Spaces:
Running
Running
File size: 20,440 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
# Copyright (c) Alibaba, Inc. and its affiliates.
# Part of the implementation is borrowed from espnet/espnet.
from typing import Tuple
import copy
import numpy as np
import torch
import torch.nn as nn
import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence
import funasr_detach.frontends.eend_ola_feature as eend_ola_feature
from funasr_detach.register import tables
def load_cmvn(cmvn_file):
with open(cmvn_file, "r", encoding="utf-8") as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == "<AddShift>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
add_shift_line = line_item[3 : (len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == "<Rescale>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
rescale_line = line_item[3 : (len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float32)
vars = np.array(vars_list).astype(np.float32)
cmvn = np.array([means, vars])
cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
return cmvn
def apply_cmvn(inputs, cmvn): # noqa
"""
Apply CMVN with mvn data
"""
device = inputs.device
dtype = inputs.dtype
frame, dim = inputs.shape
means = cmvn[0:1, :dim]
vars = cmvn[1:2, :dim]
inputs += means.to(device)
inputs *= vars.to(device)
return inputs.type(torch.float32)
def apply_lfr(inputs, lfr_m, lfr_n):
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / lfr_n))
left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
inputs = torch.vstack((left_padding, inputs))
T = T + (lfr_m - 1) // 2
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
else: # process last LFR frame
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n :]).view(-1)
for _ in range(num_padding):
frame = torch.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
LFR_outputs = torch.vstack(LFR_inputs)
return LFR_outputs.type(torch.float32)
@tables.register("frontend_classes", "WavFrontend")
class WavFrontend(nn.Module):
"""Conventional frontend structure for ASR."""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = "hamming",
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
filter_length_min: int = -1,
filter_length_max: int = -1,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
snip_edges: bool = True,
upsacle_samples: bool = True,
**kwargs,
):
super().__init__()
self.fs = fs
self.window = window
self.n_mels = n_mels
self.frame_length = frame_length
self.frame_shift = frame_shift
self.filter_length_min = filter_length_min
self.filter_length_max = filter_length_max
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
self.dither = dither
self.snip_edges = snip_edges
self.upsacle_samples = upsacle_samples
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
def output_size(self) -> int:
return self.n_mels * self.lfr_m
def forward(
self,
input: torch.Tensor,
input_lengths,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
if self.upsacle_samples:
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(
waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
snip_edges=self.snip_edges,
)
if self.lfr_m != 1 or self.lfr_n != 1:
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
if self.cmvn is not None:
mat = apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
if batch_size == 1:
feats_pad = feats[0][None, :, :]
else:
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
def forward_fbank(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(
waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
def forward_lfr_cmvn(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
mat = input[i, : input_lengths[i], :]
if self.lfr_m != 1 or self.lfr_n != 1:
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
if self.cmvn is not None:
mat = apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
@tables.register("frontend_classes", "WavFrontendOnline")
class WavFrontendOnline(nn.Module):
"""Conventional frontend structure for streaming ASR/VAD."""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = "hamming",
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
filter_length_min: int = -1,
