Spaces:
Running
Running
File size: 16,136 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
import numpy as np
import torch.nn.functional as F
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Any, List, Tuple, Optional
from funasr_detach.register import tables
from funasr_detach.train_utils.device_funcs import to_device
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.utils.load_utils import load_audio_text_image_video
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.ct_transformer.utils import (
split_to_mini_sentence,
split_words,
)
import jieba as jieba
load_jieba = False
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
@tables.register("model_classes", "CTTransformer")
class CTTransformer(torch.nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(
self,
encoder: str = None,
encoder_conf: dict = None,
vocab_size: int = -1,
punc_list: list = None,
punc_weight: list = None,
embed_unit: int = 128,
att_unit: int = 256,
dropout_rate: float = 0.5,
ignore_id: int = -1,
sos: int = 1,
eos: int = 2,
sentence_end_id: int = 3,
**kwargs,
):
super().__init__()
punc_size = len(punc_list)
if punc_weight is None:
punc_weight = [1] * punc_size
self.embed = torch.nn.Embedding(vocab_size, embed_unit)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(**encoder_conf)
self.decoder = torch.nn.Linear(att_unit, punc_size)
self.encoder = encoder
self.punc_list = punc_list
self.punc_weight = punc_weight
self.ignore_id = ignore_id
self.sos = sos
self.eos = eos
self.sentence_end_id = sentence_end_id
def punc_forward(self, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs):
"""Compute loss value from buffer sequences.
Args:
input (torch.Tensor): Input ids. (batch, len)
hidden (torch.Tensor): Target ids. (batch, len)
"""
x = self.embed(text)
# mask = self._target_mask(input)
h, _, _ = self.encoder(x, text_lengths)
y = self.decoder(h)
return y, None
def with_vad(self):
return False
def score(
self, y: torch.Tensor, state: Any, x: torch.Tensor
) -> Tuple[torch.Tensor, Any]:
"""Score new token.
Args:
y (torch.Tensor): 1D torch.int64 prefix tokens.
state: Scorer state for prefix tokens
x (torch.Tensor): encoder feature that generates ys.
Returns:
tuple[torch.Tensor, Any]: Tuple of
torch.float32 scores for next token (vocab_size)
and next state for ys
"""
y = y.unsqueeze(0)
h, _, cache = self.encoder.forward_one_step(
self.embed(y), self._target_mask(y), cache=state
)
h = self.decoder(h[:, -1])
logp = h.log_softmax(dim=-1).squeeze(0)
return logp, cache
def batch_score(
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
) -> Tuple[torch.Tensor, List[Any]]:
"""Score new token batch.
Args:
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (torch.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[torch.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, vocab_size)`
and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.encoder.encoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
torch.stack([states[b][i] for b in range(n_batch)])
for i in range(n_layers)
]
# batch decoding
h, _, states = self.encoder.forward_one_step(
self.embed(ys), self._target_mask(ys), cache=batch_state
)
h = self.decoder(h[:, -1])
logp = h.log_softmax(dim=-1)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
return logp, state_list
def nll(
self,
text: torch.Tensor,
punc: torch.Tensor,
text_lengths: torch.Tensor,
punc_lengths: torch.Tensor,
max_length: Optional[int] = None,
vad_indexes: Optional[torch.Tensor] = None,
vad_indexes_lengths: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll)
Normally, this function is called in batchify_nll.
Args:
text: (Batch, Length)
punc: (Batch, Length)
text_lengths: (Batch,)
max_lengths: int
"""
batch_size = text.size(0)
# For data parallel
if max_length is None:
text = text[:, : text_lengths.max()]
punc = punc[:, : text_lengths.max()]
else:
text = text[:, :max_length]
punc = punc[:, :max_length]
if self.with_vad():
# Should be VadRealtimeTransformer
assert vad_indexes is not None
y, _ = self.punc_forward(text, text_lengths, vad_indexes)
else:
# Should be TargetDelayTransformer,
y, _ = self.punc_forward(text, text_lengths)
# Calc negative log likelihood
# nll: (BxL,)
if self.training == False:
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
from sklearn.metrics import f1_score
f1_score = f1_score(
punc.view(-1).detach().cpu().numpy(),
indices.squeeze(-1).detach().cpu().numpy(),
average="micro",
)
nll = torch.Tensor([f1_score]).repeat(text_lengths.sum())
return nll, text_lengths
else:
self.punc_weight = self.punc_weight.to(punc.device)
nll = F.cross_entropy(
y.view(-1, y.shape[-1]),
punc.view(-1),
self.punc_weight,
reduction="none",
ignore_index=self.ignore_id,
)
# nll: (BxL,) -> (BxL,)
if max_length is None:
nll.masked_fill_(make_pad_mask(text_lengths).to(nll.device).view(-1), 0.0)
else:
nll.masked_fill_(
make_pad_mask(text_lengths, maxlen=max_length + 1)
.to(nll.device)
.view(-1),
0.0,
)
# nll: (BxL,) -> (B, L)
nll = nll.view(batch_size, -1)
