File size: 20,972 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2022 Yifan Peng (Carnegie Mellon University)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Branchformer encoder definition.

Reference:
    Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe,
    “Branchformer: Parallel MLP-Attention Architectures to Capture
    Local and Global Context for Speech Recognition and Understanding,”
    in Proceedings of ICML, 2022.

"""

import logging
from typing import List, Optional, Tuple, Union

import numpy
import torch
import torch.nn as nn

from funasr_detach.models.branchformer.cgmlp import ConvolutionalGatingMLP
from funasr_detach.models.branchformer.fastformer import FastSelfAttention
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.attention import (  # noqa: H301
    LegacyRelPositionMultiHeadedAttention,
    MultiHeadedAttention,
    RelPositionMultiHeadedAttention,
)
from funasr_detach.models.transformer.embedding import (  # noqa: H301
    LegacyRelPositionalEncoding,
    PositionalEncoding,
    RelPositionalEncoding,
    ScaledPositionalEncoding,
)
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.subsampling import (
    Conv2dSubsampling,
    Conv2dSubsampling2,
    Conv2dSubsampling6,
    Conv2dSubsampling8,
    TooShortUttError,
    check_short_utt,
)

from funasr_detach.register import tables


class BranchformerEncoderLayer(torch.nn.Module):
    """Branchformer encoder layer module.

    Args:
        size (int): model dimension
        attn: standard self-attention or efficient attention, optional
        cgmlp: ConvolutionalGatingMLP, optional
        dropout_rate (float): dropout probability
        merge_method (str): concat, learned_ave, fixed_ave
        cgmlp_weight (float): weight of the cgmlp branch, between 0 and 1,
            used if merge_method is fixed_ave
        attn_branch_drop_rate (float): probability of dropping the attn branch,
            used if merge_method is learned_ave
        stochastic_depth_rate (float): stochastic depth probability
    """

    def __init__(
        self,
        size: int,
        attn: Optional[torch.nn.Module],
        cgmlp: Optional[torch.nn.Module],
        dropout_rate: float,
        merge_method: str,
        cgmlp_weight: float = 0.5,
        attn_branch_drop_rate: float = 0.0,
        stochastic_depth_rate: float = 0.0,
    ):
        super().__init__()
        assert (attn is not None) or (
            cgmlp is not None
        ), "At least one branch should be valid"

        self.size = size
        self.attn = attn
        self.cgmlp = cgmlp
        self.merge_method = merge_method
        self.cgmlp_weight = cgmlp_weight
        self.attn_branch_drop_rate = attn_branch_drop_rate
        self.stochastic_depth_rate = stochastic_depth_rate
        self.use_two_branches = (attn is not None) and (cgmlp is not None)

        if attn is not None:
            self.norm_mha = LayerNorm(size)  # for the MHA module
        if cgmlp is not None:
            self.norm_mlp = LayerNorm(size)  # for the MLP module
        self.norm_final = LayerNorm(size)  # for the final output of the block

        self.dropout = torch.nn.Dropout(dropout_rate)

        if self.use_two_branches:
            if merge_method == "concat":
                self.merge_proj = torch.nn.Linear(size + size, size)

            elif merge_method == "learned_ave":
                # attention-based pooling for two branches
                self.pooling_proj1 = torch.nn.Linear(size, 1)
                self.pooling_proj2 = torch.nn.Linear(size, 1)

                # linear projections for calculating merging weights
                self.weight_proj1 = torch.nn.Linear(size, 1)
                self.weight_proj2 = torch.nn.Linear(size, 1)

                # linear projection after weighted average
                self.merge_proj = torch.nn.Linear(size, size)

            elif merge_method == "fixed_ave":
                assert (
                    0.0 <= cgmlp_weight <= 1.0
                ), "cgmlp weight should be between 0.0 and 1.0"

                # remove the other branch if only one branch is used
                if cgmlp_weight == 0.0:
                    self.use_two_branches = False
                    self.cgmlp = None
                    self.norm_mlp = None
                elif cgmlp_weight == 1.0:
                    self.use_two_branches = False
                    self.attn = None
                    self.norm_mha = None

                # linear projection after weighted average
                self.merge_proj = torch.nn.Linear(size, size)

            else:
                raise ValueError(f"unknown merge method: {merge_method}")

        else:
            self.merge_proj = torch.nn.Identity()

    def forward(self, x_input, mask, cache=None):
        """Compute encoded features.

