File size: 4,848 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import json
import torch
import logging
import concurrent.futures
import librosa
import torch.distributed as dist

from funasr_detach.register import tables


@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
class IndexDSJsonlRankSplit(torch.utils.data.Dataset):

    def __init__(self, path):
        super().__init__()

        contents = []
        with open(path, encoding="utf-8") as fin:
            for line in fin:
                data = json.loads(line.strip())
                if "text" in data:  # for sft
                    self.contents.append(data["text"])
                if "source" in data:  # for speech lab pretrain
                    prompt = data["prompt"]
                    source = data["source"]
                    target = data["target"]
                    source_len = data["source_len"]
                    target_len = data["target_len"]

                    contents.append(
                        {
                            "source": source,
                            "prompt": prompt,
                            "target": target,
                            "source_len": source_len,
                            "target_len": target_len,
                        }
                    )

        self.contents = []
        total_num = len(contents)
        try:
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        except:
            rank = 0
            world_size = 1
            logging.warning("distributed is not initialized, only single shard")
        num_per_rank = total_num // world_size

        # rank = 0
        # import ipdb; ipdb.set_trace()
        self.contents = contents[rank * num_per_rank : (rank + 1) * num_per_rank]

        logging.info(
            "in rank: {}, num of samplers: {}, total_num of samplers across ranks: {}".format(
                rank, len(self.contents), len(contents)
            )
        )

    def __len__(self):
        return len(self.contents)

    def __getitem__(self, index):
        try:
            data = self.contents[index]
        except:
            print(index)
        return data

    def get_source_len(self, data_dict):
        return data_dict["source_len"]

    def get_target_len(self, data_dict):

        return data_dict["target_len"] if "target_len" in data_dict else 0


@tables.register("index_ds_classes", "IndexDSJsonl")
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
class IndexDSJsonlRankFull(torch.utils.data.Dataset):

    def __init__(self, path: str, **kwargs):
        super().__init__()

        if isinstance(path, (list, tuple)):  # wav.scp, text.txt/text.trans
            from funasr_detach.datasets.audio_datasets.scp2jsonl import (
                gen_jsonl_from_wav_text_list,
            )

            jsonl_outdir = os.path.dirname(path[0])
            jsonl_name = (
                "datalist_train.jsonl"
                if kwargs.get("is_training", True)
                else "datalist_val.jsonl"
            )
            jsonl_file_out = os.path.join(jsonl_outdir, jsonl_name)
            if not os.path.exists(jsonl_file_out):
                print(f"datalist is: {path}, generate jsonl from it")
                gen_jsonl_from_wav_text_list(
                    path, jsonl_file_out=jsonl_file_out, **kwargs
                )
            path = jsonl_file_out

        contents = []
        with open(path, encoding="utf-8") as fin:
            for line in fin:
                data = json.loads(line.strip())
                if "text" in data:  # for sft
                    self.contents.append(data["text"])
                if "source" in data:  # for speech lab pretrain
                    prompt = data.get("prompt", "<ASR>")
                    source = data["source"]
                    target = data["target"]
                    source_len = data.get("source_len", 1)
                    target_len = data.get("target_len", 0)

                    contents.append(
                        {
                            "source": source,
                            "prompt": prompt,
                            "target": target,
                            "source_len": source_len,
                            "target_len": target_len,
                        }
                    )

        self.contents = contents

        logging.info(
            "total_num of samplers across ranks: {}".format(len(self.contents))
        )

    def __len__(self):
        return len(self.contents)

    def __getitem__(self, index):
        try:
            data = self.contents[index]
        except:
            print(index)
        return data

    def get_source_len(self, data_dict):
        return data_dict.get("source_len", 1)

    def get_target_len(self, data_dict):

        return data_dict.get("target_len", 0)