return nll, text_lengths
def forward(
self,
text: torch.Tensor,
punc: torch.Tensor,
text_lengths: torch.Tensor,
punc_lengths: torch.Tensor,
vad_indexes: Optional[torch.Tensor] = None,
vad_indexes_lengths: Optional[torch.Tensor] = None,
):
nll, y_lengths = self.nll(
text, punc, text_lengths, punc_lengths, vad_indexes=vad_indexes
)
ntokens = y_lengths.sum()
loss = nll.sum() / ntokens
stats = dict(loss=loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
return loss, stats, weight
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
assert len(data_in) == 1
text = load_audio_text_image_video(
data_in, data_type=kwargs.get("kwargs", "text")
)[0]
vad_indexes = kwargs.get("vad_indexes", None)
# text = data_in[0]
# text_lengths = data_lengths[0] if data_lengths is not None else None
split_size = kwargs.get("split_size", 20)
jieba_usr_dict = kwargs.get("jieba_usr_dict", None)
global load_jieba
if load_jieba:
jieba_usr_dict = jieba
kwargs["jieba_usr_dict"] = "jieba_usr_dict"
else:
if jieba_usr_dict and isinstance(jieba_usr_dict, str):
# import jieba
jieba.load_userdict(jieba_usr_dict)
jieba_usr_dict = jieba
kwargs["jieba_usr_dict"] = "jieba_usr_dict"
load_jieba = True
tokens = split_words(text, jieba_usr_dict=jieba_usr_dict)
tokens_int = tokenizer.encode(tokens)
mini_sentences = split_to_mini_sentence(tokens, split_size)
mini_sentences_id = split_to_mini_sentence(tokens_int, split_size)
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = torch.from_numpy(np.array([], dtype="int32"))
new_mini_sentence = ""
new_mini_sentence_punc = []
cache_pop_trigger_limit = 200
results = []
meta_data = {}
punc_array = None
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
data = {
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
"text_lengths": torch.from_numpy(
np.array([len(mini_sentence_id)], dtype="int32")
),
}
data = to_device(data, kwargs["device"])
# y, _ = self.wrapped_model(**data)
y, _ = self.punc_forward(**data)
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
punctuations = indices
if indices.size()[0] != 1:
punctuations = torch.squeeze(indices)
assert punctuations.size()[0] == len(mini_sentence)
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if (
self.punc_list[punctuations[i]] == "。"
or self.punc_list[punctuations[i]] == "?"
):
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
last_comma_index = i
if (
sentenceEnd < 0
and len(mini_sentence) > cache_pop_trigger_limit
and last_comma_index >= 0
):
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.sentence_end_id
cache_sent = mini_sentence[sentenceEnd + 1 :]
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
punctuations = punctuations[0 : sentenceEnd + 1]
# if len(punctuations) == 0:
# continue
punctuations_np = punctuations.cpu().numpy()
new_mini_sentence_punc += [int(x) for x in punctuations_np]
words_with_punc = []
for i in range(len(mini_sentence)):
if (
i == 0
or self.punc_list[punctuations[i - 1]] == "。"
or self.punc_list[punctuations[i - 1]] == "?"
) and len(mini_sentence[i][0].encode()) == 1:
mini_sentence[i] = mini_sentence[i].capitalize()
if i == 0:
if len(mini_sentence[i][0].encode()) == 1:
mini_sentence[i] = " " + mini_sentence[i]
if i > 0:
if (
len(mini_sentence[i][0].encode()) == 1
and len(mini_sentence[i - 1][0].encode()) == 1
):
mini_sentence[i] = " " + mini_sentence[i]
words_with_punc.append(mini_sentence[i])
if self.punc_list[punctuations[i]] != "_":
punc_res = self.punc_list[punctuations[i]]
if len(mini_sentence[i][0].encode()) == 1:
if punc_res == ",":
punc_res = ","
elif punc_res == "。":
punc_res = "."
elif punc_res == "?":
punc_res = "?"
words_with_punc.append(punc_res)
new_mini_sentence += "".join(words_with_punc)
# Add Period for the end of the sentence
new_mini_sentence_out = new_mini_sentence
new_mini_sentence_punc_out = new_mini_sentence_punc
if mini_sentence_i == len(mini_sentences) - 1:
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
self.sentence_end_id
]
elif new_mini_sentence[-1] == ",":
new_mini_sentence_out = new_mini_sentence[:-1] + "."
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
self.sentence_end_id
]
elif (
new_mini_sentence[-1] != "。"
and new_mini_sentence[-1] != "?"
and len(new_mini_sentence[-1].encode()) != 1
):
new_mini_sentence_out = new_mini_sentence + "。"
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
self.sentence_end_id
]
if len(punctuations):
punctuations[-1] = 2
elif (
new_mini_sentence[-1] != "."
and new_mini_sentence[-1] != "?"
and len(new_mini_sentence[-1].encode()) == 1
):
new_mini_sentence_out = new_mini_sentence + "."
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
self.sentence_end_id
]
if len(punctuations):
punctuations[-1] = 2
# keep a punctuations array for punc segment
if punc_array is None:
punc_array = punctuations
else:
punc_array = torch.cat([punc_array, punctuations], dim=0)
result_i = {
"key": key[0],
"text": new_mini_sentence_out,
"punc_array": punc_array,
}
results.append(result_i)
return results, meta_data
|