        Args:
            x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
                - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
                - w/o pos emb: Tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, 1, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).
        """

        if cache is not None:
            raise NotImplementedError("cache is not None, which is not tested")

        if isinstance(x_input, tuple):
            x, pos_emb = x_input[0], x_input[1]
        else:
            x, pos_emb = x_input, None

        skip_layer = False
        # with stochastic depth, residual connection `x + f(x)` becomes
        # `x <- x + 1 / (1 - p) * f(x)` at training time.
        stoch_layer_coeff = 1.0
        if self.training and self.stochastic_depth_rate > 0:
            skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
            stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)

        if skip_layer:
            if cache is not None:
                x = torch.cat([cache, x], dim=1)
            if pos_emb is not None:
                return (x, pos_emb), mask
            return x, mask

        # Two branches
        x1 = x
        x2 = x

        # Branch 1: multi-headed attention module
        if self.attn is not None:
            x1 = self.norm_mha(x1)

            if isinstance(self.attn, FastSelfAttention):
                x_att = self.attn(x1, mask)
            else:
                if pos_emb is not None:
                    x_att = self.attn(x1, x1, x1, pos_emb, mask)
                else:
                    x_att = self.attn(x1, x1, x1, mask)

            x1 = self.dropout(x_att)

        # Branch 2: convolutional gating mlp
        if self.cgmlp is not None:
            x2 = self.norm_mlp(x2)

            if pos_emb is not None:
                x2 = (x2, pos_emb)
            x2 = self.cgmlp(x2, mask)
            if isinstance(x2, tuple):
                x2 = x2[0]

            x2 = self.dropout(x2)

        # Merge two branches
        if self.use_two_branches:
            if self.merge_method == "concat":
                x = x + stoch_layer_coeff * self.dropout(
                    self.merge_proj(torch.cat([x1, x2], dim=-1))
                )
            elif self.merge_method == "learned_ave":
                if (
                    self.training
                    and self.attn_branch_drop_rate > 0
                    and torch.rand(1).item() < self.attn_branch_drop_rate
                ):
                    # Drop the attn branch
                    w1, w2 = 0.0, 1.0
                else:
                    # branch1
                    score1 = (
                        self.pooling_proj1(x1).transpose(1, 2) / self.size**0.5
                    )  # (batch, 1, time)
                    if mask is not None:
                        min_value = float(
                            numpy.finfo(
                                torch.tensor(0, dtype=score1.dtype).numpy().dtype
                            ).min
                        )
                        score1 = score1.masked_fill(mask.eq(0), min_value)
                        score1 = torch.softmax(score1, dim=-1).masked_fill(
                            mask.eq(0), 0.0
                        )
                    else:
                        score1 = torch.softmax(score1, dim=-1)
                    pooled1 = torch.matmul(score1, x1).squeeze(1)  # (batch, size)
                    weight1 = self.weight_proj1(pooled1)  # (batch, 1)

                    # branch2
                    score2 = (
                        self.pooling_proj2(x2).transpose(1, 2) / self.size**0.5
                    )  # (batch, 1, time)
                    if mask is not None:
                        min_value = float(
                            numpy.finfo(
                                torch.tensor(0, dtype=score2.dtype).numpy().dtype
                            ).min
                        )
                        score2 = score2.masked_fill(mask.eq(0), min_value)
                        score2 = torch.softmax(score2, dim=-1).masked_fill(
                            mask.eq(0), 0.0
                        )
                    else:
                        score2 = torch.softmax(score2, dim=-1)
                    pooled2 = torch.matmul(score2, x2).squeeze(1)  # (batch, size)
                    weight2 = self.weight_proj2(pooled2)  # (batch, 1)

