File size: 16,136 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
import numpy as np
import torch.nn.functional as F
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Any, List, Tuple, Optional

from funasr_detach.register import tables
from funasr_detach.train_utils.device_funcs import to_device
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.utils.load_utils import load_audio_text_image_video
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.ct_transformer.utils import (
    split_to_mini_sentence,
    split_words,
)

import jieba as jieba

load_jieba = False


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "CTTransformer")
class CTTransformer(torch.nn.Module):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
    https://arxiv.org/pdf/2003.01309.pdf
    """

    def __init__(
        self,
        encoder: str = None,
        encoder_conf: dict = None,
        vocab_size: int = -1,
        punc_list: list = None,
        punc_weight: list = None,
        embed_unit: int = 128,
        att_unit: int = 256,
        dropout_rate: float = 0.5,
        ignore_id: int = -1,
        sos: int = 1,
        eos: int = 2,
        sentence_end_id: int = 3,
        **kwargs,
    ):
        super().__init__()

        punc_size = len(punc_list)
        if punc_weight is None:
            punc_weight = [1] * punc_size

        self.embed = torch.nn.Embedding(vocab_size, embed_unit)
        encoder_class = tables.encoder_classes.get(encoder)
        encoder = encoder_class(**encoder_conf)

        self.decoder = torch.nn.Linear(att_unit, punc_size)
        self.encoder = encoder
        self.punc_list = punc_list
        self.punc_weight = punc_weight
        self.ignore_id = ignore_id
        self.sos = sos
        self.eos = eos
        self.sentence_end_id = sentence_end_id

    def punc_forward(self, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs):
        """Compute loss value from buffer sequences.

        Args:
            input (torch.Tensor): Input ids. (batch, len)
            hidden (torch.Tensor): Target ids. (batch, len)

        """
        x = self.embed(text)
        # mask = self._target_mask(input)
        h, _, _ = self.encoder(x, text_lengths)
        y = self.decoder(h)
        return y, None

    def with_vad(self):
        return False

    def score(
        self, y: torch.Tensor, state: Any, x: torch.Tensor
    ) -> Tuple[torch.Tensor, Any]:
        """Score new token.

        Args:
            y (torch.Tensor): 1D torch.int64 prefix tokens.
            state: Scorer state for prefix tokens
            x (torch.Tensor): encoder feature that generates ys.

        Returns:
            tuple[torch.Tensor, Any]: Tuple of
                torch.float32 scores for next token (vocab_size)
                and next state for ys

        """
        y = y.unsqueeze(0)
        h, _, cache = self.encoder.forward_one_step(
            self.embed(y), self._target_mask(y), cache=state
        )
        h = self.decoder(h[:, -1])
        logp = h.log_softmax(dim=-1).squeeze(0)
        return logp, cache

    def batch_score(
        self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
    ) -> Tuple[torch.Tensor, List[Any]]:
        """Score new token batch.

        Args:
            ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
            states (List[Any]): Scorer states for prefix tokens.
            xs (torch.Tensor):
                The encoder feature that generates ys (n_batch, xlen, n_feat).

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, vocab_size)`
                and next state list for ys.

        """
        # merge states
        n_batch = len(ys)
        n_layers = len(self.encoder.encoders)
        if states[0] is None:
            batch_state = None
        else:
            # transpose state of [batch, layer] into [layer, batch]
            batch_state = [
                torch.stack([states[b][i] for b in range(n_batch)])
                for i in range(n_layers)
            ]

        # batch decoding
        h, _, states = self.encoder.forward_one_step(
            self.embed(ys), self._target_mask(ys), cache=batch_state
        )
        h = self.decoder(h[:, -1])
        logp = h.log_softmax(dim=-1)

        # transpose state of [layer, batch] into [batch, layer]
        state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
        return logp, state_list

    def nll(
        self,
        text: torch.Tensor,
        punc: torch.Tensor,
        text_lengths: torch.Tensor,
        punc_lengths: torch.Tensor,
        max_length: Optional[int] = None,
        vad_indexes: Optional[torch.Tensor] = None,
        vad_indexes_lengths: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Compute negative log likelihood(nll)

