File size: 10,667 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch
import numpy as np
import logging
import torch.distributed as dist

from funasr_detach.register import tables


@tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
class BatchSampler(torch.utils.data.BatchSampler):

    def __init__(
        self,
        dataset,
        batch_type: str = "example",
        batch_size: int = 100,
        buffer_size: int = 30,
        drop_last: bool = False,
        shuffle: bool = True,
        is_training: bool = True,
        **kwargs
    ):

        self.drop_last = drop_last
        self.pre_idx = -1
        self.dataset = dataset
        self.total_samples = len(dataset)
        self.batch_type = batch_type
        self.batch_size = int(batch_size)
        self.buffer_size = buffer_size
        self.max_token_length = kwargs.get("max_token_length", 5000)
        self.shuffle_idx = np.arange(self.total_samples)
        self.shuffle = shuffle and is_training
        self.length_scale_source = kwargs.get("length_scale_source", 1.0)

    def __len__(self):
        return (self.total_samples - 1) // self.batch_size + 1

    def set_epoch(self, epoch):
        np.random.seed(epoch)

    def __iter__(self):

        if self.shuffle:
            np.random.shuffle(self.shuffle_idx)

        batch = []
        max_token = 0
        num_sample = 0

        iter_num = (self.total_samples - 1) // self.buffer_size + 1
        # print("iter_num: ", iter_num)
        for iter in range(self.pre_idx + 1, iter_num):
            datalen_with_index = []
            for i in range(self.buffer_size):
                idx = iter * self.buffer_size + i
                if idx >= self.total_samples:
                    continue

                idx_map = self.shuffle_idx[idx]
                # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
                target_len = (
                    self.dataset.get_target_len(idx_map)
                    if self.batch_type == "length"
                    else 0.0
                )
                source_len = (
                    self.dataset.get_source_len(idx_map) / self.length_scale_source
                )
                sample_len_cur = source_len + target_len

                datalen_with_index.append([idx, sample_len_cur])

            datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
            for item in datalen_with_index_sort:
                idx, sample_len_cur_raw = item
                if sample_len_cur_raw > self.max_token_length:
                    continue

                max_token_cur = max(max_token, sample_len_cur_raw)
                max_token_padding = 1 + num_sample
                if self.batch_type != "example":
                    max_token_padding *= max_token_cur
                if max_token_padding <= self.batch_size:
                    batch.append(idx)
                    max_token = max_token_cur
                    num_sample += 1
                else:
                    yield batch
                    batch = [idx]
                    max_token = sample_len_cur_raw
                    num_sample = 1


@tables.register("batch_sampler_classes", "BatchSampler")
@tables.register("batch_sampler_classes", "RankFullLocalShuffleBatchSampler")
class RankFullLocalShuffleBatchSampler(torch.utils.data.BatchSampler):

    def __init__(
        self,
        dataset,
        batch_type: str = "example",
        batch_size: int = 100,
        buffer_size: int = 30,
        drop_last: bool = True,
        shuffle: bool = True,
        is_training: bool = True,
        **kwargs
    ):

        self.drop_last = drop_last
        self.pre_idx = -1
        self.dataset = dataset
        self.total_samples = len(dataset)
        self.batch_type = batch_type
        self.batch_size = int(batch_size)
        self.buffer_size = buffer_size
        self.max_token_length = kwargs.get("max_token_length", 1500)
        self.shuffle_idx = np.arange(self.total_samples)
        self.shuffle = shuffle and is_training
        self.length_scale_source = kwargs.get("length_scale_source", 1.0)

        try:
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        except:
            rank = 0
            world_size = 1
        self.rank = rank
        self.world_size = world_size

    def __len__(self):
        return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1

    def set_epoch(self, epoch):
        np.random.seed(epoch)

    def __iter__(self):

        batch_size_total = self.batch_size * self.world_size

        if self.shuffle:
            np.random.shuffle(self.shuffle_idx)

        batch = []
        max_token = 0
        num_sample = 0

        iter_num = (self.total_samples - 1) // self.buffer_size + 1
        # print("iter_num: ", iter_num)
        for iter in range(self.pre_idx + 1, iter_num):
            # if iter == iter_num -1 and self.drop_last:
            #     continue
            datalen_with_index = []
            for i in range(self.buffer_size):
                idx = iter * self.buffer_size + i
                if idx >= self.total_samples:
                    continue