                    # normalize weights of two branches
                    merge_weights = torch.softmax(
                        torch.cat([weight1, weight2], dim=-1), dim=-1
                    )  # (batch, 2)
                    merge_weights = merge_weights.unsqueeze(-1).unsqueeze(
                        -1
                    )  # (batch, 2, 1, 1)
                    w1, w2 = merge_weights[:, 0], merge_weights[:, 1]  # (batch, 1, 1)

                x = x + stoch_layer_coeff * self.dropout(
                    self.merge_proj(w1 * x1 + w2 * x2)
                )
            elif self.merge_method == "fixed_ave":
                x = x + stoch_layer_coeff * self.dropout(
                    self.merge_proj(
                        (1.0 - self.cgmlp_weight) * x1 + self.cgmlp_weight * x2
                    )
                )
            else:
                raise RuntimeError(f"unknown merge method: {self.merge_method}")
        else:
            if self.attn is None:
                x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x2))
            elif self.cgmlp is None:
                x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x1))
            else:
                # This should not happen
                raise RuntimeError("Both branches are not None, which is unexpected.")

        x = self.norm_final(x)

        if pos_emb is not None:
            return (x, pos_emb), mask

        return x, mask


@tables.register("encoder_classes", "BranchformerEncoder")
class BranchformerEncoder(nn.Module):
    """Branchformer encoder module."""

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        use_attn: bool = True,
        attention_heads: int = 4,
        attention_layer_type: str = "rel_selfattn",
        pos_enc_layer_type: str = "rel_pos",
        rel_pos_type: str = "latest",
        use_cgmlp: bool = True,
        cgmlp_linear_units: int = 2048,
        cgmlp_conv_kernel: int = 31,
        use_linear_after_conv: bool = False,
        gate_activation: str = "identity",
        merge_method: str = "concat",
        cgmlp_weight: Union[float, List[float]] = 0.5,
        attn_branch_drop_rate: Union[float, List[float]] = 0.0,
        num_blocks: int = 12,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: Optional[str] = "conv2d",
        zero_triu: bool = False,
        padding_idx: int = -1,
        stochastic_depth_rate: Union[float, List[float]] = 0.0,
    ):
        super().__init__()
        self._output_size = output_size

        if rel_pos_type == "legacy":
            if pos_enc_layer_type == "rel_pos":
                pos_enc_layer_type = "legacy_rel_pos"
            if attention_layer_type == "rel_selfattn":
                attention_layer_type = "legacy_rel_selfattn"
        elif rel_pos_type == "latest":
            assert attention_layer_type != "legacy_rel_selfattn"
            assert pos_enc_layer_type != "legacy_rel_pos"
        else:
            raise ValueError("unknown rel_pos_type: " + rel_pos_type)

        if pos_enc_layer_type == "abs_pos":
            pos_enc_class = PositionalEncoding
        elif pos_enc_layer_type == "scaled_abs_pos":
            pos_enc_class = ScaledPositionalEncoding
        elif pos_enc_layer_type == "rel_pos":
            assert attention_layer_type == "rel_selfattn"
            pos_enc_class = RelPositionalEncoding
        elif pos_enc_layer_type == "legacy_rel_pos":
            assert attention_layer_type == "legacy_rel_selfattn"
            pos_enc_class = LegacyRelPositionalEncoding
            logging.warning(
                "Using legacy_rel_pos and it will be deprecated in the future."
            )
        else:
            raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)

