Spaces:
Running
Running
File size: 20,616 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from funasr_detach.models.data2vec.data_utils import compute_mask_indices
from funasr_detach.models.data2vec.ema_module import EMAModule
from funasr_detach.models.data2vec.grad_multiply import GradMultiply
from funasr_detach.models.data2vec.wav2vec2 import (
ConvFeatureExtractionModel,
TransformerEncoder,
)
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
def get_annealed_rate(start, end, curr_step, total_steps):
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
class Data2VecEncoder(nn.Module):
def __init__(
self,
# for ConvFeatureExtractionModel
input_size: int = None,
extractor_mode: str = None,
conv_feature_layers: str = "[(512,2,2)] + [(512,2,2)]",
# for Transformer Encoder
## model architecture
layer_type: str = "transformer",
layer_norm_first: bool = False,
encoder_layers: int = 12,
encoder_embed_dim: int = 768,
encoder_ffn_embed_dim: int = 3072,
encoder_attention_heads: int = 12,
activation_fn: str = "gelu",
## dropouts
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.0,
encoder_layerdrop: float = 0.0,
dropout_input: float = 0.0,
dropout_features: float = 0.0,
## grad settings
feature_grad_mult: float = 1.0,
## masking
mask_prob: float = 0.65,
mask_length: int = 10,
mask_selection: str = "static",
mask_other: int = 0,
no_mask_overlap: bool = False,
mask_min_space: int = 1,
require_same_masks: bool = True, # if set as True, collate_fn should be clipping
mask_dropout: float = 0.0,
## channel masking
mask_channel_length: int = 10,
mask_channel_prob: float = 0.0,
mask_channel_before: bool = False,
mask_channel_selection: str = "static",
mask_channel_other: int = 0,
no_mask_channel_overlap: bool = False,
mask_channel_min_space: int = 1,
## positional embeddings
conv_pos: int = 128,
conv_pos_groups: int = 16,
pos_conv_depth: int = 1,
max_positions: int = 100000,
# EMA module
average_top_k_layers: int = 8,
layer_norm_target_layer: bool = False,
instance_norm_target_layer: bool = False,
instance_norm_targets: bool = False,
layer_norm_targets: bool = False,
batch_norm_target_layer: bool = False,
group_norm_target_layer: bool = False,
ema_decay: float = 0.999,
ema_end_decay: float = 0.9999,
ema_anneal_end_step: int = 100000,
ema_transformer_only: bool = True,
ema_layers_only: bool = True,
min_target_var: float = 0.1,
min_pred_var: float = 0.01,
# Loss
loss_beta: float = 0.0,
loss_scale: float = None,
# FP16 optimization
required_seq_len_multiple: int = 2,
):
super().__init__()
# ConvFeatureExtractionModel
self.conv_feature_layers = conv_feature_layers
feature_enc_layers = eval(conv_feature_layers)
self.extractor_embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=extractor_mode,
in_d=input_size,
)
# Transformer Encoder
## model architecture
self.layer_type = layer_type
self.layer_norm_first = layer_norm_first
self.encoder_layers = encoder_layers
self.encoder_embed_dim = encoder_embed_dim
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
self.encoder_attention_heads = encoder_attention_heads
self.activation_fn = activation_fn
## dropout
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.dropout_input = dropout_input
self.dropout_features = dropout_features
## grad settings
self.feature_grad_mult = feature_grad_mult
## masking
self.mask_prob = mask_prob
self.mask_length = mask_length
self.mask_selection = mask_selection
self.mask_other = mask_other
self.no_mask_overlap = no_mask_overlap
self.mask_min_space = mask_min_space
self.require_same_masks = (
require_same_masks # if set as True, collate_fn should be clipping
)
self.mask_dropout = mask_dropout
## channel masking
self.mask_channel_length = mask_channel_length
self.mask_channel_prob = mask_channel_prob
self.mask_channel_before = mask_channel_before
self.mask_channel_selection = mask_channel_selection
self.mask_channel_other = mask_channel_other
self.no_mask_channel_overlap = no_mask_channel_overlap
self.mask_channel_min_space = mask_channel_min_space
## positional embeddings
self.conv_pos = conv_pos
self.conv_pos_groups = conv_pos_groups
self.pos_conv_depth = pos_conv_depth
self.max_positions = max_positions
self.mask_emb = nn.Parameter(
torch.FloatTensor(self.encoder_embed_dim).uniform_()
)
self.encoder = TransformerEncoder(
dropout=self.dropout,
encoder_embed_dim=self.encoder_embed_dim,
required_seq_len_multiple=required_seq_len_multiple,
pos_conv_depth=self.pos_conv_depth,
conv_pos=self.conv_pos,