                idx_map = self.shuffle_idx[idx]
                # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]

                source_len = (
                    self.dataset.get_source_len(idx_map) / self.length_scale_source
                )
                target_len = (
                    self.dataset.get_target_len(idx_map)
                    if self.batch_type == "length"
                    else 0.0
                )
                sample_len_cur = source_len + target_len

                datalen_with_index.append([idx, sample_len_cur])

            datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
            for item in datalen_with_index_sort:
                idx, sample_len_cur_raw = item
                if sample_len_cur_raw > self.max_token_length:
                    continue

                max_token_cur = max(max_token, sample_len_cur_raw)
                max_token_padding = 1 + num_sample
                # if self.batch_type != 'example':
                #     max_token_padding *= max_token_cur
                if max_token_padding <= batch_size_total:
                    batch.append(idx)
                    max_token = max_token_cur
                    num_sample += 1
                else:
                    batch_rank = batch[
                        self.rank * self.batch_size : (self.rank + 1) * self.batch_size
                    ]
                    yield batch_rank
                    batch = [idx]
                    max_token = sample_len_cur_raw
                    num_sample = 1


@tables.register("batch_sampler_classes", "RankFullLocalShuffleDynamicBatchSampler")
class RankFullLocalShuffleDynamicBatchSampler(torch.utils.data.BatchSampler):

    def __init__(
        self,
        dataset,
        batch_type: str = "example",
        batch_size: int = 100,
        buffer_size: int = 30,
        drop_last: bool = True,
        shuffle: bool = True,
        is_training: bool = True,
        **kwargs
    ):

        self.drop_last = drop_last
        self.pre_idx = -1
        self.dataset = dataset
        self.total_samples = len(dataset)
        self.batch_type = batch_type
        self.batch_size = int(batch_size)
        self.buffer_size = buffer_size
        self.max_token_length = kwargs.get("max_token_length", 1500)
        self.shuffle_idx = np.arange(self.total_samples)
        self.shuffle = shuffle and is_training
        self.length_scale_source = kwargs.get("length_scale_source", 1.0)

        try:
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        except:
            rank = 0
            world_size = 1
        self.rank = rank
        self.world_size = world_size

    def __len__(self):
        return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1

    def set_epoch(self, epoch):
        np.random.seed(epoch)

    def __iter__(self):

        batch_size_total = self.batch_size * self.world_size
        if self.shuffle:
            np.random.shuffle(self.shuffle_idx)

        batch_list_all_rank = []
        batch_list_cur = []
        max_token = 0
        num_sample = 0

        iter_num = (self.total_samples - 1) // self.buffer_size + 1
        # print("iter_num: ", iter_num)
        for iter in range(self.pre_idx + 1, iter_num):
            # if iter == iter_num - 1 and self.drop_last:
            #     continue
            datalen_with_index = []
            for i in range(self.buffer_size):
                idx = iter * self.buffer_size + i
                if idx >= self.total_samples:
                    continue

                idx_map = self.shuffle_idx[idx]
                # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]

                source_len = (
                    self.dataset.get_source_len(idx_map) / self.length_scale_source
                )
                target_len = (
                    self.dataset.get_target_len(idx_map)
                    if self.batch_type == "length"
                    else 0.0
                )
                sample_len_cur = source_len + target_len

                datalen_with_index.append([idx, sample_len_cur])

            datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
            for ii, item in enumerate(datalen_with_index_sort):
                is_last_batch = iter == iter_num - 1 and ii == len(
                    datalen_with_index_sort
                )
                idx, sample_len_cur_raw = item
                if sample_len_cur_raw > self.max_token_length:
                    continue

                max_token_cur = max(max_token, sample_len_cur_raw)
                max_token_padding = 1 + num_sample

                if self.batch_type != "example":
                    max_token_padding *= max_token_cur
                if len(batch_list_all_rank) < self.world_size:

                    if max_token_padding <= self.batch_size:
                        batch_list_cur.append(idx)
                        max_token = max_token_cur
                        num_sample += 1
                    else:
                        batch_list_all_rank.append(batch_list_cur)
                        batch_list_cur = []
                else:
                    batch_rank = batch_list_all_rank[self.rank]
                    yield batch_rank
                    batch_list_all_rank = [idx]
                    max_token = sample_len_cur_raw
                    num_sample = 1