File size: 15,057 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
from typing import List, Optional, Tuple

from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.sanm.attention import MultiHeadedAttention
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.utils.subsampling import check_short_utt
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.embedding import SinusoidalPositionEncoder
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.mask import subsequent_mask, vad_mask
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from funasr_detach.models.ct_transformer_streaming.attention import (
    MultiHeadedAttentionSANMwithMask,
)
from funasr_detach.models.transformer.utils.subsampling import (
    Conv2dSubsampling,
    Conv2dSubsampling2,
    Conv2dSubsampling6,
    Conv2dSubsampling8,
)


class EncoderLayerSANM(torch.nn.Module):
    def __init__(
        self,
        in_size,
        size,
        self_attn,
        feed_forward,
        dropout_rate,
        normalize_before=True,
        concat_after=False,
        stochastic_depth_rate=0.0,
    ):
        """Construct an EncoderLayer object."""
        super(EncoderLayerSANM, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.norm1 = LayerNorm(in_size)
        self.norm2 = LayerNorm(size)
        self.dropout = torch.nn.Dropout(dropout_rate)
        self.in_size = in_size
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = torch.nn.Linear(size + size, size)
        self.stochastic_depth_rate = stochastic_depth_rate
        self.dropout_rate = dropout_rate

    def forward(
        self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None
    ):
        """Compute encoded features.

        Args:
            x_input (torch.Tensor): Input tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).

        """
        skip_layer = False
        # with stochastic depth, residual connection `x + f(x)` becomes
        # `x <- x + 1 / (1 - p) * f(x)` at training time.
        stoch_layer_coeff = 1.0
        if self.training and self.stochastic_depth_rate > 0:
            skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
            stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)

        if skip_layer:
            if cache is not None:
                x = torch.cat([cache, x], dim=1)
            return x, mask

        residual = x
        if self.normalize_before:
            x = self.norm1(x)

        if self.concat_after:
            x_concat = torch.cat(
                (
                    x,
                    self.self_attn(
                        x,
                        mask,
                        mask_shfit_chunk=mask_shfit_chunk,
                        mask_att_chunk_encoder=mask_att_chunk_encoder,
                    ),
                ),
                dim=-1,
            )
            if self.in_size == self.size:
                x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
            else:
                x = stoch_layer_coeff * self.concat_linear(x_concat)
        else:
            if self.in_size == self.size:
                x = residual + stoch_layer_coeff * self.dropout(
                    self.self_attn(
                        x,
                        mask,
                        mask_shfit_chunk=mask_shfit_chunk,
                        mask_att_chunk_encoder=mask_att_chunk_encoder,
                    )
                )
            else:
                x = stoch_layer_coeff * self.dropout(
                    self.self_attn(
                        x,
                        mask,
                        mask_shfit_chunk=mask_shfit_chunk,
                        mask_att_chunk_encoder=mask_att_chunk_encoder,
                    )
                )
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm2(x)

        return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder

    def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0):
        """Compute encoded features.

        Args:
            x_input (torch.Tensor): Input tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).

        """

        residual = x
        if self.normalize_before:
            x = self.norm1(x)

        if self.in_size == self.size:
            attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
            x = residual + attn
        else:
            x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)

        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + self.feed_forward(x)
        if not self.normalize_before:
            x = self.norm2(x)

        return x, cache


@tables.register("encoder_classes", "SANMVadEncoder")
class SANMVadEncoder(torch.nn.Module):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group

    """

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: Optional[str] = "conv2d",
        pos_enc_class=SinusoidalPositionEncoder,
        normalize_before: bool = True,
        concat_after: bool = False,
        positionwise_layer_type: str = "linear",
        positionwise_conv_kernel_size: int = 1,
        padding_idx: int = -1,
        interctc_layer_idx: List[int] = [],
        interctc_use_conditioning: bool = False,
        kernel_size: int = 11,
        sanm_shfit: int = 0,
        selfattention_layer_type: str = "sanm",
    ):
        super().__init__()
        self._output_size = output_size