conv_pos_groups=self.conv_pos_groups,
# transformer layers
layer_type=self.layer_type,
encoder_layers=self.encoder_layers,
encoder_ffn_embed_dim=self.encoder_ffn_embed_dim,
encoder_attention_heads=self.encoder_attention_heads,
attention_dropout=self.attention_dropout,
activation_dropout=self.activation_dropout,
activation_fn=self.activation_fn,
layer_norm_first=self.layer_norm_first,
encoder_layerdrop=self.encoder_layerdrop,
max_positions=self.max_positions,
)
## projections and dropouts
self.post_extract_proj = nn.Linear(self.extractor_embed, self.encoder_embed_dim)
self.dropout_input = nn.Dropout(self.dropout_input)
self.dropout_features = nn.Dropout(self.dropout_features)
self.layer_norm = torch.nn.LayerNorm(self.extractor_embed)
self.final_proj = nn.Linear(self.encoder_embed_dim, self.encoder_embed_dim)
# EMA module
self.average_top_k_layers = average_top_k_layers
self.layer_norm_target_layer = layer_norm_target_layer
self.instance_norm_target_layer = instance_norm_target_layer
self.instance_norm_targets = instance_norm_targets
self.layer_norm_targets = layer_norm_targets
self.batch_norm_target_layer = batch_norm_target_layer
self.group_norm_target_layer = group_norm_target_layer
self.ema_decay = ema_decay
self.ema_end_decay = ema_end_decay
self.ema_anneal_end_step = ema_anneal_end_step
self.ema_transformer_only = ema_transformer_only
self.ema_layers_only = ema_layers_only
self.min_target_var = min_target_var
self.min_pred_var = min_pred_var
self.ema = None
# Loss
self.loss_beta = loss_beta
self.loss_scale = loss_scale
# FP16 optimization
self.required_seq_len_multiple = required_seq_len_multiple
self.num_updates = 0
logging.info("Data2VecEncoder settings: {}".format(self.__dict__))
def make_ema_teacher(self):
skip_keys = set()
if self.ema_layers_only:
self.ema_transformer_only = True
for k, _ in self.encoder.pos_conv.named_parameters():
skip_keys.add(f"pos_conv.{k}")
self.ema = EMAModule(
self.encoder if self.ema_transformer_only else self,
ema_decay=self.ema_decay,
ema_fp32=True,
skip_keys=skip_keys,
)
def set_num_updates(self, num_updates):
if self.ema is None and self.final_proj is not None:
logging.info("Making EMA Teacher")
self.make_ema_teacher()
elif self.training and self.ema is not None:
if self.ema_decay != self.ema_end_decay:
if num_updates >= self.ema_anneal_end_step:
decay = self.ema_end_decay
else:
decay = get_annealed_rate(
self.ema_decay,
self.ema_end_decay,
num_updates,
self.ema_anneal_end_step,
)
self.ema.set_decay(decay)
if self.ema.get_decay() < 1:
self.ema.step(self.encoder if self.ema_transformer_only else self)
self.num_updates = num_updates
def apply_mask(
self,
x,
padding_mask,
mask_indices=None,
mask_channel_indices=None,
):
B, T, C = x.shape
if self.mask_channel_prob > 0 and self.mask_channel_before:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
if self.mask_prob > 0:
if mask_indices is None:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=1,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
require_same_masks=self.require_same_masks,
mask_dropout=self.mask_dropout,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0 and not self.mask_channel_before:
if mask_channel_indices is None:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
return torch.floor(
(input_length - kernel_size).to(torch.float32) / stride + 1
)
conv_cfg_list = eval(self.conv_feature_layers)
for i in range(len(conv_cfg_list)):
input_lengths = _conv_out_length(
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
)
return input_lengths.to(torch.long)
def forward(
self,
xs_pad,
ilens=None,
mask=False,
features_only=True,
layer=None,
mask_indices=None,
mask_channel_indices=None,
padding_count=None,
):
# create padding_mask by ilens
if ilens is not None:
padding_mask = make_pad_mask(lengths=ilens).to(xs_pad.device)
else:
padding_mask = None
features = xs_pad
if self.feature_grad_mult > 0:
features = self.feature_extractor(features)
if self.feature_grad_mult != 1.0:
features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = self.feature_extractor(features)
features = features.transpose(1, 2)
features = self.layer_norm(features)
orig_padding_mask = padding_mask
if padding_mask is not None:
input_lengths = (1 - padding_mask.long()).sum(-1)
# apply conv formula to get real output_lengths
output_lengths = self._get_feat_extract_output_lengths(input_lengths)
padding_mask = torch.zeros(
