Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoModel, AutoTokenizer | |
from PIL import Image | |
import numpy as np | |
import os | |
import base64 | |
import io | |
import uuid | |
import tempfile | |
import time | |
import shutil | |
from pathlib import Path | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True) | |
model = model.eval().cuda() | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""): | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") | |
shutil.copy(image, image_path) | |
try: | |
if got_mode == "plain texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color) | |
return res, None | |
elif got_mode == "format fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
# res_markdown = f"$$ {res} $$" | |
res_markdown = res | |
if "format" in got_mode and os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') | |
iframe_src = f"data:text/html;base64,{encoded_html}" | |
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>' | |
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>' | |
return res_markdown, f"{download_link}<br>{iframe}" | |
else: | |
return res_markdown, None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
def task_update(task): | |
if "fine-grained" in task: | |
return [ | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
else: | |
return [ | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
def fine_grained_update(task): | |
if task == "box": | |
return [ | |
gr.update(visible=False, value = ""), | |
gr.update(visible=True), | |
] | |
elif task == 'color': | |
return [ | |
gr.update(visible=True), | |
gr.update(visible=False, value = ""), | |
] | |
def cleanup_old_files(): | |
current_time = time.time() | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
for file_path in Path(folder).glob('*'): | |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
file_path.unlink() | |
title_html = """ | |
<h2> <span class="gradient-text" id="text">General OCR Theory</span><span class="plain-text">: Towards OCR-2.0 via a Unified End-to-end Model</span></h2> | |
<a href="https://huggingface.co/ucaslcl/GOT-OCR2_0">[π Hugging Face]</a> | |
<a href="https://arxiv.org/abs/2409.01704">[π Paper]</a> | |
<a href="https://github.com/Ucas-HaoranWei/GOT-OCR2.0/">[π GitHub]</a> | |
""" | |
with gr.Blocks() as demo: | |
gr.HTML(title_html) | |
gr.Markdown(""" | |
"π₯π₯π₯This is the official online demo of GOT-OCR-2.0 model!!!" | |
### Demo Guidelines | |
You need to upload your image below and choose one mode of GOT, then click "Submit" to run GOT model. More characters will result in longer wait times. | |
- **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR. | |
- **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes. | |
- **plain fine-grained OCR & format fine-grained OCR**: In these modes, you can specify fine-grained regions on the input image for more flexible OCR. Fine-grained regions can be coordinates of the box, red color, blue color, or green color. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="upload your image") | |
task_dropdown = gr.Dropdown( | |
choices=[ | |
"plain texts OCR", | |
"format texts OCR", | |
"plain multi-crop OCR", | |
"format multi-crop OCR", | |
"plain fine-grained OCR", | |
"format fine-grained OCR", | |
], | |
label="Choose one mode of GOT", | |
value="plain texts OCR" | |
) | |
fine_grained_dropdown = gr.Dropdown( | |
choices=["box", "color"], | |
label="fine-grained type", | |
visible=False | |
) | |
color_dropdown = gr.Dropdown( | |
choices=["red", "green", "blue"], | |
label="color list", | |
visible=False | |
) | |
box_input = gr.Textbox( | |
label="input box: [x1,y1,x2,y2]", | |
placeholder="e.g., [0,0,100,100]", | |
visible=False | |
) | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
ocr_result = gr.Textbox(label="GOT output") | |
with gr.Column(): | |
gr.Markdown("**If you choose the mode with format, the mathpix result will be automatically rendered as follows:**") | |
html_result = gr.HTML(label="rendered html", show_label=True) | |
gr.Examples( | |
examples=[ | |
["assets/coco.jpg", "plain texts OCR", "", "", ""], | |
["assets/en_30.png", "plain texts OCR", "", "", ""], | |
["assets/eq.jpg", "format texts OCR", "", "", ""], | |
["assets/exam.jpg", "format texts OCR", "", "", ""], | |
["assets/giga.jpg", "format multi-crop OCR", "", "", ""], | |
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"], | |
["assets/color.png", "plain fine-grained OCR", "color", "red", ""], | |
], | |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], | |
outputs=[ocr_result, html_result], | |
fn=run_GOT, | |
label="examples", | |
) | |
task_dropdown.change( | |
task_update, | |
inputs=[task_dropdown], | |
outputs=[fine_grained_dropdown, color_dropdown, box_input] | |
) | |
fine_grained_dropdown.change( | |
fine_grained_update, | |
inputs=[fine_grained_dropdown], | |
outputs=[color_dropdown, box_input] | |
) | |
submit_button.click( | |
run_GOT, | |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], | |
outputs=[ocr_result, html_result] | |
) | |
if __name__ == "__main__": | |
cleanup_old_files() | |
demo.launch() |