das-homework-api / app /routes.py
stefan155's picture
hugging face does not have write permissons, fix for it to work
7a95fec verified
from collections import Counter
from fastapi import APIRouter
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup
import os
router = APIRouter()
HF_API_KEY = os.getenv("HF_API_KEY")
def getLatestStatistics(symbol):
all_company_data = []
file_path = 'output_file_update.csv'
url = f'https://www.mse.mk/mk/stats/symbolhistory/{symbol}'
response = requests.get(url)
content = BeautifulSoup(response.text, 'html.parser')
table_of_data = content.select("#resultsTable tbody tr")
for row in table_of_data:
data = row.text.split('\n')
data.pop()
data.remove('')
if data.__contains__(''):
continue
data.insert(0, symbol)
all_company_data.append(data)
dataframe = pd.DataFrame(all_company_data, columns=['COMPANY', 'DATE', 'PRICE OF LAST TRANSACTION', 'MAX', 'MIN', 'AVERAGE PRICE', '% PERCENT', 'QUANTITY', 'REVENUE IN BEST DENARS', 'TOTAL REVENUE IN DENARS'])
def string_to_float(column):
if column == 'DATE':
return dataframe[column]
if column == 'TOTAL REVENUE IN DENARS':
dataframe[column] = dataframe[column].str.replace('.', '').astype(float)
return dataframe[column]
if column == 'COMPANY':
return dataframe[column]
try:
# Replace commas with dots, then remove extra dots and convert to float
dataframe[column] = dataframe[column].str.replace(',', '.').str.replace('.', '', 1)
dataframe[column] = dataframe[column].astype(float)
except Exception as e:
print(f"Error processing column {column}: {e}")
return dataframe[column]
# Apply the transformation to each column
for col in dataframe.columns:
dataframe[col] = string_to_float(col)
dataframe['DATE'] = pd.to_datetime(dataframe['DATE'])
current_data = pd.read_csv('app/data-formatted.csv')
current_data['DATE'] = pd.to_datetime(current_data['DATE'])
merged_df = pd.concat([current_data, dataframe], ignore_index=True)
updated_df = merged_df.drop_duplicates(keep='first')
return updated_df
def getBerzaNews(symbol):
url = f'https://www.mse.mk/en/symbol/{symbol}'
response = requests.get(url)
content = BeautifulSoup(response.text, 'html.parser')
# finding links to news
aElements = content.find_all('a', href=True)
newsLinks = [link['href'] for link in aElements if link['href'].startswith('/en/news')]
news = []
for link in newsLinks:
response = requests.get(f'https://www.mse.mk{link}')
content = BeautifulSoup(response.text, 'html.parser')
try:
# print(content.find(id='content').text)
# print('-----------------------------------')
news.append(content.find(id='content').text)
except Exception as e:
continue
return news
# Load a multilingual model
def analyzeSentiment(symbol):
API_URL = "https://api-inference.huggingface.co/models/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
def query(text):
payload = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
print(f"Error: {response.status_code}, {response.text}")
return None
return response.json()
def getMax(result):
# Ensure the response has the expected structure
if not result or not isinstance(result, list):
return "neutral" # Default to neutral if the response is invalid
result = result[0] if isinstance(result[0], list) else result
max_label = max(result, key=lambda x: x['score'])['label']
return max_label
# Fetch news articles
texts = getBerzaNews(symbol)
if not texts:
return 'No news for ' + symbol
# Collect sentiment labels
sentiment_labels = []
for text in texts:
try:
result = query(text) # Query the Hugging Face API
if result:
sentiment_label = getMax(result) # Get the label
sentiment_labels.append(sentiment_label)
except Exception as e:
print(f"Error processing text: {e}")
continue
if not sentiment_labels:
return 'No news for ' + symbol
# Count occurrences of each sentiment
sentiment_counts = Counter(sentiment_labels)
# Find the sentiment with the most occurrences
most_common = sentiment_counts.most_common()
if len(most_common) == 0:
return "neutral" # Default to neutral if no sentiments found
# Check for ties
max_count = most_common[0][1]
top_sentiments = [sentiment for sentiment, count in most_common if count == max_count]
if len(top_sentiments) > 1:
return "neutral" # Return neutral in case of ties
return top_sentiments[0]
def predict_future_price(input_data):
input_data = input_data.drop(columns=['DATE'])
data_to_dictionary = input_data.to_dict(orient='list')
url = 'https://stefan155-das-lstm-model-api.hf.space/predict/'
payload = {
"input_data": data_to_dictionary,
}
response = requests.post(url, json=payload)
return response.json()['prediction']
# Function to resample data for timeframes
def resample_data(data, timeframe):
data["DATE"] = pd.to_datetime(data["DATE"]) # Ensure DATE is in datetime format
data = data.drop_duplicates(subset="DATE", keep="first") # Drop duplicate dates
data = data.set_index("DATE") # Set DATE as the index
# Select only numeric columns for resampling
numeric_columns = data.select_dtypes(include=["number"]).columns
non_numeric_columns = data.select_dtypes(exclude=["number"]).columns
if timeframe == "1D":
resampled_data = data[numeric_columns].asfreq("D").fillna(method="ffill")
elif timeframe == "1W":
resampled_data = data[numeric_columns].resample("W").mean().fillna(0)
elif timeframe == "1M":
resampled_data = data[numeric_columns].resample("M").mean().fillna(0)
else:
raise ValueError("Invalid timeframe. Choose '1D', '1W', or '1M'.")
