Fix NLTK data permissions and Docker user setup
Browse files- Dockerfile +18 -10
- app/main.py +35 -32
Dockerfile
CHANGED
|
@@ -5,7 +5,8 @@ ENV DEBIAN_FRONTEND=noninteractive \
|
|
| 5 |
PYTHONUNBUFFERED=1 \
|
| 6 |
PYTHONDONTWRITEBYTECODE=1 \
|
| 7 |
PORT=7860 \
|
| 8 |
-
BASE_DIR=/app
|
|
|
|
| 9 |
|
| 10 |
# Install Python and other dependencies
|
| 11 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
@@ -20,25 +21,32 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
| 20 |
curl \
|
| 21 |
&& rm -rf /var/lib/apt/lists/*
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
# Set working directory
|
| 24 |
WORKDIR /app
|
| 25 |
|
| 26 |
-
# Create necessary directories
|
| 27 |
-
RUN mkdir -p /app/data/pdfs /app/data/texts /app/data/index
|
|
|
|
| 28 |
|
| 29 |
# Copy requirements first for better caching
|
| 30 |
-
COPY requirements.txt .
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# Install Python packages
|
| 33 |
-
RUN pip3 install --no-cache-dir -r requirements.txt
|
| 34 |
-
RUN pip3 install --no-cache-dir gradio
|
| 35 |
|
| 36 |
# Copy your application code and data
|
| 37 |
-
COPY app/ /app/
|
| 38 |
-
COPY data/ /app/data/
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
COPY spaces_app.py /app/
|
| 42 |
|
| 43 |
# Expose the port Hugging Face Spaces expects
|
| 44 |
EXPOSE 7860
|
|
|
|
| 5 |
PYTHONUNBUFFERED=1 \
|
| 6 |
PYTHONDONTWRITEBYTECODE=1 \
|
| 7 |
PORT=7860 \
|
| 8 |
+
BASE_DIR=/app \
|
| 9 |
+
NLTK_DATA=/app/nltk_data
|
| 10 |
|
| 11 |
# Install Python and other dependencies
|
| 12 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
|
|
| 21 |
curl \
|
| 22 |
&& rm -rf /var/lib/apt/lists/*
|
| 23 |
|
| 24 |
+
# Create a non-root user
|
| 25 |
+
RUN useradd -m -u 1000 user
|
| 26 |
+
|
| 27 |
# Set working directory
|
| 28 |
WORKDIR /app
|
| 29 |
|
| 30 |
+
# Create necessary directories and set permissions
|
| 31 |
+
RUN mkdir -p /app/data/pdfs /app/data/texts /app/data/index /app/nltk_data && \
|
| 32 |
+
chown -R user:user /app
|
| 33 |
|
| 34 |
# Copy requirements first for better caching
|
| 35 |
+
COPY --chown=user:user requirements.txt .
|
| 36 |
+
|
| 37 |
+
# Switch to non-root user
|
| 38 |
+
USER user
|
| 39 |
|
| 40 |
# Install Python packages
|
| 41 |
+
RUN pip3 install --no-cache-dir --user -r requirements.txt
|
| 42 |
+
RUN pip3 install --no-cache-dir --user gradio
|
| 43 |
|
| 44 |
# Copy your application code and data
|
| 45 |
+
COPY --chown=user:user app/ /app/
|
| 46 |
+
COPY --chown=user:user data/ /app/data/
|
| 47 |
|
| 48 |
+
# Copy your Gradio interface
|
| 49 |
+
COPY --chown=user:user spaces_app.py /app/
|
| 50 |
|
| 51 |
# Expose the port Hugging Face Spaces expects
|
| 52 |
EXPOSE 7860
|
app/main.py
CHANGED
|
@@ -414,29 +414,34 @@ logger = logging.getLogger(__name__)
|
|
| 414 |
# Initialize global variables in app state
|
| 415 |
@app.on_event("startup")
|
| 416 |
async def startup_event():
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
# Download NLTK data
|
| 421 |
-
logger.info("Downloading NLTK data...")
|
| 422 |
-
try:
|
| 423 |
-
await asyncio.to_thread(nltk.download, 'punkt', quiet=True)
|
| 424 |
-
await asyncio.to_thread(nltk.download, 'punkt_tab', quiet=True)
|
| 425 |
-
except Exception as e:
|
| 426 |
-
logger.error(f"Error downloading NLTK data: {str(e)}")
|
| 427 |
-
raise
|
| 428 |
-
|
| 429 |
-
# Initialize the model
|
| 430 |
-
logger.info("Initializing model...")