filter_length_max: int = -1,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
snip_edges: bool = True,
upsacle_samples: bool = True,
**kwargs,
):
super().__init__()
self.fs = fs
self.window = window
self.n_mels = n_mels
self.frame_length = frame_length
self.frame_shift = frame_shift
self.frame_sample_length = int(self.frame_length * self.fs / 1000)
self.frame_shift_sample_length = int(self.frame_shift * self.fs / 1000)
self.filter_length_min = filter_length_min
self.filter_length_max = filter_length_max
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
self.dither = dither
self.snip_edges = snip_edges
self.upsacle_samples = upsacle_samples
# self.waveforms = None
# self.reserve_waveforms = None
# self.fbanks = None
# self.fbanks_lens = None
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
# self.input_cache = None
# self.lfr_splice_cache = []
def output_size(self) -> int:
return self.n_mels * self.lfr_m
@staticmethod
def apply_cmvn(inputs: torch.Tensor, cmvn: torch.Tensor) -> torch.Tensor:
"""
Apply CMVN with mvn data
"""
device = inputs.device
dtype = inputs.dtype
frame, dim = inputs.shape
means = np.tile(cmvn[0:1, :dim], (frame, 1))
vars = np.tile(cmvn[1:2, :dim], (frame, 1))
inputs += torch.from_numpy(means).type(dtype).to(device)
inputs *= torch.from_numpy(vars).type(dtype).to(device)
return inputs.type(torch.float32)
@staticmethod
def apply_lfr(
inputs: torch.Tensor, lfr_m: int, lfr_n: int, is_final: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
Apply lfr with data
"""
LFR_inputs = []
# inputs = torch.vstack((inputs_lfr_cache, inputs))
T = inputs.shape[0] # include the right context
T_lfr = int(
np.ceil((T - (lfr_m - 1) // 2) / lfr_n)
) # minus the right context: (lfr_m - 1) // 2
splice_idx = T_lfr
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
else: # process last LFR frame
if is_final:
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n :]).view(-1)
for _ in range(num_padding):
frame = torch.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
else:
# update splice_idx and break the circle
splice_idx = i
break
splice_idx = min(T - 1, splice_idx * lfr_n)
lfr_splice_cache = inputs[splice_idx:, :]
LFR_outputs = torch.vstack(LFR_inputs)
return LFR_outputs.type(torch.float32), lfr_splice_cache, splice_idx
@staticmethod
def compute_frame_num(
sample_length: int, frame_sample_length: int, frame_shift_sample_length: int
) -> int:
frame_num = int(
(sample_length - frame_sample_length) / frame_shift_sample_length + 1
)
return (
frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
)
def forward_fbank(
self,
input: torch.Tensor,
input_lengths: torch.Tensor,
cache: dict = {},
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
assert batch_size == 1
input = torch.cat((cache["input_cache"], input), dim=1)
frame_num = self.compute_frame_num(
input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length
)
# update self.in_cache
cache["input_cache"] = input[
:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length) :
]
waveforms = torch.empty(0)
feats_pad = torch.empty(0)
feats_lens = torch.empty(0)
if frame_num:
waveforms = []
feats = []
feats_lens = []
for i in range(batch_size):
waveform = input[i].cuda()
# we need accurate wave samples that used for fbank extracting
waveforms.append(
waveform[
: (
(frame_num - 1) * self.frame_shift_sample_length
+ self.frame_sample_length
)
]
)
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(
waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
waveforms = torch.stack(waveforms)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
cache["fbanks"] = feats_pad
cache["fbanks_lens"] = copy.deepcopy(feats_lens)
return waveforms, feats_pad, feats_lens
def forward_lfr_cmvn(
self,
input: torch.Tensor,
input_lengths: torch.Tensor,
is_final: bool = False,
cache: dict = {},
**kwargs,
):
batch_size = input.size(0)
feats = []
feats_lens = []
lfr_splice_frame_idxs = []
for i in range(batch_size):
mat = input[i, : input_lengths[i], :]
if self.lfr_m != 1 or self.lfr_n != 1:
# update self.lfr_splice_cache in self.apply_lfr
# mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, self.lfr_splice_cache[i],
mat, cache["lfr_splice_cache"][i], lfr_splice_frame_idx = (