        Normally, this function is called in batchify_nll.
        Args:
            text: (Batch, Length)
            punc: (Batch, Length)
            text_lengths: (Batch,)
            max_lengths: int
        """
        batch_size = text.size(0)
        # For data parallel
        if max_length is None:
            text = text[:, : text_lengths.max()]
            punc = punc[:, : text_lengths.max()]
        else:
            text = text[:, :max_length]
            punc = punc[:, :max_length]

        if self.with_vad():
            # Should be VadRealtimeTransformer
            assert vad_indexes is not None
            y, _ = self.punc_forward(text, text_lengths, vad_indexes)
        else:
            # Should be TargetDelayTransformer,
            y, _ = self.punc_forward(text, text_lengths)

        # Calc negative log likelihood
        # nll: (BxL,)
        if self.training == False:
            _, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
            from sklearn.metrics import f1_score

            f1_score = f1_score(
                punc.view(-1).detach().cpu().numpy(),
                indices.squeeze(-1).detach().cpu().numpy(),
                average="micro",
            )
            nll = torch.Tensor([f1_score]).repeat(text_lengths.sum())
            return nll, text_lengths
        else:
            self.punc_weight = self.punc_weight.to(punc.device)
            nll = F.cross_entropy(
                y.view(-1, y.shape[-1]),
                punc.view(-1),
                self.punc_weight,
                reduction="none",
                ignore_index=self.ignore_id,
            )
        # nll: (BxL,) -> (BxL,)
        if max_length is None:
            nll.masked_fill_(make_pad_mask(text_lengths).to(nll.device).view(-1), 0.0)
        else:
            nll.masked_fill_(
                make_pad_mask(text_lengths, maxlen=max_length + 1)
                .to(nll.device)
                .view(-1),
                0.0,
            )
        # nll: (BxL,) -> (B, L)
        nll = nll.view(batch_size, -1)
        return nll, text_lengths

    def forward(
        self,
        text: torch.Tensor,
        punc: torch.Tensor,
        text_lengths: torch.Tensor,
        punc_lengths: torch.Tensor,
        vad_indexes: Optional[torch.Tensor] = None,
        vad_indexes_lengths: Optional[torch.Tensor] = None,
    ):
        nll, y_lengths = self.nll(
            text, punc, text_lengths, punc_lengths, vad_indexes=vad_indexes
        )
        ntokens = y_lengths.sum()
        loss = nll.sum() / ntokens
        stats = dict(loss=loss.detach())

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
        return loss, stats, weight

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):
        assert len(data_in) == 1
        text = load_audio_text_image_video(
            data_in, data_type=kwargs.get("kwargs", "text")
        )[0]
        vad_indexes = kwargs.get("vad_indexes", None)
        # text = data_in[0]
        # text_lengths = data_lengths[0] if data_lengths is not None else None
        split_size = kwargs.get("split_size", 20)

        jieba_usr_dict = kwargs.get("jieba_usr_dict", None)
        global load_jieba
        if load_jieba:
            jieba_usr_dict = jieba
            kwargs["jieba_usr_dict"] = "jieba_usr_dict"
        else:
            if jieba_usr_dict and isinstance(jieba_usr_dict, str):
                # import jieba
                jieba.load_userdict(jieba_usr_dict)
                jieba_usr_dict = jieba
                kwargs["jieba_usr_dict"] = "jieba_usr_dict"
                load_jieba = True
        tokens = split_words(text, jieba_usr_dict=jieba_usr_dict)
        tokens_int = tokenizer.encode(tokens)

        mini_sentences = split_to_mini_sentence(tokens, split_size)
        mini_sentences_id = split_to_mini_sentence(tokens_int, split_size)
        assert len(mini_sentences) == len(mini_sentences_id)
        cache_sent = []
        cache_sent_id = torch.from_numpy(np.array([], dtype="int32"))
        new_mini_sentence = ""
        new_mini_sentence_punc = []
        cache_pop_trigger_limit = 200
        results = []
        meta_data = {}
        punc_array = None
        for mini_sentence_i in range(len(mini_sentences)):
            mini_sentence = mini_sentences[mini_sentence_i]
            mini_sentence_id = mini_sentences_id[mini_sentence_i]
            mini_sentence = cache_sent + mini_sentence
            mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
            data = {
                "text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
                "text_lengths": torch.from_numpy(
                    np.array([len(mini_sentence_id)], dtype="int32")
                ),
            }
            data = to_device(data, kwargs["device"])
            # y, _ = self.wrapped_model(**data)
            y, _ = self.punc_forward(**data)
            _, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
            punctuations = indices
            if indices.size()[0] != 1:
                punctuations = torch.squeeze(indices)
            assert punctuations.size()[0] == len(mini_sentence)