|
| 431 |
-
|
| 432 |
-
# Check if CUDA is available
|
| 433 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 434 |
-
logger.info(f"Using device: {device}")
|
| 435 |
|
| 436 |
-
|
| 437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
|
| 439 |
-
|
|
|
|
|
|
|
|
|
|
| 440 |
"text-generation",
|
| 441 |
model=MODEL_ID,
|
| 442 |
trust_remote_code=True,
|
|
@@ -444,16 +449,14 @@ async def startup_event():
|
|
| 444 |
device_map="auto",
|
| 445 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 446 |
)
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
# Load or create index and related components
|
| 450 |
-
logger.info("Loading FAISS index and documents...")
|
| 451 |
-
app.state.index, app.state.documents, app.state.embedding_model = await load_or_create_index()
|
| 452 |
-
logger.info("FAISS index and documents loaded successfully")
|
| 453 |
|
|
|
|
|
|
|
|
|
|
| 454 |
except Exception as e:
|
| 455 |
-
logger.error(f"
|
| 456 |
-
raise
|
| 457 |
|
| 458 |
@app.post("/generate")
|
| 459 |
async def generate_content(request: ContentRequest):
|
|
@@ -485,9 +488,9 @@ async def generate_content(request: ContentRequest):
|
|
| 485 |
|
| 486 |
response = generate_response_with_rag(
|
| 487 |
request.topic, # Use topic as the prompt
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
settings
|
| 492 |
)
|
| 493 |
|
|
|
|
| 414 |
# Initialize global variables in app state
|
| 415 |
@app.on_event("startup")
|
| 416 |
async def startup_event():
|
| 417 |
+
# Check if CUDA is available
|
| 418 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 419 |
+
logger.info(f"Using device: {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
+
if device == "cpu":
|
| 422 |
+
logger.warning("GPU not detected. Model will run slower on CPU.")
|
| 423 |
+
|
| 424 |
+
"""Initialize the application on startup."""
|
| 425 |
+
logger = logging.getLogger(__name__)
|
| 426 |
+
logger.info("Starting application initialization...")
|
| 427 |
+
|
| 428 |
+
# Set NLTK data path
|
| 429 |
+
nltk_data_dir = os.environ.get('NLTK_DATA', os.path.join(os.path.expanduser('~'), 'nltk_data'))
|
| 430 |
+
os.makedirs(nltk_data_dir, exist_ok=True)
|
| 431 |
+
|
| 432 |
+
# Download NLTK data
|
| 433 |
+
logger.info("Downloading NLTK data...")
|
| 434 |
+
try:
|
| 435 |
+
await asyncio.to_thread(nltk.download, 'punkt', download_dir=nltk_data_dir, quiet=True)
|
| 436 |
+
await asyncio.to_thread(nltk.download, 'punkt_tab', download_dir=nltk_data_dir, quiet=True)
|
| 437 |
+
except Exception as e:
|
| 438 |
+
logger.error(f"Error downloading NLTK data: {str(e)}")
|
| 439 |
+
raise Exception(f"Failed to initialize application: {str(e)}")
|
| 440 |
|
| 441 |
+
# Initialize the model and index
|
| 442 |
+
try:
|
| 443 |
+
global model, embedding_model, faiss_index, documents
|
| 444 |
+
model = pipeline(
|
| 445 |
"text-generation",
|
| 446 |
model=MODEL_ID,
|
| 447 |
trust_remote_code=True,
|
|
|
|
| 449 |
device_map="auto",
|
| 450 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 451 |
)
|
| 452 |
+
embedding_model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
+
# Load or create the FAISS index
|
| 455 |
+
faiss_index, documents, embedding_model = await load_or_create_index()
|
| 456 |
+
logger.info("Application initialization completed successfully")
|
| 457 |
except Exception as e:
|
| 458 |
+
logger.error(f"Error initializing application: {str(e)}")
|
| 459 |
+
raise Exception(f"Failed to initialize application: {str(e)}")
|
| 460 |
|
| 461 |
@app.post("/generate")
|
| 462 |
async def generate_content(request: ContentRequest):
|
|
|
|
| 488 |
|
| 489 |
response = generate_response_with_rag(
|
| 490 |
request.topic, # Use topic as the prompt
|
| 491 |
+
faiss_index,
|
| 492 |
+
embedding_model,
|
| 493 |
+
documents,
|
| 494 |
settings
|
| 495 |
)
|
| 496 |
|