        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(input_size, output_size),
                torch.nn.LayerNorm(output_size),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
        elif input_layer == "conv2d2":
            self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
                SinusoidalPositionEncoder(),
            )
        elif input_layer is None:
            if input_size == output_size:
                self.embed = None
            else:
                self.embed = torch.nn.Linear(input_size, output_size)
        elif input_layer == "pe":
            self.embed = SinusoidalPositionEncoder()
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (
                output_size,
                linear_units,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")

        if selfattention_layer_type == "selfattn":
            encoder_selfattn_layer = MultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
            )

        elif selfattention_layer_type == "sanm":
            self.encoder_selfattn_layer = MultiHeadedAttentionSANMwithMask
            encoder_selfattn_layer_args0 = (
                attention_heads,
                input_size,
                output_size,
                attention_dropout_rate,
                kernel_size,
                sanm_shfit,
            )

            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                output_size,
                attention_dropout_rate,
                kernel_size,
                sanm_shfit,
            )

        self.encoders0 = repeat(
            1,
            lambda lnum: EncoderLayerSANM(
                input_size,
                output_size,
                self.encoder_selfattn_layer(*encoder_selfattn_layer_args0),
                positionwise_layer(*positionwise_layer_args),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )

        self.encoders = repeat(
            num_blocks - 1,
            lambda lnum: EncoderLayerSANM(
                output_size,
                output_size,
                self.encoder_selfattn_layer(*encoder_selfattn_layer_args),
                positionwise_layer(*positionwise_layer_args),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(output_size)

        self.interctc_layer_idx = interctc_layer_idx
        if len(interctc_layer_idx) > 0:
            assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
        self.interctc_use_conditioning = interctc_use_conditioning
        self.conditioning_layer = None
        self.dropout = torch.nn.Dropout(dropout_rate)

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        vad_indexes: torch.Tensor,
        prev_states: torch.Tensor = None,
        ctc: CTC = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """Embed positions in tensor.

        Args:
            xs_pad: input tensor (B, L, D)
            ilens: input length (B)
            prev_states: Not to be used now.
        Returns:
            position embedded tensor and mask
        """
        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
        sub_masks = subsequent_mask(masks.size(-1), device=xs_pad.device).unsqueeze(0)
        no_future_masks = masks & sub_masks
        xs_pad *= self.output_size() ** 0.5
        if self.embed is None:
            xs_pad = xs_pad
        elif (
            isinstance(self.embed, Conv2dSubsampling)
            or isinstance(self.embed, Conv2dSubsampling2)
            or isinstance(self.embed, Conv2dSubsampling6)
            or isinstance(self.embed, Conv2dSubsampling8)
        ):
            short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
            if short_status:
                raise TooShortUttError(
                    f"has {xs_pad.size(1)} frames and is too short for subsampling "
                    + f"(it needs more than {limit_size} frames), return empty results",
                    xs_pad.size(1),
                    limit_size,
                )
            xs_pad, masks = self.embed(xs_pad, masks)
        else:
            xs_pad = self.embed(xs_pad)

        # xs_pad = self.dropout(xs_pad)
        mask_tup0 = [masks, no_future_masks]
        encoder_outs = self.encoders0(xs_pad, mask_tup0)
        xs_pad, _ = encoder_outs[0], encoder_outs[1]
        intermediate_outs = []

        for layer_idx, encoder_layer in enumerate(self.encoders):
            if layer_idx + 1 == len(self.encoders):
                # This is last layer.
                coner_mask = torch.ones(
                    masks.size(0),
                    masks.size(-1),
                    masks.size(-1),
                    device=xs_pad.device,
                    dtype=torch.bool,
                )
                for word_index, length in enumerate(ilens):
                    coner_mask[word_index, :, :] = vad_mask(
                        masks.size(-1), vad_indexes[word_index], device=xs_pad.device
                    )
                layer_mask = masks & coner_mask
            else:
                layer_mask = no_future_masks
            mask_tup1 = [masks, layer_mask]
            encoder_outs = encoder_layer(xs_pad, mask_tup1)
            xs_pad, layer_mask = encoder_outs[0], encoder_outs[1]

        if self.normalize_before:
            xs_pad = self.after_norm(xs_pad)

        olens = masks.squeeze(1).sum(1)
        if len(intermediate_outs) > 0:
            return (xs_pad, intermediate_outs), olens, None
        return xs_pad, olens, None