File size: 7,986 Bytes
e79d672
8b78611
 
0058c86
 
0ff7c49
c4f4fdf
 
 
 
 
 
 
e79d672
8b78611
 
 
c4f4fdf
 
 
 
 
 
 
 
 
 
 
 
e79d672
8b78611
c4f4fdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f09fc9
 
0058c86
c4f4fdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e79d672
0058c86
 
8b78611
 
 
0058c86
8b78611
0058c86
8b78611
 
0058c86
 
8b78611
0058c86
 
 
 
 
 
 
 
 
 
 
 
 
c4f4fdf
 
 
 
 
 
e79d672
797ab4e
2c38d24
797ab4e
 
 
 
 
8b78611
797ab4e
8b78611
 
 
797ab4e
1f4a8ec
d54296a
 
 
8b78611
 
 
 
112e19a
8b78611
 
0058c86
 
 
 
 
 
8b78611
0058c86
 
8b78611
0058c86
 
 
8b78611
 
0058c86
8b78611
0058c86
8b78611
 
0058c86
 
 
8b78611
 
0058c86
8b78611
 
6f09fc9
1f4a8ec
d6f9dda
6f09fc9
c4f4fdf
0058c86
 
 
7eb334c
d54296a
00fd0d1
7eb334c
5e39573
7faa25f
7eb334c
 
0058c86
7eb334c
7d3d794
c4f4fdf
0058c86
 
7eb334c
8b78611
0058c86
8b78611
0058c86
 
 
 
 
 
8b78611
 
 
0058c86
b1259cb
7d3d794
8b78611
e79d672
c4f4fdf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import numpy as np
import os
import base64
import io
import uuid
import tempfile
import time
import shutil
from pathlib import Path

tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
model = model.eval().cuda()

UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"

for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
    if not os.path.exists(folder):
        os.makedirs(folder)

def image_to_base64(image):
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()

@spaces.GPU
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
    unique_id = str(uuid.uuid4())
    image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
    result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
    
    shutil.copy(image, image_path)
    
    try:
        if got_mode == "plain texts OCR":
            res = model.chat(tokenizer, image_path, ocr_type='ocr')
            return res, None
        elif got_mode == "format texts OCR":
            res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
        elif got_mode == "plain multi-crop OCR":
            res = model.chat_crop(tokenizer, image_path, ocr_type='ocr')
            return res, None
        elif got_mode == "format multi-crop OCR":
            res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
        elif got_mode == "plain fine-grained OCR":
            res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
            return res, None
        elif got_mode == "format fine-grained OCR":
            res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)

        # res_markdown = f"$$ {res} $$"
        res_markdown = res

        if "format" in got_mode and os.path.exists(result_path):
            with open(result_path, 'r') as f:
                html_content = f.read()
            encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
            iframe_src = f"data:text/html;base64,{encoded_html}"
            iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
            download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
            return res_markdown, f"{download_link}<br>{iframe}"
        else:
            return res_markdown, None
    except Exception as e:
        return f"Error: {str(e)}", None
    finally:
        if os.path.exists(image_path):
            os.remove(image_path)

def task_update(task):
    if "fine-grained" in task:
        return [
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
        ]
    else:
        return [
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        ]

def fine_grained_update(task):
    if task == "box":
        return [
            gr.update(visible=False, value = ""),
            gr.update(visible=True),
        ]
    elif task == 'color':
        return [
            gr.update(visible=True),
            gr.update(visible=False, value = ""),
        ]

def cleanup_old_files():
    current_time = time.time()
    for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
        for file_path in Path(folder).glob('*'):
            if current_time - file_path.stat().st_mtime > 3600:  # 1 hour
                file_path.unlink()

title_html = """
<h2> <span class="gradient-text" id="text">General OCR Theory</span><span class="plain-text">: Towards OCR-2.0 via a Unified End-to-end Model</span></h2>
<a href="https://huggingface.co/ucaslcl/GOT-OCR2_0">[😊 Hugging Face]</a> 
<a href="https://arxiv.org/abs/2409.01704">[πŸ“œ Paper]</a> 
<a href="https://github.com/Ucas-HaoranWei/GOT-OCR2.0/">[🌟 GitHub]</a> 
"""

with gr.Blocks() as demo:
    gr.HTML(title_html)
    gr.Markdown("""
    "πŸ”₯πŸ”₯πŸ”₯This is the official online demo of GOT-OCR-2.0 model!!!"
    
    ### Demo Guidelines
    You need to upload your image below and choose one mode of GOT, then click "Submit" to run GOT model. More characters will result in longer wait times.
    - **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR.
    - **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes.
    - **plain fine-grained OCR & format fine-grained OCR**: In these modes, you can specify fine-grained regions on the input image for more flexible OCR. Fine-grained regions can be coordinates of the box, red color, blue color, or green color.
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="upload your image")
            task_dropdown = gr.Dropdown(
                choices=[
                    "plain texts OCR",
                    "format texts OCR",
                    "plain multi-crop OCR",
                    "format multi-crop OCR",
                    "plain fine-grained OCR",
                    "format fine-grained OCR",
                ],
                label="Choose one mode of GOT",
                value="plain texts OCR"
            )
            fine_grained_dropdown = gr.Dropdown(
                choices=["box", "color"],
                label="fine-grained type",
                visible=False
            )
            color_dropdown = gr.Dropdown(
                choices=["red", "green", "blue"],
                label="color list",
                visible=False
            )
            box_input = gr.Textbox(
                label="input box: [x1,y1,x2,y2]",
                placeholder="e.g., [0,0,100,100]",
                visible=False
            )
            submit_button = gr.Button("Submit")
        
        with gr.Column():
            ocr_result = gr.Textbox(label="GOT output")

    with gr.Column():
        gr.Markdown("**If you choose the mode with format, the mathpix result will be automatically rendered as follows:**")
        html_result = gr.HTML(label="rendered html", show_label=True)
    
    gr.Examples(
        examples=[
            ["assets/coco.jpg", "plain texts OCR", "", "", ""],
            ["assets/en_30.png", "plain texts OCR", "", "", ""],
            ["assets/table.jpg", "format texts OCR", "", "", ""],
            ["assets/eq.jpg", "format texts OCR", "", "", ""],
            ["assets/exam.jpg", "format texts OCR", "", "", ""],
            ["assets/giga.jpg", "format multi-crop OCR", "", "", ""],
            ["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"],
            ["assets/color.png", "plain fine-grained OCR", "color", "red", ""],
        ],
        inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
        outputs=[ocr_result, html_result],
        fn=run_GOT,
        label="examples",
    )

    task_dropdown.change(
        task_update,
        inputs=[task_dropdown],
        outputs=[fine_grained_dropdown, color_dropdown, box_input]
    )
    fine_grained_dropdown.change(
        fine_grained_update,
        inputs=[fine_grained_dropdown],
        outputs=[color_dropdown, box_input]
    )
    
    submit_button.click(
        run_GOT,
        inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
        outputs=[ocr_result, html_result]
    )

if __name__ == "__main__":
    cleanup_old_files()
    demo.launch()