators_data["ROC"].iloc[-1],
"METER": oscillators_meter,
},
"Moving Averages": {
"SMA10": indicators_data["SMA10"].iloc[-1],
"EMA10": indicators_data["EMA10"].iloc[-1],
"SMA20": indicators_data["SMA20"].iloc[-1],
"EMA20": indicators_data["EMA20"].iloc[-1],
"SMA50": indicators_data["SMA50"].iloc[-1],
"METER": moving_averages_meter,
},
}
except Exception as e:
print(f"Error processing timeframe {timeframe}: {e}")
timeframe_results[timeframe] = {"error": str(e)}
# Replace NaN/Inf/-Inf in stock_data
stock_data.replace([np.inf, -np.inf, np.nan], 0, inplace=True)
# reverse stock data
stock_data = stock_data.iloc[::-1]
# Construct response
response = {
"Ticker": ticker,
"Company Name": stock_data["COMPANY"].iloc[0],
"Current Price": stock_data["AVERAGE PRICE"].iloc[-1],
"MAX Price": stock_data["PRICE OF LAST TRANSACTION"].max(),
"MIN Price": stock_data["PRICE OF LAST TRANSACTION"].min(),
"Volume": stock_data["QUANTITY"].sum() if "QUANTITY" in stock_data.columns else None,
"REVENUE": stock_data[
"REVENUE IN BEST DENARS"].sum() if "REVENUE IN BEST DENARS" in stock_data.columns else None,
"AVERAGE PRICE": stock_data["AVERAGE PRICE"].iloc[-1],
"Timeframes": timeframe_results,
}
# Ensure JSON compliance
response = {
key: (float(value) if isinstance(value, (np.float64, np.int64)) else value)
for key, value in response.items()
}
return response
|