print(f"Resampled data for {timeframe} timeframe:")
print(resampled_data)
resampled_data = resampled_data.reset_index()
# Reattach non-numeric columns (e.g., COMPANY)
if not non_numeric_columns.empty:
non_numeric_data = data[non_numeric_columns].reset_index().drop_duplicates(subset="DATE")
resampled_data = resampled_data.merge(non_numeric_data, on="DATE", how="left")
return resampled_data
# Function to calculate technical indicators
def calculate_technical_indicators(data, column="PRICE OF LAST TRANSACTION"):
data = data.sort_values(by="DATE").reset_index(drop=True)
# Oscillators
delta = data[column].diff()
gain = np.where(delta > 0, delta, 0)
loss = np.where(delta < 0, -delta, 0)
avg_gain = pd.Series(gain).rolling(window=14).mean()
avg_loss = pd.Series(loss).rolling(window=14).mean()
rs = avg_gain / avg_loss
data["RSI"] = 100 - (100 / (1 + rs))
# MACD
data["EMA12"] = data[column].ewm(span=12, adjust=False).mean()
data["EMA26"] = data[column].ewm(span=26, adjust=False).mean()
data["MACD"] = data["EMA12"] - data["EMA26"]
# Stochastic Oscillator
data["L14"] = data[column].rolling(window=14).min()
data["H14"] = data[column].rolling(window=14).max()
data["Stochastic"] = (data[column] - data["L14"]) / (data["H14"] - data["L14"]) * 100
# Williams %R
data["Williams %R"] = (data["H14"] - data[column]) / (data["H14"] - data["L14"]) * -100
# Rate of Change
data["ROC"] = data[column].pct_change(periods=12)
# Moving Averages
for window in [10, 20, 50]:
data[f"SMA{window}"] = data[column].rolling(window=window).mean()
data[f"EMA{window}"] = data[column].ewm(span=window, adjust=False).mean()
# Meters
oscillators_meter = "STRONG BUY" if data["RSI"].iloc[-1] > 70 else "NEUTRAL"
moving_averages_meter = "STRONG BUY" if data[f"SMA10"].iloc[-1] < data[column].iloc[-1] else "SELL"
return data, oscillators_meter, moving_averages_meter
@router.get("/stock-data/{ticker}")
async def get_stock_data(ticker: str):
print(f"Fetching data for ticker: {ticker}")
latest_data = getLatestStatistics(ticker)
stock_data = latest_data[latest_data["COMPANY"] == ticker]
if stock_data.empty:
print("No data found for the given ticker.")
return {"error": "Ticker not found"}
# Process for each timeframe
timeframes = ["1D", "1W", "1M"]
timeframe_results = {}
for timeframe in timeframes:
try:
resampled_data = resample_data(stock_data, timeframe)
# Replace NaN/Inf/-Inf in resampled data
resampled_data.replace([np.inf, -np.inf, np.nan], 0, inplace=True)
indicators_data, oscillators_meter, moving_averages_meter = calculate_technical_indicators(resampled_data)
# Replace NaN/Inf/-Inf in indicators_data
indicators_data.replace([np.inf, -np.inf, np.nan], 0, inplace=True)
price_prediction = predict_future_price(indicators_data)
market_news_evaluation = analyzeSentiment(ticker)
# market_news_evaluation = 'neutral'
timeframe_results[timeframe] = {
"Price Prediction": price_prediction,
"Market News Evaluation": market_news_evaluation,
"GraphData": indicators_data[["DATE", "PRICE OF LAST TRANSACTION"]].to_dict(orient="records"),
"Oscillators": {
"RSI": indicators_data["RSI"].iloc[-1],
"MACD": indicators_data["MACD"].iloc[-1],
"Stochastic Oscillator": indicators_data["Stochastic"].iloc[-1],
"Williams %R": indicators_data["Williams %R"].iloc[-1],
"Rate of Change": indicators_data["ROC"].iloc[-1],
"METER": oscillators_meter,
},
"Moving Averages": {
"SMA10": indicators_data["SMA10"].iloc[-1],
"EMA10": indicators_data["EMA10"].iloc[-1],
"SMA20": indicators_data["SMA20"].iloc[-1],
"EMA20": indicators_data["EMA20"].iloc[-1],
"SMA50": indicators_data["SMA50"].iloc[-1],
"METER": moving_averages_meter,
},
}
except Exception as e:
print(f"Error processing timeframe {timeframe}: {e}")
timeframe_results[timeframe] = {"error": str(e)}
# Replace NaN/Inf/-Inf in stock_data
stock_data.replace([np.inf, -np.inf, np.nan], 0, inplace=True)
# reverse stock data
stock_data = stock_data.iloc[::-1]
# Construct response
response = {
"Ticker": ticker,
"Company Name": stock_data["COMPANY"].iloc[0],
"Current Price": stock_data["AVERAGE PRICE"].iloc[-1],
"MAX Price": stock_data["PRICE OF LAST TRANSACTION"].max(),
"MIN Price": stock_data["PRICE OF LAST TRANSACTION"].min(),
"Volume": stock_data["QUANTITY"].sum() if "QUANTITY" in stock_data.columns else None,
"REVENUE": stock_data[
"REVENUE IN BEST DENARS"].sum() if "REVENUE IN BEST DENARS" in stock_data.columns else None,
"AVERAGE PRICE": stock_data["AVERAGE PRICE"].iloc[-1],
"Timeframes": timeframe_results,
}
# Ensure JSON compliance
response = {
key: (float(value) if isinstance(value, (np.float64, np.int64)) else value)
for key, value in response.items()
}
return response