Spaces:
Runtime error
Runtime error
File size: 9,443 Bytes
c9ecc6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset, DatasetDict
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import (
format_error,
format_warning,
format_log,
TITLE,
INTRODUCTION_TEXT,
model_hyperlink,
)
TOKEN = os.environ.get("TOKEN", None)
OWNER = "stemdataset"
INTERNAL_DATA_DATASET = f"{OWNER}/STEM-Labels-Private"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/stem-leaderboard"
api = HfApi()
os.makedirs("scored", exist_ok=True)
# Display the results
eval_results = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
)
contact_infos = load_dataset(
CONTACT_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
)
def get_dataframe_from_results(eval_results: DatasetDict, split):
local_df = eval_results[split]
local_df = local_df.map(
lambda row: {"model": model_hyperlink(row["url"], row["model"])}
)
local_df = local_df.remove_columns(["url"])
local_df = local_df.rename_column("model", "Model Name")
local_df = local_df.rename_column("model_family", "Model Family")
local_df = local_df.rename_column("average", "Average")
local_df = local_df.rename_column("science", "Science")
local_df = local_df.rename_column("technology", "Technology")
local_df = local_df.rename_column("engineering", "Engineering")
local_df = local_df.rename_column("math", "Math")
local_df = local_df.rename_column("organisation", "Organisation")
local_df = local_df.rename_column("submit_date", "Submit Date")
df = pd.DataFrame(local_df)
df = df[[
"Model Name",
"Model Family",
"Science",
"Technology",
"Engineering",
"Math",
"Average",
"Organisation",
"Submit Date",
]]
df = df.sort_values(by=["Average"], ascending=False)
numeric_cols = ["Science", "Technology", "Engineering", "Math", "Average"]
df[numeric_cols] = df[numeric_cols].round(decimals=1)
for col in numeric_cols:
df[col] = df[col].apply(lambda x: f"{x:.1f}")
return df
eval_dataframe_test = get_dataframe_from_results(
eval_results=eval_results, split="basic"
)
# Gold answers
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, token=TOKEN)["labels"]
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "number", "number", "number", "number", "str", "str"]
def calc_test_acc(preds: list[int]) -> dict[str, float]:
tmp_accs = {
"science": [0, 0],
"technology": [0, 0],
"engineer": [0, 0],
"math": [0, 0],
}
labels = gold_dataset
for pred, label in zip(preds, labels):
subject = label["subject"]
tmp_accs[subject][1] += 1
if pred == label["answer_idx"]:
tmp_accs[subject][0] += 1
accs = {k: v[0] / v[1] for k, v in tmp_accs.items()}
accs["average"] = np.mean(list(accs.values()))
accs = {k: round(v * 100, 1) for k, v in accs.items()}
return accs
def add_new_eval(
val_or_test: str,
model: str,
model_family: str,
url: str,
path_to_file: gr.File,
organisation: str,
mail: str,
):
curr_timestamp = datetime.datetime.today()
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
if model == "":
return format_warning("Please provide a model name.")
if model_family == "":
return format_warning("Please provide a model family.")
print(
json.dumps(
{
"val_or_test": val_or_test,
"model": model,
"model_family": model_family,
"url": url,
"path_to_file": path_to_file,
"organisation": organisation,
"mail": mail,
},
indent=2,
)
)
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set(
[m.lower() for m in eval_results["basic"]["model"]]
) and organisation.lower() in set(
[l.lower() for l in eval_results["basic"]["organisation"]]
):
return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# Save submitted file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{val_or_test}_raw_{curr_timestamp}.txt",
repo_type="dataset",
token=TOKEN,
)
# Compute score
file_path = path_to_file.name
with open(f"scored/{organisation}_{model}.json", "w") as scored_file:
with open(file_path, "r") as f:
preds = []
for ix, line in enumerate(f):
try:
pred_idx = int(line.strip())
except Exception:
return format_error(
f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file."
)
preds.append(pred_idx)
stem_scores = calc_test_acc(preds)
scored_file.write(json.dumps(stem_scores, indent=2))
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.json",
path_in_repo=f"{organisation}/{model}/{val_or_test}_scored_{curr_timestamp}.json",
repo_type="dataset",
token=TOKEN,
)
# Actual submission
eval_entry = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"submit_date": "\n".join(str(curr_timestamp).split(" ")),
"science": stem_scores["science"],
"technology": stem_scores["technology"],
"engineering": stem_scores["engineer"],
"math": stem_scores["math"],
"average": stem_scores["average"],
}
eval_results["basic"] = eval_results["basic"].add_item(eval_entry)
print(eval_results)
eval_results.push_to_hub(RESULTS_DATASET, token=TOKEN)
contact_info = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"mail": mail,
"submit_date": "\n".join(str(curr_timestamp).split(" ")),
}
contact_infos["basic"] = contact_infos["basic"].add_item(contact_info)
contact_infos.push_to_hub(CONTACT_DATASET, token=TOKEN)
return format_log(
f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
)
def refresh():
eval_results = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
)
eval_dataframe_test = get_dataframe_from_results(
eval_results=eval_results, split="basic"
)
return eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test,
datatype=TYPES,
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["test"], value="test", label="Split")
model_name_textbox = gr.Textbox(label="Model name")
model_family_textbox = gr.Textbox(label="Model family")
url_textbox = gr.Textbox(label="Url to model information")
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(
label="Contact email (will be stored privately, & used if there is an issue with your submission)"
)
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
model_family_textbox,
url_textbox,
file_output,
organisation,
mail,
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True, server_name="0.0.0.0")
|