            # Search for the last Period/QuestionMark as cache
            if mini_sentence_i < len(mini_sentences) - 1:
                sentenceEnd = -1
                last_comma_index = -1
                for i in range(len(punctuations) - 2, 1, -1):
                    if (
                        self.punc_list[punctuations[i]] == "。"
                        or self.punc_list[punctuations[i]] == "?"
                    ):
                        sentenceEnd = i
                        break
                    if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
                        last_comma_index = i

                if (
                    sentenceEnd < 0
                    and len(mini_sentence) > cache_pop_trigger_limit
                    and last_comma_index >= 0
                ):
                    # The sentence it too long, cut off at a comma.
                    sentenceEnd = last_comma_index
                    punctuations[sentenceEnd] = self.sentence_end_id
                cache_sent = mini_sentence[sentenceEnd + 1 :]
                cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
                mini_sentence = mini_sentence[0 : sentenceEnd + 1]
                punctuations = punctuations[0 : sentenceEnd + 1]

            # if len(punctuations) == 0:
            #    continue

            punctuations_np = punctuations.cpu().numpy()
            new_mini_sentence_punc += [int(x) for x in punctuations_np]
            words_with_punc = []
            for i in range(len(mini_sentence)):
                if (
                    i == 0
                    or self.punc_list[punctuations[i - 1]] == "。"
                    or self.punc_list[punctuations[i - 1]] == "?"
                ) and len(mini_sentence[i][0].encode()) == 1:
                    mini_sentence[i] = mini_sentence[i].capitalize()
                if i == 0:
                    if len(mini_sentence[i][0].encode()) == 1:
                        mini_sentence[i] = " " + mini_sentence[i]
                if i > 0:
                    if (
                        len(mini_sentence[i][0].encode()) == 1
                        and len(mini_sentence[i - 1][0].encode()) == 1
                    ):
                        mini_sentence[i] = " " + mini_sentence[i]
                words_with_punc.append(mini_sentence[i])
                if self.punc_list[punctuations[i]] != "_":
                    punc_res = self.punc_list[punctuations[i]]
                    if len(mini_sentence[i][0].encode()) == 1:
                        if punc_res == ",":
                            punc_res = ","
                        elif punc_res == "。":
                            punc_res = "."
                        elif punc_res == "?":
                            punc_res = "?"
                    words_with_punc.append(punc_res)
            new_mini_sentence += "".join(words_with_punc)
            # Add Period for the end of the sentence
            new_mini_sentence_out = new_mini_sentence
            new_mini_sentence_punc_out = new_mini_sentence_punc
            if mini_sentence_i == len(mini_sentences) - 1:
                if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
                    new_mini_sentence_out = new_mini_sentence[:-1] + "。"
                    new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
                        self.sentence_end_id
                    ]
                elif new_mini_sentence[-1] == ",":
                    new_mini_sentence_out = new_mini_sentence[:-1] + "."
                    new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
                        self.sentence_end_id
                    ]
                elif (
                    new_mini_sentence[-1] != "。"
                    and new_mini_sentence[-1] != "?"
                    and len(new_mini_sentence[-1].encode()) != 1
                ):
                    new_mini_sentence_out = new_mini_sentence + "。"
                    new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
                        self.sentence_end_id
                    ]
                    if len(punctuations):
                        punctuations[-1] = 2
                elif (
                    new_mini_sentence[-1] != "."
                    and new_mini_sentence[-1] != "?"
                    and len(new_mini_sentence[-1].encode()) == 1
                ):
                    new_mini_sentence_out = new_mini_sentence + "."
                    new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
                        self.sentence_end_id
                    ]
                    if len(punctuations):
                        punctuations[-1] = 2
            # keep a punctuations array for punc segment
            if punc_array is None:
                punc_array = punctuations
            else:
                punc_array = torch.cat([punc_array, punctuations], dim=0)
        result_i = {
            "key": key[0],
            "text": new_mini_sentence_out,
            "punc_array": punc_array,
        }
        results.append(result_i)
        return results, meta_data