self.apply_lfr(mat, self.lfr_m, self.lfr_n, is_final)
)
if self.cmvn_file is not None:
mat = self.apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
lfr_splice_frame_idxs = torch.as_tensor(lfr_splice_frame_idxs)
return feats_pad, feats_lens, lfr_splice_frame_idxs
def forward(self, input: torch.Tensor, input_lengths: torch.Tensor, **kwargs):
is_final = kwargs.get("is_final", False)
cache = kwargs.get("cache", {})
if len(cache) == 0:
self.init_cache(cache)
batch_size = input.shape[0]
assert (
batch_size == 1
), "we support to extract feature online only when the batch size is equal to 1 now"
waveforms, feats, feats_lengths = self.forward_fbank(
input, input_lengths, cache=cache
) # input shape: B T D
if feats.shape[0]:
cache["waveforms"] = torch.cat(
(cache["reserve_waveforms"], waveforms.cpu()), dim=1
)
if not cache["lfr_splice_cache"]: # 初始化splice_cache
for i in range(batch_size):
cache["lfr_splice_cache"].append(
feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1)
)
# need the number of the input frames + self.lfr_splice_cache[0].shape[0] is greater than self.lfr_m
if feats_lengths[0] + cache["lfr_splice_cache"][0].shape[0] >= self.lfr_m:
lfr_splice_cache_tensor = torch.stack(
cache["lfr_splice_cache"]
) # B T D
feats = torch.cat((lfr_splice_cache_tensor, feats), dim=1)
feats_lengths += lfr_splice_cache_tensor[0].shape[0]
frame_from_waveforms = int(
(cache["waveforms"].shape[1] - self.frame_sample_length)
/ self.frame_shift_sample_length
+ 1
)
minus_frame = (
(self.lfr_m - 1) // 2
if cache["reserve_waveforms"].numel() == 0
else 0
)
feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(
feats, feats_lengths, is_final, cache=cache
)
if self.lfr_m == 1:
cache["reserve_waveforms"] = torch.empty(0)
else:
reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
# print('reserve_frame_idx: ' + str(reserve_frame_idx))
# print('frame_frame: ' + str(frame_from_waveforms))
cache["reserve_waveforms"] = cache["waveforms"][
:,
reserve_frame_idx
* self.frame_shift_sample_length : frame_from_waveforms
* self.frame_shift_sample_length,
]
sample_length = (
frame_from_waveforms - 1
) * self.frame_shift_sample_length + self.frame_sample_length
cache["waveforms"] = cache["waveforms"][:, :sample_length]
else:
# update self.reserve_waveforms and self.lfr_splice_cache
cache["reserve_waveforms"] = cache["waveforms"][
:, : -(self.frame_sample_length - self.frame_shift_sample_length)
]
for i in range(batch_size):
cache["lfr_splice_cache"][i] = torch.cat(
(cache["lfr_splice_cache"][i], feats[i]), dim=0
)
return torch.empty(0), feats_lengths
else:
if is_final:
cache["waveforms"] = (
waveforms
if cache["reserve_waveforms"].numel() == 0
else cache["reserve_waveforms"]
)
feats = torch.stack(cache["lfr_splice_cache"])
feats_lengths = (
torch.zeros(batch_size, dtype=torch.int) + feats.shape[1]
)
feats, feats_lengths, _ = self.forward_lfr_cmvn(
feats, feats_lengths, is_final, cache=cache
)
# if is_final:
# self.init_cache(cache)
return feats, feats_lengths
def init_cache(self, cache: dict = {}):
cache["reserve_waveforms"] = torch.empty(0)
cache["input_cache"] = torch.empty(0)
cache["lfr_splice_cache"] = []
cache["waveforms"] = None
cache["fbanks"] = None
cache["fbanks_lens"] = None
return cache
class WavFrontendMel23(nn.Module):
"""Conventional frontend structure for ASR."""
def __init__(
self,
fs: int = 16000,
frame_length: int = 25,
frame_shift: int = 10,
lfr_m: int = 1,
lfr_n: int = 1,
**kwargs,
):
super().__init__()
self.fs = fs
self.frame_length = frame_length
self.frame_shift = frame_shift
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.n_mels = 23
def output_size(self) -> int:
return self.n_mels * (2 * self.lfr_m + 1)
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
waveform = waveform.numpy()
mat = eend_ola_feature.stft(waveform, self.frame_length, self.frame_shift)
mat = eend_ola_feature.transform(mat)
mat = eend_ola_feature.splice(mat, context_size=self.lfr_m)
mat = mat[:: self.lfr_n]
mat = torch.from_numpy(mat)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
|