File size: 5,282 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""Fastformer attention definition.

Reference:
    Wu et al., "Fastformer: Additive Attention Can Be All You Need"
    https://arxiv.org/abs/2108.09084
    https://github.com/wuch15/Fastformer

"""

import numpy
import torch


class FastSelfAttention(torch.nn.Module):
    """Fast self-attention used in Fastformer."""

    def __init__(
        self,
        size,
        attention_heads,
        dropout_rate,
    ):
        super().__init__()
        if size % attention_heads != 0:
            raise ValueError(
                f"Hidden size ({size}) is not an integer multiple "
                f"of attention heads ({attention_heads})"
            )
        self.attention_head_size = size // attention_heads
        self.num_attention_heads = attention_heads

        self.query = torch.nn.Linear(size, size)
        self.query_att = torch.nn.Linear(size, attention_heads)
        self.key = torch.nn.Linear(size, size)
        self.key_att = torch.nn.Linear(size, attention_heads)
        self.transform = torch.nn.Linear(size, size)
        self.dropout = torch.nn.Dropout(dropout_rate)

    def espnet_initialization_fn(self):
        self.apply(self.init_weights)

    def init_weights(self, module):
        if isinstance(module, torch.nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
        if isinstance(module, torch.nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    def transpose_for_scores(self, x):
        """Reshape and transpose to compute scores.

        Args:
            x: (batch, time, size = n_heads * attn_dim)

        Returns:
            (batch, n_heads, time, attn_dim)
        """

        new_x_shape = x.shape[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        return x.reshape(*new_x_shape).transpose(1, 2)

    def forward(self, xs_pad, mask):
        """Forward method.

        Args:
            xs_pad: (batch, time, size = n_heads * attn_dim)
            mask: (batch, 1, time), nonpadding is 1, padding is 0

        Returns:
            torch.Tensor: (batch, time, size)
        """

        batch_size, seq_len, _ = xs_pad.shape
        mixed_query_layer = self.query(xs_pad)  # (batch, time, size)
        mixed_key_layer = self.key(xs_pad)  # (batch, time, size)

        if mask is not None:
            mask = mask.eq(0)  # padding is 1, nonpadding is 0

        # (batch, n_heads, time)
        query_for_score = (
            self.query_att(mixed_query_layer).transpose(1, 2)
            / self.attention_head_size**0.5
        )
        if mask is not None:
            min_value = float(
                numpy.finfo(
                    torch.tensor(0, dtype=query_for_score.dtype).numpy().dtype
                ).min
            )
            query_for_score = query_for_score.masked_fill(mask, min_value)
            query_weight = torch.softmax(query_for_score, dim=-1).masked_fill(mask, 0.0)
        else:
            query_weight = torch.softmax(query_for_score, dim=-1)

        query_weight = query_weight.unsqueeze(2)  # (batch, n_heads, 1, time)
        query_layer = self.transpose_for_scores(
            mixed_query_layer
        )  # (batch, n_heads, time, attn_dim)

        pooled_query = (
            torch.matmul(query_weight, query_layer)
            .transpose(1, 2)
            .reshape(-1, 1, self.num_attention_heads * self.attention_head_size)
        )  # (batch, 1, size = n_heads * attn_dim)
        pooled_query = self.dropout(pooled_query)
        pooled_query_repeat = pooled_query.repeat(1, seq_len, 1)  # (batch, time, size)

        mixed_query_key_layer = (
            mixed_key_layer * pooled_query_repeat
        )  # (batch, time, size)

        # (batch, n_heads, time)
        query_key_score = (
            self.key_att(mixed_query_key_layer) / self.attention_head_size**0.5
        ).transpose(1, 2)
        if mask is not None:
            min_value = float(
                numpy.finfo(
                    torch.tensor(0, dtype=query_key_score.dtype).numpy().dtype
                ).min
            )
            query_key_score = query_key_score.masked_fill(mask, min_value)
            query_key_weight = torch.softmax(query_key_score, dim=-1).masked_fill(
                mask, 0.0
            )
        else:
            query_key_weight = torch.softmax(query_key_score, dim=-1)

        query_key_weight = query_key_weight.unsqueeze(2)  # (batch, n_heads, 1, time)
        key_layer = self.transpose_for_scores(
            mixed_query_key_layer
        )  # (batch, n_heads, time, attn_dim)
        pooled_key = torch.matmul(
            query_key_weight, key_layer
        )  # (batch, n_heads, 1, attn_dim)
        pooled_key = self.dropout(pooled_key)

        # NOTE: value = query, due to param sharing
        weighted_value = (pooled_key * query_layer).transpose(
            1, 2
        )  # (batch, time, n_heads, attn_dim)
        weighted_value = weighted_value.reshape(
            weighted_value.shape[:-2]
            + (self.num_attention_heads * self.attention_head_size,)
        )  # (batch, time, size)
        weighted_value = (
            self.dropout(self.transform(weighted_value)) + mixed_query_layer
        )

        return weighted_value