        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(input_size, output_size),
                torch.nn.LayerNorm(output_size),
                torch.nn.Dropout(dropout_rate),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d2":
            self.embed = Conv2dSubsampling2(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsampling6(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsampling8(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif isinstance(input_layer, torch.nn.Module):
            self.embed = torch.nn.Sequential(
                input_layer,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer is None:
            if input_size == output_size:
                self.embed = None
            else:
                self.embed = torch.nn.Linear(input_size, output_size)
        else:
            raise ValueError("unknown input_layer: " + input_layer)

        if attention_layer_type == "selfattn":
            encoder_selfattn_layer = MultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
            )
        elif attention_layer_type == "legacy_rel_selfattn":
            assert pos_enc_layer_type == "legacy_rel_pos"
            encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
            )
            logging.warning(
                "Using legacy_rel_selfattn and it will be deprecated in the future."
            )
        elif attention_layer_type == "rel_selfattn":
            assert pos_enc_layer_type == "rel_pos"
            encoder_selfattn_layer = RelPositionMultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
                zero_triu,
            )
        elif attention_layer_type == "fast_selfattn":
            assert pos_enc_layer_type in ["abs_pos", "scaled_abs_pos"]
            encoder_selfattn_layer = FastSelfAttention
            encoder_selfattn_layer_args = (
                output_size,
                attention_heads,
                attention_dropout_rate,
            )
        else:
            raise ValueError("unknown encoder_attn_layer: " + attention_layer_type)

        cgmlp_layer = ConvolutionalGatingMLP
        cgmlp_layer_args = (
            output_size,
            cgmlp_linear_units,
            cgmlp_conv_kernel,
            dropout_rate,
            use_linear_after_conv,
            gate_activation,
        )

        if isinstance(stochastic_depth_rate, float):
            stochastic_depth_rate = [stochastic_depth_rate] * num_blocks
        if len(stochastic_depth_rate) != num_blocks:
            raise ValueError(
                f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) "
                f"should be equal to num_blocks ({num_blocks})"
            )

        if isinstance(cgmlp_weight, float):
            cgmlp_weight = [cgmlp_weight] * num_blocks
        if len(cgmlp_weight) != num_blocks:
            raise ValueError(
                f"Length of cgmlp_weight ({len(cgmlp_weight)}) should be equal to "
                f"num_blocks ({num_blocks})"
            )

        if isinstance(attn_branch_drop_rate, float):
            attn_branch_drop_rate = [attn_branch_drop_rate] * num_blocks
        if len(attn_branch_drop_rate) != num_blocks:
            raise ValueError(
                f"Length of attn_branch_drop_rate ({len(attn_branch_drop_rate)}) "
                f"should be equal to num_blocks ({num_blocks})"
            )

        self.encoders = repeat(
            num_blocks,
            lambda lnum: BranchformerEncoderLayer(
                output_size,
                (
                    encoder_selfattn_layer(*encoder_selfattn_layer_args)
                    if use_attn
                    else None
                ),
                cgmlp_layer(*cgmlp_layer_args) if use_cgmlp else None,
                dropout_rate,
                merge_method,
                cgmlp_weight[lnum],
                attn_branch_drop_rate[lnum],
                stochastic_depth_rate[lnum],
            ),
        )
        self.after_norm = LayerNorm(output_size)

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        prev_states: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """Calculate forward propagation.

        Args:
            xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
            ilens (torch.Tensor): Input length (#batch).
            prev_states (torch.Tensor): Not to be used now.

        Returns:
            torch.Tensor: Output tensor (#batch, L, output_size).
            torch.Tensor: Output length (#batch).
            torch.Tensor: Not to be used now.

        """

        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)

        if (
            isinstance(self.embed, Conv2dSubsampling)
            or isinstance(self.embed, Conv2dSubsampling2)
            or isinstance(self.embed, Conv2dSubsampling6)
            or isinstance(self.embed, Conv2dSubsampling8)
        ):
            short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
            if short_status:
                raise TooShortUttError(
                    f"has {xs_pad.size(1)} frames and is too short for subsampling "
                    + f"(it needs more than {limit_size} frames), return empty results",
                    xs_pad.size(1),
                    limit_size,
                )
            xs_pad, masks = self.embed(xs_pad, masks)
        elif self.embed is not None:
            xs_pad = self.embed(xs_pad)

        xs_pad, masks = self.encoders(xs_pad, masks)

        if isinstance(xs_pad, tuple):
            xs_pad = xs_pad[0]

        xs_pad = self.after_norm(xs_pad)
        olens = masks.squeeze(1).sum(1)
        return xs_pad, olens, None