Spaces:
Running
Running
File size: 6,640 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import Dict, Optional
import torch
import torch.nn as nn
from torch.nn import functional as F
from omegaconf import DictConfig
from cosyvoice.utils.mask import make_pad_mask
import time
class MaskedDiffWithXvec(torch.nn.Module):
def __init__(
self,
input_size: int = 512,
output_size: int = 80,
spk_embed_dim: int = 192,
output_type: str = "mel",
vocab_size: int = 4096,
input_frame_rate: int = 50,
only_mask_loss: bool = True,
encoder: torch.nn.Module = None,
length_regulator: torch.nn.Module = None,
decoder: torch.nn.Module = None,
decoder_conf: Dict = {
"in_channels": 240,
"out_channel": 80,
"spk_emb_dim": 80,
"n_spks": 1,
"cfm_params": DictConfig(
{
"sigma_min": 1e-06,
"solver": "euler",
"t_scheduler": "cosine",
"training_cfg_rate": 0.2,
"inference_cfg_rate": 0.7,
"reg_loss_type": "l1",
}
),
"decoder_params": {
"channels": [256, 256],
"dropout": 0.0,
"attention_head_dim": 64,
"n_blocks": 4,
"num_mid_blocks": 12,
"num_heads": 8,
"act_fn": "gelu",
},
},
mel_feat_conf: Dict = {
"n_fft": 1024,
"num_mels": 80,
"sampling_rate": 22050,
"hop_size": 256,
"win_size": 1024,
"fmin": 0,
"fmax": 8000,
},
):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.decoder_conf = decoder_conf
self.mel_feat_conf = mel_feat_conf
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
logging.info(f"input frame rate={self.input_frame_rate}")
self.input_embedding = nn.Embedding(vocab_size, input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
self.encoder = encoder
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
self.decoder = decoder
self.length_regulator = length_regulator
self.only_mask_loss = only_mask_loss
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
token = batch["speech_token"].to(device)
token_len = batch["speech_token_len"].to(device)
feat = batch["speech_feat"].to(device)
feat_len = batch["speech_feat_len"].to(device)
embedding = batch["embedding"].to(device)
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
h, h_lengths = self.encoder(token, token_len)
h = self.encoder_proj(h)
h, h_lengths = self.length_regulator(h, feat_len)
# get conditions
conds = torch.zeros(feat.shape, device=token.device)
for i, j in enumerate(feat_len):
if random.random() < 0.5:
continue
index = random.randint(0, int(0.3 * j))
conds[i, :index] = feat[i, :index]
conds = conds.transpose(1, 2)
mask = (~make_pad_mask(feat_len)).to(h)
feat = F.interpolate(
feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest"
).squeeze(dim=1)
loss, _ = self.decoder.compute_loss(
feat.transpose(1, 2).contiguous(),
mask.unsqueeze(1),
h.transpose(1, 2).contiguous(),
embedding,
cond=conds,
)
return {"loss": loss}
@torch.inference_mode()
def inference(
self,
token,
token_len,
prompt_token,
prompt_token_len,
prompt_feat,
prompt_feat_len,
embedding,
):
assert token.shape[0] == 1
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
# text encode
token, token_len = (
torch.concat([prompt_token, token], dim=1),
prompt_token_len + token_len,
)
token = self.input_embedding(torch.clamp(token, min=0))
h, _ = self.encoder.inference(token, token_len)
h = self.encoder_proj(h)
mel_len1, mel_len2 = prompt_feat.shape[1], int(
token_len2
/ self.input_frame_rate
* self.mel_feat_conf["sampling_rate"]
/ self.mel_feat_conf["hop_size"]
)
h, _ = self.length_regulator.inference(
h[:, :token_len1],
h[:, token_len1:],
mel_len1,
mel_len2,
)
# get conditions
conds = torch.zeros(
[1, mel_len1 + mel_len2, self.output_size], device=token.device
)
conds[:, :mel_len1] = prompt_feat
conds = conds.transpose(1, 2)
# mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
mask = torch.ones(
[1, mel_len1 + mel_len2], device=h.device, dtype=torch.bfloat16
)
feat = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
spks=embedding,
cond=conds,
n_timesteps=10,
)
feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2
return feat
|