features.shape[:2], dtype=features.dtype, device=features.device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
padding_mask[
(
torch.arange(padding_mask.shape[0], device=padding_mask.device),
output_lengths - 1,
)
] = 1
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
else:
padding_mask = None
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
pre_encoder_features = None
if self.ema_transformer_only:
pre_encoder_features = features.clone()
features = self.dropout_input(features)
if mask:
x, mask_indices = self.apply_mask(
features,
padding_mask,
mask_indices=mask_indices,
mask_channel_indices=mask_channel_indices,
)
else:
x = features
mask_indices = None
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
layer=layer,
)
if features_only:
encoder_out_lens = (1 - padding_mask.long()).sum(1)
return x, encoder_out_lens, None
result = {
"losses": {},
"padding_mask": padding_mask,
"x": x,
}
with torch.no_grad():
self.ema.model.eval()
if self.ema_transformer_only:
y, layer_results = self.ema.model.extract_features(
pre_encoder_features,
padding_mask=padding_mask,
min_layer=self.encoder_layers - self.average_top_k_layers,
)
y = {
"x": y,
"padding_mask": padding_mask,
"layer_results": layer_results,
}
else:
y = self.ema.model.extract_features(
source=xs_pad,
padding_mask=orig_padding_mask,
mask=False,
)
target_layer_results = [l[2] for l in y["layer_results"]]
permuted = False
if self.instance_norm_target_layer or self.batch_norm_target_layer:
target_layer_results = [
tl.permute(1, 2, 0) for tl in target_layer_results # TBC -> BCT
]
permuted = True
if self.batch_norm_target_layer:
target_layer_results = [
F.batch_norm(
tl.float(), running_mean=None, running_var=None, training=True
)
for tl in target_layer_results
]
if self.instance_norm_target_layer:
target_layer_results = [
F.instance_norm(tl.float()) for tl in target_layer_results
]
if permuted:
target_layer_results = [
tl.transpose(1, 2) for tl in target_layer_results # BCT -> BTC
]
if self.group_norm_target_layer:
target_layer_results = [
F.layer_norm(tl.float(), tl.shape[-2:])
for tl in target_layer_results
]
if self.layer_norm_target_layer:
target_layer_results = [
F.layer_norm(tl.float(), tl.shape[-1:])
for tl in target_layer_results
]
y = sum(target_layer_results) / len(target_layer_results)
if self.layer_norm_targets:
y = F.layer_norm(y.float(), y.shape[-1:])
if self.instance_norm_targets:
y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)
if not permuted:
y = y.transpose(0, 1)
y = y[mask_indices]
x = x[mask_indices]
x = self.final_proj(x)
sz = x.size(-1)
if self.loss_beta == 0:
loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1)
else:
loss = F.smooth_l1_loss(
x.float(), y.float(), reduction="none", beta=self.loss_beta
).sum(dim=-1)
if self.loss_scale is not None:
scale = self.loss_scale
else:
scale = 1 / math.sqrt(sz)
result["losses"]["regression"] = loss.sum() * scale
if "sample_size" not in result:
result["sample_size"] = loss.numel()
with torch.no_grad():
result["target_var"] = self.compute_var(y)
result["pred_var"] = self.compute_var(x.float())
if self.num_updates > 5000 and result["target_var"] < self.min_target_var:
logging.error(
f"target var is {result['target_var'].item()} < {self.min_target_var}, exiting"
)
raise Exception(
f"target var is {result['target_var'].item()} < {self.min_target_var}, exiting"
)
if self.num_updates > 5000 and result["pred_var"] < self.min_pred_var:
logging.error(
f"pred var is {result['pred_var'].item()} < {self.min_pred_var}, exiting"
)
raise Exception(
f"pred var is {result['pred_var'].item()} < {self.min_pred_var}, exiting"
)
if self.ema is not None:
result["ema_decay"] = self.ema.get_decay() * 1000
return result
@staticmethod
def compute_var(y):
y = y.view(-1, y.size(-1))
if dist.is_initialized():
zc = torch.tensor(y.size(0)).cuda()
zs = y.sum(dim=0)
zss = (y**2).sum(dim=0)
dist.all_reduce(zc)
dist.all_reduce(zs)
dist.all_reduce(zss)
var = zss / (zc - 1) - (zs**2) / (zc * (zc - 1))
return torch.sqrt(var + 1e-6).mean()
else:
return torch.sqrt(y.var(dim=0) + 1e-6).mean()
def extract_features(self, xs_pad, ilens, mask=False, layer=None):
res = self.forward(
xs_pad,
ilens,
mask=mask,
features_only=True,
layer=layer,
)
return res
def remove_pretraining_modules(self, last_layer=None):
self.final_proj = None
self.ema = None
if last_layer is not None:
self.encoder.layers = nn.ModuleList(
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
)
def output_size(self) -> int:
return self.encoder_embed_dim
|