Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from app.routes import router as api_router | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi import FastAPI, HTTPException, Request | |
from fastapi.responses import JSONResponse | |
import logging | |
from fastapi import FastAPI, HTTPException, APIRouter | |
import pandas as pd | |
import numpy as np | |
from keras.models import load_model | |
from pydantic import BaseModel | |
# Initialize the FastAPI app | |
app = FastAPI( | |
title="API for the DAS Homework", | |
description="This api is is used to serve for the DAS Homework web application", | |
version="1.0.0" | |
) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["https://das-prototype.web.app"], | |
allow_credentials=True, | |
allow_methods=["*"], # Allow all HTTP methods (e.g., GET, POST) | |
allow_headers=["*"], # Allow all headers | |
) | |
logging.basicConfig(level=logging.INFO) | |
async def log_requests(request: Request, call_next): | |
try: | |
body = await request.body() | |
logging.info(f"Request body: {body.decode()}") | |
response = await call_next(request) | |
logging.info(f"Response status: {response.status_code}") | |
return response | |
except Exception as e: | |
logging.error(f"Error occurred: {e}") | |
raise e | |
model = load_model("app/lstm_model.h5") | |
class PredictionInput(BaseModel): | |
input_data: dict | |
def preprocess_and_predict(input_data): | |
input_data = input_data.drop(columns=['COMPANY', 'PRICE OF LAST TRANSACTION']) | |
# Load the pre-trained model | |
timesteps = model.input_shape[1] | |
features = model.input_shape[2] | |
# Ensure input_data has the correct number of features | |
input_data = input_data.iloc[:, :features] | |
# Handle missing values and normalize | |
input_data = input_data.fillna(0) | |
max_value = input_data.max().max() | |
input_data_normalized = input_data / max_value | |
# Check if there are enough rows for timesteps | |
if len(input_data) < timesteps: | |
raise ValueError(f"Input data must have at least {timesteps} rows for prediction.") | |
# Reshape the data | |
input_data_reshaped = np.array([input_data_normalized.values[-timesteps:]]) | |
input_data_reshaped = input_data_reshaped.reshape(1, timesteps, features) | |
# Predict | |
predictions = model.predict(input_data_reshaped) | |
predictions_denormalized = predictions * max_value | |
return predictions_denormalized.round()[0][0] | |
async def root(): | |
return {"message": "API for the DAS Homework"} | |
# API endpoint | |
async def predict(payload: PredictionInput): | |
try: | |
input_data = payload.input_data | |
dataframe = pd.DataFrame.from_dict(input_data) | |
return {"prediction": preprocess_and_predict(input_data=dataframe)} | |
except ValueError as e: | |
raise HTTPException(status_code=422, detail=str(e)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") |